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Abstract

Benchmarking the

Superconducting Josephson Phase Qubit:

The Violation of Bell’s Inequality

by

Markus Ansmann

The concepts of entanglement and superpositions introduced by quantum me-

chanics promise to allow for the design of a new computing architecture, called

a quantum computer, that can exponentially outperform any possible classical

computer. Such a performance improvement would make presently intractable

computational problems efficiently solvable. Such problems include optimizations,

like the traveling salesman problem, factorization, and quantum simulations, e.g.

for medical research.

This thesis discusses one approach to implementing a quantum computer that

is based on Superconducting Josephson Phase Qubits. An experiment is presented

that shows a violation of Bell’s inequality using these qubits (quantum bits), i.e.

it demonstrates that a pair of these qubits can be placed into a state that shows

xv



a stronger correlation than possible for a classical pair of bits. This experiment

meets a major mile-stone for the field of superconducting qubits as it provides

strong evidence that the architecture will indeed be able to outperform classical

systems.

Furthermore, this experiment is the first demonstration of a violation of Bell’s

inequality in a solid state system, and the first demonstration in a macroscopic

quantum system. It therefore adds valuable supporting evidence that the new

ideas proposed by quantum mechanics are indeed valid across different quantum

systems and cannot be explained by a deterministic alternative theory.

xvi
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Chapter 1

Quantum Computation

1.1 Motivation

1.1.1 The Information Society

During the 20th century, information-intensive activities have grown from a

few percent to two-thirds of all US labor [Molitor, 1982]. This was made possible

by the advent of the personal computer and the increasingly wide-spread avail-

ability of information storage and sharing systems like magnetic hard disks and

the Internet. The exponential improvements in performance and the drop in price

of information gathering and creating devices has lead to an information deluge

that is projected to result in a doubling of the world’s information base every 11
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hours by 2010 [Coles et al., 2006]. To handle this flood of information efficiently it

will need to be met with a continuing dramatic increase in information processing

power.

1.1.2 Moore’s Law

For the past 40 years, the performance of computing devices has doubled

roughly every 18 months. This trend is commonly referred to as “Moore’s Law”,

inspired by an article written in 1965 by Intel co-founder Gordon Moore [Moore,

1965]. Despite the fact that Moore’s Law is expected to hold for at least another

decade, it is important to prepare for the longer term future when transistors on

silicon will have been pushed to their limits.

1.1.3 Church-Turing Thesis

The Church-Turing Thesis makes this even more pressing. Alan Turing in 1938

described a universal logic machine [Turing, 1938] that can efficiently, i.e. in poly-

nomial time, simulate any other computing system. This logic machine is simple

enough to allow any classical computer to simulate it efficiently as well. Therefore,

any classical computer can simulate any other computing system efficiently. This

implies that problems that are intractable, i.e. not solvable in polynomial time,

on current computers will remain intractable on all future computers. Examples
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for such problems include factoring the product of two n-bit primes, the travelling

salesman problem, the hidden subgroup problem, etc.

1.1.4 Deutsch-Josza Algorithm

In 1992, David Deutsch and Richard Jozsa proposed a fictitious problem and an

algorithm for solving it that indicates that a computer which uses quantum states

for computation might not be subject to this limitation imposed by the Church-

Turing Thesis [Deutsch and Jozsa, 1992]. The problem consists of determining the

nature of an unknown function by queries to an oracle that evaluates the function

for a given input. The function acts on an n-bit number and is known to be either

constant, i.e. returns 0 (or 1) for all possible inputs, or balanced, i.e. returns 0

for exactly half of all possible inputs and 1 for all others. A classical computer,

in the worst case, would have to evaluate the function 2n−1 + 1 times, while a

quantum computer would need to evaluate the function only once to determine

with certainty whether it is balanced or constant. This is done by evaluating the

function once for an input state that consists of a superposition of all possible 2n

states (achievable by the application of a Hadamard gate (see Section 1.3.4) to

all input qubits). If the output shows amplitudes for both 0 and 1 the function is

balanced, otherwise it is constant.

This algorithm implies that a quantum computer might be infinitely faster than
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any possible classical computer for certain classes of problems that are considered

intractable for classical computers.

1.1.5 Shor’s Algorithm

Perhaps the most practical example of this is the problem of factoring the

product N of two large primes. The best currently known classical algorithm, the

general number field sieve [Lenstra and Lenstra, 1993], requires sub-exponential

time O(e(log N)1/3(log log N)2/3

), while a quantum computing algorithm proposed by

Peter Shor in 1997 requires polynomial time O((log N)3) [Shor, 1997].

