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Supplementary Information
Materials and methods. The Josephson phase cir-

cuit [1] used in the experiment has the following design
parameters: critical current I0 ≈ 1.5µA, capacitance
C≈1.3 pF and inductance L≈940 pH. The qubit has a
tunable frequency f01 in the 6-9GHz range. During the
experiment the device is thermally anchored to the mix-
ing chamber of a dilution refrigerator at 30mK, where
thermal excitations of the qubit are negligible.

We use a custom built arbitrary waveform genera-
tor (AWG) having a fast (1 ns time resolution), 14-bit
digital-to-analog converter to shape the microwave pulses
which control the quantum state of the circuit. We con-
trol the phase and amplitude of the drive by modulat-
ing a high-frequency oscillator of frequency fLO with
the AWG, using an IQ-mixer. The modulation sig-
nals are fed into the I and Q ports of the IQ-mixer to
give an amplitude

√
I(t)2 +Q(t)2 and a relative phase

φ(t) = arctan (Q(t)/I(t)) at its output.

Harmonic response. As indicated in the
manuscript, the bandwidth of the tomography pulse must
be large relative to the anharmonicity, for a nearly har-
monic response. This is easily understood by looking at
the position of the transitions in the spectral domain,
relative to the local oscillator frequency (see Fig. S1).
As seen in the �gure, the e�ective drive amplitude of the
lowest 6 transitions is the same, to within a 10% vari-
ation. This is consistent with our data and simulations
(see Sec. II), showing small systematic errors within the
corresponding subspace. In principle, more transitions
can �t within this region by positioning the local oscilla-
tor lower in frequency.

Parity measurement. In the manuscript we made
the assumption that the parity operator can be calcu-
lated within the harmonic approximation, that is: 〈Π〉 ≈
W (α) = (2/π)

∑
n

(−1)
n
Pn. By direct calculation of the

parity from the eigenstates of our system we �nd that
the bottom 5 states have a well de�ned parity (−1)

n
to

within 1%. The parity of higher states decreases to ∼ 0.6
at n = 10. We separately checked using a full simulation,
taking into account all the matrix elements, that our par-
ity approximation yields the same results.

Populations measurement. The measured escape
probabilities due to a set of experiments with di�erent
measurement pulses are converted into level occupation
probabilities using the measured escape curves of the low-
est levels in the well [2]. In this experiment, we used a
novel measurement pulse shape, to reduce distortions of
the escape curves of higher levels. This measurement
pulse is shown in Fig. S2. Typically, one must use a
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Figure S1: Tomography pulse envelope in the frequency do-
main. Dashed lines are the lowest �ve transitions fn,n+1 and
the local oscillator frequency position in the experiment. The
pulse envelope (solid line) is the normalized fourier transform
of a 1.6 ns FWHM gaussian function.
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Figure S2: Measurement pulse used in the experiment. All
the pulse parameters except for the total amplitude A are
�xed.

pulse with a slowly decaying end, in order to reduce the
e�ect of population re-trapping in the original well af-
ter the pulse ends. The e�ect of re-trapping becomes
more prominent as the anharmonicity is reduced due to
the corresponding deepening of the potential well, and
therefore requires increasing both τ2 and τ3 to eliminate
re-trapping. At the working bias point used in our exper-
iment, we use τ2 = 25ns and τ3 = 15ns. These param-
eters are non-negligible relative to the decay time and
cause arti�cial increase of the extracted population at
lower levels, which in turn distorts the Wigner image.
To avoid this e�ect we add a small step in amplitude at
the beginning of the pulse (τ1 = 1 ns) to preselect the
population we want to escape, and then reduce the am-
plitude by an amount δA. Even the small di�erence δA is
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su�cient to protect undesired population at lower levels
from tunneling out during the long waiting time in which
the escaped population decays in the external well.
Density matrix �t. In the Wigner tomography ex-

periments we extract the density matrix from the pop-
ulations of the displaced states [3]. We use 200 ho-
mogeneously distributed random displacements within a
|α| < 2 circle to �t the density matrix, while restrict-
ing the density matrix to a 6× 6 subspace. It should be
noted that both the measured Wigner distribution and
the extracted density matrix represent the state after a
rotation that occurs during the tomography pulse. To get
more accurate phases, one can apply an inverse propa-
gator on the density matrix U = exp(−iH0∆t/~), where
H0 is the drive-free Hamiltonian and ∆t is the e�ective
pulse length for the rotation.

