canceled by the resonant response of the coated cylinder. Otherwise, the energy can diverge \((4, 5)\). Because a single polarizable line dipole produces no induced moment, it follows that a collection of such objects would also produce no moment, and hence be invisible.

To realize all these possibilities requires ingenious materials design supported by advances in technology. There is a plethora of reported advances in both wave-functional materials fabrication, as well as the realization of related phenomena. Because many of the wave-functional effects are associated with resonances, overcoming the limitations imposed by dissipation and dispersion effects (meaning that the desired phenomena are realizable only within a narrow frequency window) represents the most urgent challenge. In this respect, the successful achievement of a photonic crystal optical cavity \(Q\) value on the order of \(10^6\) by Noda’s group in Kyoto University \((6)\) is noteworthy for foreshadowing the potential applications. There are also efforts to realize a negative refraction index from structural means, such as extreme anisotropy \((7)\) and chiral materials \((8)\), in addition to photonic crystals. An interesting proposal is to compensate the resonance-induced dissipation with an optical gain medium \((9)\), which can be pumped separately. The degree to which these efforts are successful would set the scenario of future wave technology.

Wave localization in the Anderson sense (that is, localization of waves as they scatter in a random medium) is generally characterized spatially by an exponentially decaying wave function. However, if one uses a pulse to probe a medium with localized states, then it can be shown theoretically that there are also characteristic time-domain signatures \((10)\). Recent experiments by Storzer et al. \((11)\) have shown that by measuring time-resolved photon transport through TiO\(_2\) powder samples, one can detect clear deviation from the diffusive behavior that is expected from multiple scatterings \((12)\). Moreover, it was reported during the meeting that the deviation can be explained by a time-dependent diffusion constant \(D\) that approaches \(\sim 1/t\) behavior. If \(r^2 \sim Dt\), then heuristically \(D \sim 1/t\) implies a saturation length—the localization length. The photon mobility edge, the optical analogy to the electronic metal-insulator transition, may be within reach.

Random systems are usually characterized by probability functions. Thus, wave localization, a manifestation of multiple scattering of waves in random media, has been mostly studied by focusing on the mean behavior, just as diffusion is the mean behavior of a random walker. A shift away from this focus is represented by the study of the “connectivity” of localized wave functions in a single (finite) random configuration. In a one-dimensional layered system, a connected state consisting of multiple localized wave functions \((13)\) with roughly the same energy and equally spaced across the sample is denoted a “necklace.” Such necklaces would carry most of the wave flux through the sample, because they represent short circuits in an otherwise insulating sample. In two separate experiments, one in the microwave regime by Sebbah et al. \((14)\), and one in the optical regime by Bertolotti et al. \((15)\), these necklace states in a one-dimensional layered system were observed. The true significance of these states may lie in the three-dimensional mobility edge, where in analogy with percolation the connected localized states would play a role similar to that of the percolating backbone, which has density measure zero (because of its fractal geometry) but nevertheless carries all the flux.

As the title of the meeting “From Random to Periodic” implies, some convergence of the two developments may be inevitable, or even anticipated. Challenges remain, however, in identifying the nontrivial intersections, from which new physics and phenomena may emerge.

References

10.1126/science.1131711

PHYSICS

Entangled Solid-State Circuits

Irfan Siddiqi and John Clarke

Quantum tomography is used to determine the entangled state of two coupled superconducting qubits, a step forward for solid-state quantum computing.

A fundamental tenet of quantum mechanics is the idea that two spatially separated objects exhibit correlations in observable physical properties that cannot be explained by any classical theory. Troubling even Einstein, this “spooky action at a distance” \((\sim)\)—known as entanglement—is fundamental to quantum information science and directly related to the enhanced computing power of a processor based on quantum bits (qubits). What is remarkable is that solid-state electrical circuits containing as many as \(10^3\) atoms can be engineered to exhibit quantum behavior and are well described by the quantum formalism originally developed for individual atoms and photons. One can construct such qubits from thin films using conventional semiconductor fabrication techniques, making them attractive for eventually realizing a quantum computer with many qubits.