The algorithm is based on reducing the factoring problem to the problem of

finding the period r of the function f(x) = ax mod N , where a is a random number

less than N . If a and r fulfill certain requirements, one of the factors of N is the

gcd(ar/2 ± 1, N), otherwise the procedure is repeated for a new random value for

a. This approach makes use of the quantum computer’s power by employing it for

the period finding step. Since the quantum computer can evaluate f(x) for many

values of x simultaneously, it can very quickly generate the period r by fourier

transforming interference patterns of different evaluations of f(x).

Many of the modern data encryption schemes, e.g. RSA, are based on the

intractability of the factoring problem. Therefore there is great interest by intelli-

gence agencies to develop a system that can implement Shor’s algorithm to gauge
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if present encrypted data will remain secure in the future.

1.1.6 Quantum Annealing

Another problem of great interest is that of function optimization. The biggest

challenge in optimization is finding global rather than local optima. A quantum

computer is speculated to be very efficient at achieving this by allowing the “so-

lution” to tunnel out of local minima that it might be stuck in [Apolloni et al.,

1989]. A possible implementation would consist of encoding the function to be

optimized into an energy potential landscape. For this, the quantum system is

initially prepared in its state of lowest energy. If the potential of interest is turned

on slowly enough, the system will adiabatically remain in its ground-state. After

the potential is fully turned on, this ground-state will encode the solution to the

optimization problem.

1.1.7 Quantum Simulation

In analogy to the Church-Turing Thesis, it has been shown that every physi-

cal quantum system can be simulated efficiently on a general quantum computer

[Deutsch, 1985]. Such capabilities would be extremely helpful in fields like chem-

istry and medicine, where they would allow a more detailed understanding of

complex molecules and their interactions.
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1.2 The Power of Quantum Computers

The power of quantum computers roots in two revolutionary concepts that

quantum mechanics introduced: Superpositions and Entanglement.

1.2.1 Superpositions

According to quantum mechanics any system is described by a set of discrete

states in which it can exist: the system’s “eigenstates”. It is possible for the

system to exist in a superposition of these states, i.e. to be in multiple states

at the same time. For example, a quantum bit can not only be in the 0 or 1

state, but it can be in both, 0 and 1, at the same time. To describe the full

state of a quantum system, each eigenstate is given a complex amplitude that

describes its weight, called the “probability amplitude”. A measurement of the

system will then force it to “choose” between one of its eigenstates (in the basis

of the measurement). The probability for each eigenstate to be chosen is given

by the square of its probability amplitude. After the measurement, the system’s

state “collapses” to the chosen eigenstate, i.e. the chosen eigenstate’s probability

amplitude becomes 1, while all others go to 0. Since measurements always yield

an answer, the square of the probability amplitudes for all states needs to sum to

1, i.e. one of the states has to be chosen.
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In terms of quantum bits, this means that a quantum computer can not only

use the two states of the bit (0 and 1) to do binary calculations, but can instead

use the complex probability amplitude of the 1 state, which provides two analog

values (the relative phase and amplitude of the 0 and 1 state) for calculations.

This concept is discussed further in Chapter 3.3.1.

1.2.2 Entanglement

Superpositions of single qubits alone do not provide a significant advantage,

though, since they can be efficiently simulated by a classical computer by using a

collection of classical bits to store the probability amplitudes. The true “magic”

happens when several quantum systems are allowed to interact. According to

quantum mechanics, the state of a collection of interacting quantum systems can

no longer be described as a collection of the states of the individual systems, but

instead needs to be described in terms of a new set of states that consists of all

possible combinations of the individual states.

For example, for three quantum bits, the combined system is not described in

terms of the three qubits’ individual states that each are 0 or 1, but instead by

the eight new states 000, 001, 010, 011, 100, 101, 110, and 111. In general, a sys-

tem consisting of n interacting quantum bits needs to be described in terms of 2n

quantum states. A quantum computer can then be in a superposition of these 2n

7



states, effectively giving it 2n+1−2 analog numbers for calculations in the form of

the complex probability amplitudes of each of the 2n states. Therefore, the num-

ber of “registers” that a quantum computer has available for calculations scales

exponentially with its number of quantum bits, while for a classical computer this

scaling is linear.