I. STATE PREPARATION BY GENETIC

OPTIMIZATION

Finite anharmonicity makes it possible to prepare
states, composed of arbitrary superpositions of eigen-
states within our system. However, fourier broadening
of the drive, together with power broadening of the tran-
sition energies causes nontrivial excitation at relatively
small anharmonicities. Adding the short decay and co-
herence time, it becomes challenging to prepare a de-
sired, yet pure state. We solve this di�culty, by op-
timizing the state produced with a feedback from the
experiment. Our target state in the optimization algo-
rithm is a superposition of eigenstates of our system:
|ψl〉 =

(
|0〉+ eiφ |l〉

)
/
√

2. Using the measured proba-
bilities we are able to optimize such a superposition up
to an unknown phase φ that causes only a free rotation
of the measured Wigner function.
Our optimization algorithm is based on guided evolu-

tion. It is constructed in the following steps:
(a) We de�ne a set of NG pulse sequences (genomes).

Each genome is a sequence of Nt complex numbers that
represent the amplitude and phase of the drive's pulse
envelope at each time step, with 1 ns time resolution. In
addition, each genome is associated with a population

overlap, de�ned as: χ =

√−−−→
Pideal ·

√−−−→
Pmeas, where

−−−→
Pideal

and
−−−→
Pmeas are the desired and measured population vec-

tors . The genomes are initialized with random complex
numbers, each having a maximal amplitude Ωmax, and
χ = 0.
(b) At each iteration of the algorithm (generation), we

assume that the current set of genomes is sorted in order
of decreasing χ. The upper Na genomes are kept, and
the next Na genomes are replaced by a combination of

the upper Na + 1 genomes:
−−−−→
GNa+k =

−→
P (Gk, Gk+1) +−→ε ,

where the function
−→
P (x, y) randomly selects an ampli-

tude between the sets x and y at each time step and −→ε

is a set of random complex numbers with a small ampli-
tude εmax (noise). The bottom NG − 2Na genomes are
replaced by random complex numbers with an amplitude
Ωmax.

(c) The bottom NG − Na genomes of the next gen-
eration are then applied and the resulting probabilities−−−→
P kmeas for each genome are measured. After calculating
χ of each, we sort our new set G in order of decreasing
χ, and mark genome sequences that have (potentially)
higher χ than the current optimal χ. For each genome
having a potentially higher χ we repeat the measurement
Nrep times, recalculate χ and reposition them in the set
G. Step (b) is run again.

Fidelity measure. Our population overlap χ mea-
sures the distance between two states. There are many
possibilities of de�ning the �delity, and in general each
gives a di�erent bias for the algorithm towards �nding a
speci�c family of states. In our de�nition for example,
χ is highly sensitive to the overall population that ex-
ists outside the subspace that is populated in the target
state. However it is much less sensitive to the distribu-
tion among levels that are populated in the target state.
Our de�nition is particularly useful for optimizing our
target states |ψl〉 for a Wigner measurement, because we
wish to eliminate the population of states other than |0〉
and |l〉.
There are two important factors that limit the per-

formance of any optimization algorithm in experimental
systems: shot noise, and drifts in the physical parameters
of the system.

Shot noise. Any �nite number of repetitions results
in some uncertainty in the measured probabilities. To de-
termine n occupation probabilities in the �nal state we
measure the tunneling probabilities after n measurement
pulses having di�erent amplitudes. In a typical optimiza-
tion algorithm, we repeat the measurement of a single
tunneling probability 900 times. Statistical analysis gives
a typical uncertainty (standard deviation) of ∼2% in χ
for su�ciently high values of χ (χ & 80%) and there-
fore one cannot distinguish between two genomes with a
χ di�erence which is smaller than ∼3%. We therefore
expect the algorithm to run signi�cantly more slowly at
χ's approaching unity, due to false increase of χ. To in-
crease the e�ciency of the algorithm without increasing
the number of repetitions of each measurement, we re-
peat the measurement only for genomes with potentially
increased χ, as described in step (c).

Drifts. The response of the system to the application
of a given genome can change in time due to drifts in its
physical parameters. We correct for drifts in the energies
by performing a spectroscopic measurement of the qubit
transition frequency every 10 minutes and adjusting the
�ux bias to restore the qubit frequency to its original
value. In addition, we correct for drifts in the o�set volt-
ages applied to the IQ mixer that eliminate leakage of
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the microwave drive while it is turned o�.

