
Direct Wigner Tomography of a Superconducting Anharmonic Oscillator

Yoni Shalibo,1 Roy Resh,1 Ofer Fogel,1 David Shwa,1 Radoslaw Bialczak,2 John M. Martinis,2 and Nadav Katz1

1Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
2Department of Physics, University of California, Santa Barbara, California 93106, USA

(Received 12 August 2012; revised manuscript received 6 January 2013; published 5 March 2013)

The analysis of wave-packet dynamics may be greatly simplified when viewed in phase space. While

harmonic oscillators are often used as a convenient platform to study wave packets, arbitrary state

preparation in these systems is more challenging. Here, we demonstrate a direct measurement of the

Wigner distribution of complex photon states in an anharmonic oscillator—a superconducting phase

circuit, biased in the small anharmonicity regime. We apply our method on nondispersive wave packets to

explicitly show phase locking in states prepared by a frequency chirp. This method requires a simple

calibration, and is easily applicable in our system out to the fifth level.
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The state of open quantum systems is frequently repre-
sented by a density matrix [1,2]. This description is useful
for a wide variety of systems, in which the probabilities and
coherences in some chosen basis are of interest. In systems
with continuous degrees of freedom, e.g., the relative
position and momentum of atoms in a molecule, wave
packets are often formed and therefore phase space distri-
butions are better suited to characterize the state and its
dynamics [3]. In particular, the Wigner distribution offers
direct information about expectation values and purity, and
provides a convenient framework to test the quantum-
classical correspondence [4,5]. Since the Wigner distribu-
tion is a representation of the density matrix, it is useful for
quantum state tomography [6] as well. Numerous experi-
ments measured the Wigner distribution in harmonic sys-
tems [7–9]. However, while anharmonic systems exhibit a
wider variety of phenomena, a full quantum state recon-
struction has so far been limited to atomic and molecular
systems [10–13].

In this Letter, we report on a direct measurement of the
Wigner distribution in the Josephson phase circuit, a super-
conducting anharmonic oscillator. Our method utilizes
simple tomography pulses, and as opposed to standard
state tomography (SST) [6], does not require individual
calibration of the pulses [14].

Measuring the Wigner distribution in an anharmonic
system poses several challenges. First, the phase of each
level �n in the rotating frame advances increasingly with
n, causing wave packets to disperse during the tomography
pulse. For example, in a cubic potential this rate is given by
_�n � �nðn� 1Þ=2, where � ¼ 2�ðf10 � f21Þ is the
anharmonicity and n ¼ 0; 1; 2; . . . . Second, in our system
it is impossible to measure the probability distribution in
the phase space quadratures directly, and therefore the
prominent method for phase-space tomography is mea-
surement of the parity after a coherent displacement [8].
In order to achieve an approximate displacement operation,
one has to apply a pulse which is simultaneously resonant

with all the transitions within the measured subspace. We
find that both restrictions can be practically met by both
reducing the anharmonicity and applying sufficiently short
tomography pulses.
Our system, the Josephson phase circuit [16], is a super-

conducting LC oscillator with a weak anharmonicity, orig-
inating from a Josephson junction [17]. The potential
energy of the system is one dimensional and has the form
of a double well as a function of the phase difference �
across the junction. Using an external bias current Ib we
tune the anharmonicity and measure the occupation
probabilities of the energy levels inside the smaller poten-
tial well [see Fig. 1(b)]. The levels are excited using
resonant microwave pulses I�w, which can be simulta-

neously coupled to many levels at small anharmonicity
(�=2�f01 � 0:002) [16]. The state is readout in the energy
basis by applying a short pulse in Ib that causes level-
selective tunneling. Tunneling events are measured via an
on-chip SQUID [16].
In order to test this Wigner tomography scheme, we

would like to create arbitrary multilevel states as inputs.
This is difficult at small anharmonicity with short prepa-
ration pulses since the drive is simultaneously coupled to
many levels and therefore the dynamics become complex.
For longer pulses decoherence limits the state’s purity,
especially for multilevel states (for our system, the qubit
decoherence parameters are T1 ¼ 120 ns and T2 >
150 ns). We solve this difficulty, creating arbitrary, com-
plex photon states, using a genetic optimization protocol.
We apply this optimization directly in the experiment,
without any assumption on the system’s parameters, which
is more robust to calibration errors. During an optimization
we mutate and selectively breed pulse sequences
(genomes) such as to maximize the population overlap

� ¼
ffiffiffiffiffi
~Pi

q
�

ffiffiffiffiffiffiffi
~Pm

q
, based on the measured level populations

~Pm and the desired ones ~Pi [15]. Each genome is defined by
a set of amplitudes and phases of the microwave excitation,
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set with a 1 ns time resolution. In Fig. 1(c) we measure the
tunneling rates as a function of Imeas of optimized states at
small anharmonicity. In this figure, we compare these
measurements for states optimized manually to the 1st
and 2nd excited levels (right) with ones optimized geneti-
cally (left) to the 1st, 2nd, and 3rd excited levels. The
genetically optimized states are clearly much closer to
the ideal dashed curves, as compared to the manually
optimized states. We find that the population overlap
increases sharply to more than 75% in less than ten iter-
ations and then increases slowly as the algorithm pro-
gresses. As we show later, this technique is particularly
useful for testing the Wigner tomography method.