If a quantum computer then performs an operation on one of the bits, this

one operation will affect the probability amplitudes of all 2n states. For example,

if a three bit quantum computer performs a “NOT” operation on its first bit, it

effectively performs four swap operations that exchange the probability amplitudes

of the 000 and 100, the 001 and 101, the 010 and 110, as well as the 011 and

111 states. This makes it possible to design algorithms that allow a quantum

computer to process data in a massively parallel fashion, with the number of

possible simultaneous operations scaling exponentially with the number of its

quantum bits.

This makes a 65-bit quantum computer twice as powerful as a 64-bit quantum

computer, while a 65-bit classical computer is only about 1.5% more powerful

than a 64-bit classical computer.
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1.2.3 Implications – The EPR Paradox

Clearly, this exponential scaling of a quantum computer’s power with its num-

ber of bits does not make immediate intuitive sense. But thinking about the

implications of these two ideas – superpositions and entanglement – leads to far

more seemingly paradoxical scenarios. For example, if two quantum bits are put

into a superposition of the states 10 and 01, i.e. in a perfectly anti-correlated

state, a measurement of both qubits will always yield an opposite result for the

two bits, i.e. either a 0 and a 1 or a 1 and a 0. Quantum mechanics states that this

anti-correlation remains even if the two bits are separated and brought to opposite

ends of the universe. The apparent paradox arises from the fact that, even though

quantum mechanics tells us that both qubits will yield the opposite measurement

result with certainty, it states that it is impossible to predict which of the qubits

will yield a 0 and which one will yield a 1 since this choice is made only at the time

of measurement. Thus, as soon as one of the bits “decides” on its measurement

outcome, it needs to instantaneously inform the other bit about its decision no

matter how far away it is. As of today, though, this communication between the

bits is presumed impossible as it would have to happen at speeds faster than the

speed of light, which is currently believed to be the maximum speed at which any-

thing, even information, can travel. This paradox was first published by Einstein,
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Podolsky, and Rosen [Einstein et al., 1935] and is commonly referred to as the

“spooky action at a distance”, a term coined by Einstein.

As explained further in Chapter 10, this gedanken-experiment was eventu-

ally formulated into mathematical inequalities, called “Bell’s Inequalities” [Bell,

1964, Clauser and Horne, 1974, Clauser et al., 1969], that could experimentally

test whether the apparently paradoxical predictions made by quantum mechan-

ics could be resolved by the introduction of a deterministic alternative theory, or

whether the ideas had to be accepted as true. These inequalities are based on the

definition of measures of correlation that can be shown to be limited to a certain

value in classical systems that do not require entanglement and superpositions to

explain their state. Quantum mechanical systems, though, with “access” to these

entanglements and superpositions, can show correlation values that exceed these

classical limits and are thus said to “violate Bell’s inequality”.

This makes the demonstration of a violation of Bell’s inequality in a system

of proposed quantum bits a strong proof that these quantum bits indeed show

behavior that goes beyond what is explainable by classical deterministic theo-

ries. Such a demonstration could therefore be seen as very strong evidence that

the proposed architecture does promise the capability to eventually lead to the

exponential performance increases suggested by quantum mechanics.

This has made the violation of Bell’s inequality a major milestone for any

10



proposed architecture of quantum bits [Clarke and Wilhelm, 2008]. This thesis

shall meet this milestone for the first time for the Superconducting Josephson

Phase Qubit architecture. Furthermore, this experiment is, to our knowledge, the

first demonstration of a violation of Bell’s inequality in a solid state system, and

the first demonstration using a macroscopic quantum state.

1.3 Requirements – The DiVincenzo Criteria

To establish a guideline along which to quickly evaluate proposed approaches

for the implementation of a working quantum computer, David DiVincenzo com-

piled a list of five criteria [DiVincenzo, 2000] that any candidate system must

fulfill to be considered feasible. According to the list, any feasible approach must

provide:

• A scalable physical system with well-defined qubits

• Initialization to a simple fiducial state

• Sufficiently long coherence times

• A universal set of quantum gates

• High quantum efficiency, qubit-specific measurements
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1.3.1 Scalable Physical System with Well-Defined Qubits

A classical computer can approximate the solution to any problem to arbi-

trary precision using only binary operations. Similarly, it has been shown that a

quantum computer can perform any arbitrary computation using only two-state

quantum bits, called “Qubits”, as the operating unit [Barenco et al., 1995]. It

is not necessary to implement “Qudits” with more than two levels as they can

be efficiently simulated by a sufficiently large collection of qubits. The required

number of qubits can grow quickly, though, making it necessary for the proposed

architecture to be scalable.

1.3.2 Initializable to a Simple Fiducial State

The architecture needs to provide a reliable way to initialize its set of qubits

into an arbitrary, but known, starting state. This state can be as trivial as each

qubit being set to “0”.