II. SYSTEMATIC ERRORS

To quantify the errors in the measured Wigner func-
tion and density matrix caused by �nite anharmonicity
and decoherence, we perform numerical simulations . In
our simulations, we propagate an anharmonic system,
initialized with a pure state ρ = |ψ〉 〈ψ|, with resonant
pulses. Each pulse is assumed to be resonant with the
�rst transition and has a gaussian envelope with the same
width as in the experiment. We use the rotating wave
approximation for constructing the Hamiltonian, and
neglect corrections to the drive coupling beyond the har-
monic approximation, namely 〈n| δ |m〉 = 0 for n 6= m±1
and 〈n| δ |m〉 ∝ √n,

√
n+ 1 for m = n ± 1. This results

in the following time dependent unitary propagator:
U(t) = exp

(
i δt2
[(

Ω(t)a† + Ω(t)∗a
)

+ βa†a(a†a− 1)
])
,

where δt is the time step in the simulation, Ω(t) is
the time dependent drive envelope amplitude and
β = 2π (f01 − f12) is the anharmonicity. Decoherence
and energy relaxation are taken into account using quan-
tum operations, assuming only two phenomenological
parameters: the energy relaxation time of the qubit T1
and its pure dephasing time T2.
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Figure S3: Systematic errors in the Wigner distribution, for
initial states |ψl〉 = (|0〉+ |l〉) /

√
2, where l = 1, 2, 3, 4. The

cross-correlation deviation as a function of the anharmonicity
(a) and initial state. In (a), decoherence is not included, and
the magenta, red, blue, green lines correspond to the initial
state l = 1, 2, 3, 4 respectively. In (b) decoherence is included
and the anharmonicity is �xed to β/2π = 20MHz. The black
and grey lines correspond to decoherence parameters T1 =
150 ns, T2 = 200 ns and T1 = 600 ns, T2 = 600 ns respectively.

We expect to have negligible systematic errors due to
�nite anharmonicity when the second term in the ex-
ponent of the propagator becomes negligible. By sep-
arating the terms in the exponent to �rst order, and

assuming a constant drive amplitude Ω of total du-
ration T , we can approximate the propagator to to
U ≈ D(α)Γ(T ) exp(−iTβ4 [

(
αa† − α∗a

)
, a†a(a†a − 1)])

where D(α) is the displacement operator, α ≡ iΩT , and
Γ(T ) = exp(iTβ2 a

†a(a†a − 1)) is an overall dispersion
operator. The second term can be considered negligi-
ble in the limit, |α|Tβm2/4 � 1, where m is the max-
imal occupied state. For our experimental parameters
(β/2π = 20MHz, T = 1.6 ns), the second term can be
neglected only for |α| � 1, however, the error in the
Wigner distribution, obtained from the state populations
after the pulse are negligible even for α ≈ 2, as we show
in our analysis. The reason for this is the insensitivity
of the parity value to excited states larger than n ≈ 4.
Despite that fact that these states are populated with
occupation probabilities that di�er signi�cantly from the
harmonic case, their contribution cancels out in the cal-
culation of the parity.
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Figure S4: Systematic errors in the extracted density matrix,
for initial states |ψl〉 = (|0〉+ |l〉) /

√
2, where l = 1, 2, 3, 4.

The left column of plots shows the �delity error, and errors
in the o�-diagonal matrix element ρ0l as a function of anhar-
monicity, in the absence of decoherence. The magenta, red,
blue and green lines correspond to the initial state l = 1, 2, 3, 4
respectively. The same error measures are plotted in the right
column, as a function of initial state l, with decoherence in-
cluded, at β/2π = 20MHz. The black and grey lines corre-
spond to decoherence parameters T1 = 150 ns, T2 = 200 ns
and T1 = 600 ns, T2 = 600 ns respectively.

We plot the errors in the Wigner distribution and the
extracted density matrices, as a function of the anhar-
monicity β, initial state and decoherence parameters.
The density matrix is extracted, as in the experimental
data, using only the populations of the lowest 6 levels.
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To quantify the error in the Wigner distribution,
we calculate the cross-correlation (at zero o�sets) be-
tween the ideal Wigner distribution of the initial state,
and the one obtained from the expectation value of
the parity operator after a set of displacements. The
cross correlation is de�ned as C(f(x, y), g(x, y)) =∑
x′,y′

(f(x′,y′)−〈f〉)(g(x′,y′)−〈g〉)√ ∑
x′′,y′′

(f(x′′,y′′)−〈f〉)2
∑
x,y

(g(x′′,y′′)−〈g〉)2
, where 〈f〉 , 〈g〉

are the average values of f, g. The results are plotted in
Fig. S3. As seen in the �gure, the error increases sharply
with both anharmonicity and maximal populated level l.
To quantify the error in the extracted density matri-
ces, we use the standard �delity de�nition: 〈δF〉 =

1− Tr
√√

ρF ρI
√
ρF , where ρI is the initial density ma-

trix and ρF is the density matrix obtained from a �t to
the populations of the displaced states. We choose the
initial density matrix ρI to be |ψl〉 〈ψl|, where |ψl〉 =
(|0〉+ |l〉) /

√
2. In addition, we calculate the error in

the non-zero o�-diagonal elements of the density matrix
using the following de�nitions: δρ0l =

∣∣∣∣ρF0l∣∣− ∣∣ρI0l∣∣∣∣ is
the error in the amplitude of the matrix element, and
δφ(ρ0l) =

∣∣φ (ρF0l)− φ (ρI0l)∣∣ /2π is the normalized error
in the phase of the matrix element.