Ideally, the Wigner distribution is proportional to the
expectation value of the parity operator after a coherent
displacement [18]. Because of the finite anharmonicity in
our system, we use short, Gaussian-shaped resonant pulses
as an approximate coherent displacement, while working at
a weak anharmonicity. We control the phase and size of the
complex displacement � by setting the phase and ampli-
tude of the microwave pulse, using the relation � ¼
�ð1=2ÞR�ðtÞdt for a harmonic system, where �ðtÞ is

the time-dependent, Gaussian-shaped Rabi amplitude.
For our experimental parameters [19], the pulse is simul-
taneously resonant with many transitions between con-
secutive levels, �6 of which are subject to an amplitude
variation of less than 10% from the peak amplitude [15].
For a given anharmonicity �, a resonant pulse can be well
approximated by a harmonic displacement in the limit

�Tj�jm2=4 � 1, where j�j is the size of the applied
displacement, m is the maximal occupied level after a
displacement, and T is the pulse duration [15]. This con-
dition limits the maximal displacement to be well below
the size of the distribution in phase space (j�maxj � 1).
However, we find in simulation that while the phases of the
displaced state are sensitive to the above condition, the
parity value remains insensitive for much larger displace-
ments. We find that for our experiment parameters, up to 5
levels can be measured accurately. The expectation value
of the parity operator is calculated from the measured
occupation probabilities and is approximately given by
Wð�Þ ¼ ð2=�ÞPnð�1ÞnPn for the lowest states in the
well [15]. To test the effect of this pulse on our system,
starting at the ground state we measure the occupation
probabilities immediately after a short microwave pulse
of total area �. Figure 2 shows the results of this measure-
ment as a function of state number n and � [Fig. 2(a)],
compared with the expected probabilities in a harmonic
oscillator [Fig. 2(b)], Pð�; nÞ ¼ ð1=n!Þ expð�j�j2Þj�j2n.
As expected, the probability distribution in n is narrower
compared to the harmonic system for higher amplitudes
due to our finite bandwidth. To compare the data and
theory quantitatively, we plot a histogram of the distribu-
tion [Figs. 2(c) and 2(d)] for j�j ¼ 1:4 and j�j ¼ 2:3. At
j�j ¼ 1:4 our data fit well with a harmonic displacement.
At the largest displacement values (j�j ¼ 2:3) the devia-
tion from harmonicity becomes more apparent as expected
[15], but is still small.
To benchmark our method, we apply it on a set of

superpositions of eigenstates, jc li ¼ ðj0i þ ei�jliÞ= ffiffiffi
2

p
[20]. These states have a simple structure in phase space
and cannot disperse since they contain one measurable
phase that results in only a free rotation. We use the genetic
optimization to produce these states rapidly (�25 ns) at
small anharmonicity (20 MHz). The results of the optimi-
zation algorithm are summarized in Table I. As expected,
� decreases for a larger n, mostly due to our relatively

FIG. 2 (color online). Tomographic pulse. Occupation proba-
bilities for levels n � 12, as a function of j�j in the experiment
(a) and theory (b). (c), (d) Histograms along the dashed lines
shown in (a) and (b).

FIG. 1 (color online). Experimental techniques. (a)Measurement
of the occupation probabilities using short pulses in bias
Imeas that cause selective tunneling of states n < k which are
detected later with an on-chip SQUID. (b) Time sequence of the
Wigner tomography measurement of Fock-type superpositions.
(c) Tunneling measurements of optimized versus nonoptimized
states at small anharmonicity as a function of measurement pulse
amplitude. For the optimized states we used pulse sequences of
length 20, 20, and 12 ns for the first, second, and third excited
levels, respectively.
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short preparation pulse duration �. To increase the value of
� for these states we increase �, at the expense of the
states’ purity and optimization run time. Our optimization
algorithm does not take into account phases; however, for
sufficiently high values of �, the Wigner image is domi-
nated by only one phase, as can be seen in Fig. 3. In
Fig. 3(a) we plot the results of the tomography measure-
ment on the ground state, and states jc li described in
Table I. In Fig. 3(b) we plot the density matrices of the
measured states, extracted using the harmonic oscillator
wave functions [15]. The diagonal elements in the
extracted density matrices agree well with the measured
occupation probabilities up to level n ¼ 4. However, simu-
lation shows that off-diagonal elements deviate increas-
ingly for n > 2 [15]. We find that the origin of these errors
is primarily the significant decay and decoherence that
occur at highly excited levels during the tomography pulse.
The errors in the measured Wigner distribution can be
further reduced with currently available higher coherence
samples [15]. States composed of more than 3 levels will
tend to show an observable dispersion in theWigner image,
due to the accumulation of phases during the tomography
pulse. However, these can be corrected using the time-
reversed propagator of the bare system.