1.3.3 Sufficiently Long Coherence Times

One of the major problems of many current approaches is the short time-

scale over which the information stored inside the qubits dissipates into the en-

vironment. This has prompted the inclusion of a statement about the qubits’
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“coherence times”, i.e. the time-scales of information retention, into the list of

requirements. Once coherence times reach a system-dependent threshold, it be-

comes possible to employ error correction techniques that allow for information to

be stored indefinitely [Shor, 1995]. Any feasible system must eventually be able

to reach this threshold.

1.3.4 Universal Set of Quantum Gates

To be considered a generally useful quantum computer, the architecture needs

to support a basic universal set of operations that suffices as a basis set for con-

structing any arbitrary computation [Barenco et al., 1995]. For a classical com-

puter, the corresponding set commonly consists of just the NAND gate. Neither

in classical nor in quantum computation this set of operations is unique.

For quantum systems, the common example-set used by theoretical physicists

contains the Clifford Gates H and cNOT augmented by the Pπ/8 gate. The H,

or Hadamard, gate translates the | 0 〉 state of the qubit into the | 0 〉 + | 1 〉 state

and the | 1 〉 state into the | 0 〉 − | 1 〉 state. The cNOT , or controlled NOT, gate

performs a NOT operation on one of two qubits if and only if the other qubit is in

the | 1 〉 state and corresponds to the classical XOR gate. The Pπ/8, or π/8 phase,

gate changes the phase of the qubit’s | 1 〉 state relative to the | 0 〉 state by π/8.

The actual set of gates provided by any given implementation may deviate from
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this, but must still be universal. To prove universality, it is sufficient to show how

the actual set can be used to implement the gates mentioned above.

Even though being able to directly implement operations involving more than

two qubits might lead to a performance increase, they are not required since it

has been shown that any n-qubit operation can be implemented with the above

mentioned universal set, even though it only includes the two-qubit cNOT gate.

1.3.5 High Quantum Efficiency, Qubit-Specific Measure-

ments

To extract the result of the computation in a way that is compatible with the

universality requirement, it is necessary to be able to measure the state of each

qubit independently. This measurement needs to be sufficiently accurate, since it

is a common part of error correcting schemes that are needed to overcome short

qubit coherence times.
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Chapter 2

Superconducting Josephson

Qubits

2.1 Motivation

Many factors contribute to the decision of which approach to follow in an effort

to build a quantum computer. While some approaches, like NMR [Vandersypen

et al., 2001] and Ion Traps [Benhelm et al., 2008], yield the immediate satisfaction

of naturally good single qubit performance, scalability presents a major hurdle

to these systems due to the difficulty of arranging a multitude of these qubits

into a layout that allows them to be coupled and controlled in a useful way.

Superconducting Josephson qubits fall at the almost opposite end of the spectrum.
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While the underlying technology promises extremely good scalability, single qubit

performance still is a major challenge to all groups in the field.

The decision to pursue the Josephson qubit approach was based on several

factors that promised to naturally address some of the DiVincenzo criteria.

2.1.1 Long Coherence Time

The qubit is formed by quantum states in a superconductor, a material owing

its name to the fact that it exhibits no resistance to electrical currents. Early

experiments with superconducting magnets have lead to estimated lifetimes of

established electrical currents inside such magnets in the hundred thousand year

range [Gallop, 1990]. Since energy dissipation is one of the major sources of

qubit decoherence, the apparent absence of resistance as a loss mechanism in

superconducting circuits lead to the hope that these systems could support qubit

states coherently for a very long time.

2.1.2 Scalability

The quantum states in Josephson qubits consist of currents and voltages inside

electrical circuits built from mostly standard circuit elements like wires, inductors,

capacitors, transformers, etc. As such, the majority of the circuit’s behavior can be

readily analyzed using standard circuit theory. This greatly simplifies the design
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of the glue-circuitry needed to connect multiple qubits to their control electronics

and to each other.

Furthermore, the circuit, once designed, is fabricated in much the same way

as a conventional integrated circuit. These two factors should allow for very

straightforward scaling, once the single qubit circuit element is understood. The

scalability of integrated circuit technology has been proven excessively over the last

decades by the incredible increases in complexity of standard computer processors.

As of today, there are no obvious indicators that call the applicability of this

scalability to quantum circuits into question.