With these solid-state “atoms on a chip,” one can prepare arbitrary superpositions of single-qubit states and manipulate them with microwave radiation to observe clear signatures of quantum coherence familiar in atomic physics and nuclear magnetic resonance \((2\sim5)\). Coupling two or more qubits together results in entangled states with energy spectra that exhibit features such as avoided crossings \((6)\) predicted by quantum mechanics. Verifying that two qubits are unambiguously entangled is, however, a delicate task and requires sophisticated benchmarks such as quantum state tomography \((7)\). This method involves a series of measurements (analogous...
well, causing a sudden change in δ and inducing a magnetic flux that is stored in the loop. If the qubit is initially in the state $|0\rangle$, however, no tunneling occurs. The difference between these two flux states is readily detected with an on-chip SQUID (superconducting quantum interference device) inductively coupled to the qubit.

In the case of two coupled phase qubits, there are four basis states: $|00\rangle$, $|01\rangle$, $|10\rangle$, and $|11\rangle$ (where 0 and 1 indicate the state of each individual qubit). Steffen et al. prepare the entangled state $(|01\rangle - i|10\rangle)/\sqrt{2}$ (where $i = \sqrt{-1}$), one of the states that is important in quantum logic. The density operator for this state is $\hat{\rho} = (|01\rangle - i|10\rangle)(|01\rangle + i|10\rangle)/2$. The corresponding density matrix is

$$
\rho = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1/2 & -i/2 \\
0 & i/2 & 0 & 1/2 \\
0 & 0 & 0 & 0
\end{pmatrix}
$$

Entanglement is indicated by the nonzero, off-diagonal elements of the density matrix, $i/2$ and $-i/2$; these particular off-diagonal matrix elements must be nonzero to represent an entangled state. If one instead had a product state of the form, $(|10\rangle + |00\rangle)/\sqrt{2} = (|1\rangle + |0\rangle)(|0\rangle + |1\rangle)/\sqrt{2}$, there would be no quantum correlations between measurements of the states of the two qubits. Simply measuring qubit A, for example, cannot distinguish between the entangled and product states described above, and each measurement would yield a 50% probability of being in $|0\rangle$ or $|1\rangle$. A more sophisticated sequence, namely, state tomography, is needed to determine all the elements of the density matrix.

Arguably, George Stokes (9) introduced such a procedure in 1852 in the context of linear optics. Using a set of four measurements involving polarizers of various orientations, he reconstructed the polarization state of an unknown electromagnetic wave. In the case of coupled phase qubits, a tomographic measurement involves applying different microwave pulse sequences (similar to those in nuclear magnetic resonance) before readout to obtain different linear combinations of the elements of the density matrix (10). From this information, Steffen et al. reconstruct the density matrix. Their results convincingly show the signatures of their entangled state, namely, the diagonal and nonzero off-diagonal matrix elements shown in Eq. 1. After correction for known measurement errors, the observed magnitudes are 87% of the theoretical values. The remaining discrepancy is consistent with predictions based on the measured decoherence time.

These tomographic measurements are a positive step forward for solid-state quantum computing, representing a proof-of-principle demonstration of the basic functions needed for a quantum computer. At the same time, we are reminded of the complexities of the solid state, which has many possible channels of decoherence. Fidelity—control and measurement precision—may be lost to uncontrolled degrees of freedom that might be associated with the readout circuit, low-frequency noise in charge, flux, and junction critical current, and lossy circuit materials. Steffen et al. suggest that their observed loss of fidelity is a result of poor dielectric materials. Decoherence in other kinds of superconducting qubits is reduced by operating them at symmetry points at which they are insensitive to environmental noise (3), thereby implementing a level of hardware fault tolerance. Moreover, quantum error correction codes have been developed for software fault tolerance. Given the tremendous progress made with superconducting qubits in the past few years, we expect the demonstration of even more sophisticated quantum algorithms in the not-too-distant future.

References