Wigner tomography of anharmonic oscillators is par-
ticularly useful to detect phase-locked states [21] since
these are characterized by nondispersive dynamics in

phase space. Phase locking to the drive may occur when
the system is driven with a frequency chirp, such that the
system’s oscillation frequency follows that of the drive.
This phenomenon occurs above an amplitude threshold,
which depends on the chirp rate and anharmonicity. To
measure this effect, we apply a negative frequency chirp

( _fdrive < 0), with a drive amplitude above the phase-
locking threshold and a final frequency centered close to
the transition frequency f23. The chirp’s temporal length
and bandwidth jffin � ffinj are chosen to be short (20 ns)
and large (600 MHz), respectively, in order to have a broad
excitation of states and for the excitation to be adiabatic
[16]. Figure 4 shows the result at selected times along the
chirp [Fig. 4(a)], and after the drive is turned off [Fig. 4(b)].
The axes in the images are rotated at each time frame to fit
the rotating frame of the drive. During the chirp, we see a
displacement of the ground state distribution that gradually
acquires a constant phase as the drive crosses the linear
resonance (f ¼ f01). This happens, as expected, around
t ¼ 16 ns and the shape of the wave packet becomes
crescentlike. After the drive is turned off (t ¼ 21 ns),
phase locking is lost and the wave packet disperses due
to the finite anharmonicity. At t ¼ 35 ns, the state has
completely dispersed; however, it still contains significant
coherences, as indicated by the negative values in the
Wigner plot and the large off-diagonal elements in the
extracted density matrix [Fig. 4(d)]. The state then
dephases into a ring shape which shrinks in radius towards
the ground state. To track decoherence dynamics in this
experiment, we extract the state’s purity evolution directly
from theWigner distribution: } ¼ �

R
d ~�jWð ~�Þj2 [3]. The

result is shown in Fig. 5 (red circles), and compared with a
simulation (solid line). As expected, the purity remains
high during the chirp, and then decays as a result of
decoherence. The purity reaches a minimum and then
ascends towards unity with an exponential rate, consistent

TABLE I. Results of the optimization algorithm.

l Pðj0iÞ Pðj1iÞ Pðj2iÞ Pðj3iÞ Pðj4iÞ Pðj5iÞ � (ns) � (%)

1 0.52 0.47 0.01 0 0 0 15 99.8

2 0.69 0.05 0.24 0.02 0 0 30 93.4

3 0.58 0.03 0.11 0.27 0.01 0 25 90.5

4 0.70 0.01 0.03 0.07 0.17 0.02 40 88

FIG. 3 (color online). Superposition of Fock-type states. (a) Wigner tomography of genetically optimized superposition of Fock-type
states and (b) density matrices, extracted from the measurements shown in (a).
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with the measured decay time (T1 ¼ 120 ns) and in accor-
dance with simulation. This experiment opens the door
for other measurements of wave packets in phase space.
For example, it is possible to hold a phase-locked wave

packet for long periods compared to T1 [16] and generate
cat states by multiple chirps.
In conclusion, we demonstrate a method of measuring

the state of a multilevel system with a small anharmonicity
in phase space. Using this method we are able to accurately
extract the density matrix of up to 5 levels, limited by
systematic errors caused by decoherence and finite band-
width. This represents a significant improvement on SST
which is difficult to implement in this subspace. The
tunability of the phase circuit offers an approach of
improving the accuracy of such a measurement at larger
anharmonicity, by quickly changing the bias Ib after state
preparation to the small anharmonicity regime where
the tomography pulse is approximately a harmonic
displacement.
We acknowledge fruitful discussions with David Tannor,

Ronnie Kosloff, Omri Gat, and Ido barth. This work was
supported by ISF Grant No. 1248/10 and BSF Grant
No. 2008438.

FIG. 4 (color online). Dynamics of a phase-locked wave packet. (a) Wigner tomography during a chirp (T ¼ 20 ns, �=2� ¼
66 MHz, fin � f01 ¼ 320 MHz, ffin � f01 ¼ �50 MHz) and (b) during drive-free evolution. (c), (d) Extracted density matrices for
(a) and (b), respectively.

FIG. 5 (color online). State purity. Extracted state purity }
from experiments (red circles) and simulation (solid line) during
chirp and decay. The simulation includes the effect of the decay
and dephasing and agrees with the measured decay time.
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