As seen in the Fig. S4, all the error measures are
negligible (smaller than ∼ 0.05) when decoherence is
neglected. However, when included, both the �delity
and the amplitude of the o�-diagonal elements have non-
negligible errors. For currently available samples having
T1 > 600 ns, and correspondingly longer T2, the errors
due to decoherence can be substantially reduced; In this
case, the errors become smaller than 0.1 in all the mea-
sures. As expected, the phase error is quite insensitive
to decoherence.

III. SHOT NOISE IN WIGNER TOMOGRAPHY

VS. STANDARD STATE TOMOGRAPHY

As pointed out in the manuscript, phase space is a
convenient basis to experimentally acquire global infor-
mation about the state (e.g. phase distribution, average
energy etc.) fast, at the expense of accurate knowledge
of the state in the eigenstate basis. Therefore, when ex-
tracting the density matrix in the latter basis from a
Wigner measurement, one requires an excess number of
measurements compared to standard state tomography
(SST) to achieve similar uncertainties. It turns out that
this is only true for a certain class of states. For states
that are dispersed in phase space, such as states com-
posed of a coherent superposition of a small number of
eigenstates, SST requires signi�cantly less tomography
pulses than Wigner tomography (WT) to achieve a com-
parable error in the density matrix but the same num-
ber of pulses for states that are localized in phase space.
The overhead in the number of measurements is an im-

portant parameter from an experimental standpoint, and
therefore we perform numerical simulations to calculate
it. In the following we describe our simulation methods
for both cases.

WT. We start with a pure initial state |ψ〉. We use
the same method described in Sec. II to calculate the
density matrix after a coherent displacement. We keep
the diagonal elements of the �nal density matrix, for a set
of NW random displacements α that are uniformly dis-
tributed in the complex plane. For each experiment (a
particular displacement) we calculate an ensemble of M
possible outcomes for the measurements of the diagonal
elements, assuming r repetitions in the experiment, and
a binomial distribution for the escape probabilities, from
which the diagonal elements P (n) are calculated. For
each outcome, we extract the density matrix and calcu-

late its �delity F = Tr
√√

ρtomρideal
√
ρtom. We then

calculate the average �delity 〈F〉 of the ensemble to �nd
the experimental error 〈δF〉 = 1−〈F〉 due to shot noise.
SST. We start with a pure initial state |ψ〉. We con-

struct a set of NSST = d2 orthogonal, unitary operations
Uj to span a d-level subspace. The set of operations is
chosen to be the generators of SU(n) for convenience.
From the diagonal elements of the rotated density matri-
ces, we are able to extract the expectation values of each
generator 〈Uj〉 = Tr(ρUj), and therefore reconstruct the
original density matrix: ρ =

∑
j

〈Uj〉Uj [4]. As before,

for each diagonal we calculate an ensemble of M possi-
ble measurement outcomes due to shot noise. From each
of the measurements in the ensemble, we extract the ex-
pectation values of the operators Uj and calculate the
corresponding density matrix. The average �delity error
of the ensemble of density matrices is then evaluated.
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Figure S5: Error in the �delity due to shot noise in standard
state tomography and WT. 〈δF〉 vs. N in WT (blue) and
SST (red) of the initial states |ψ〉 = (|0〉+ |4〉) /

√
2 (a) and

|ψ〉 =
(
1/

√
5
) 4∑
k=0

|k〉 (b). Both follow the 1/
√
N trend.

Figure S5 shows the results of both simulations. We
plot 〈δF〉 as a function of N = R, where R is the number
of repetitions of the experiment per tomography pulse. In
the WT simulation we de�ne N relative to the SST case:
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N = R
(

NW

NSST

)
, where NW is the number of tomography

pulses in the Wigner simulation, and NSST is the number
of tomography pulses in SST. While NSST is �xed, we
vary N in the WT simulation by using many displace-
ment pulses while �xing R, and in the SST simulation
we vary N by changing the statistics R. In all Wigner
simulations we �x R to be 900 (as in our experiment) and
in the SST simulations we vary R from 100 to 3000.
We see that for an initial state, composed of a coherent

superposition of only 2 states (Fig. S5a), SST outper-
forms WT by a factor of 8, in terms of the �delity F .
In contrast, for states composed of a coherent superposi-
tion of 5 eigenstates, the amount of information that is

extracted per pulse in SST and WT is similar. This is
because our chosen state is partially localized in phase
space, and therefore requires less displacement pulses to
extract its properties.
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