2.1.3 Initialization, Control and Measurement

Over the past decades, the arsenal of integrated circuits that can provide

exquisite voltage and current control and measurement has grown immensely and

is becoming continuously more affordable. Specifically the microwave electronics

industry has grown rapidly thanks to the high demand for wireless devices of all

sorts. The frequencies, voltage and current levels, and control accuracies required

for the purposes of building superconducting quantum bits match the industry

standards extremely well. Thus, commercial control and readout electronics is

very available, giving a lot of flexibility to the design of operation and readout

schemes.
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The specifics of implementing the initialization, measurement, and universal

control required by the DiVincenzo criteria, of course, need to be solved with the

quantum nature of the circuits in mind and can thus not be assumed as a priori

obvious. Nevertheless this flexibility is making it easy to find feasible solutions.

2.2 Idea

2.2.1 Quantum Mechanics in Electrical Circuits

To turn an electrical circuit into a qubit, one needs to find a regime in which it

exhibits quantum behavior. The simplest general system that exhibits quantum

behavior is the harmonic oscillator, provided it is driven at extremely low energies.

Thus, it is natural to start the circuit design with the electrical analog of the

harmonic oscillator, the inductor-capacitor oscillator (or LC oscillator for short).

In this circuit, a capacitor and an inductor are connected in series inside a loop

configuration as shown in Figure 2.1a. If a charge is present on the capacitor, it

tries to force electrons around the loop to remove the charge, while the inductor

in the circuit tries to maintain the current flowing through it at a constant level.

This circuit can be readily analyzed using Kirchhoff’s current law. All current

flowing around the loop is flowing through the inductor and the capacitor, which
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Figure 2.1: Inductor-Capacitor Oscillator – a) Electrical circuit: An inductor with
inductance L in parallel with a capacitor with capacitance C. b) Relevant current
and voltage: The voltage V (t) across the capacitor drives a current I(t) around
the oscillator loop through the inductor. c) Oscillator potential with eigenstates:
The potential energy (blue) is a parabolic function of the voltage V (t) this leads
to the familiar quantum eigenstates (red) of the simple harmonic oscillator.

gives the following equality if the voltage across the capacitor is called V (t):

I(t) = − 1

L

∫
V (t) dt = C

d

dt
V (t) (2.1)

Taking the derivative gives:

C
d2

dt2
V (t) = − 1

L
V (t) (2.2)

This relation corresponds to the equation of motion of a pendulum:

F = ma = m
d2

dt2
x(t) = −k x(t) (2.3)

with m = C, x = V , and k = 1
L
.
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Equation 2.2 can be rewritten as:

C
d2

dt2
V (t) +

∂

∂V

(
1

2L
V 2

)
= 0 (2.4)

Here, the “force” acting on the oscillator has been expressed as the partial

derivative of the system’s potential energy as a parabolic function of the “position”

V . Solving the time independent Schrödinger equation (see Section 3.1) yields the

familiar quantum eigenstates of the potential:

〈x |ψn 〉 =
1√

2n n!

4

√
C ω

π ~
e−

C ω
2 ~ x2

Hn

(√
C ω

~
x

)
for n = 0, 1, 2, . . . (2.5)

Here, Hn are the Hermite polynomials and the angular frequency ω is defined as

1/
√

LC. The energy levels corresponding to the eigenstates are:

En = ~ω

(
n +

1

2

)
(2.6)

It is possible to operate the LC oscillator in a regime that allows the observation

of quantum mechanical behavior, provided three conditions are met:

• The wiring metal needs to be chosen such that it can be operated below

its superconducting transition temperature. Otherwise the resistance in the

leads will cause energy decay rates that are much too high to observe mean-

ingful quantum effects. In the analogy, the damping term in the pendulum

has to be small enough to allow for quantum excitations to exist for a mean-

ingful time.
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• The circuit needs to be cooled to a temperature that does not impact the

quantum state of the oscillator via thermal excitations. This is the case

when the thermal energy available to the system is less than the energy

difference between the oscillator’s quantum levels:

Ethermal = k T ¿ ~ω (2.7)

• The control of the circuit needs to be sophisticated enough to create and

detect quantum mechanical excitations corresponding to single photons at

a time.

The last of these three conditions makes it hard to use LC oscillators directly

as qubits. The problem is that the only way to achieve single-photon control over

the oscillator is by coupling it to another quantum system [Hofheinz et al., 2009].

This is caused by the fact that all consecutive quantum energy levels En in the

oscillator are separated by the same energy difference ∆E = ~ω. This allows all

transitions between neighboring energy levels in the oscillator to absorb photons

of only energy ~ω, making it impossible to selectively address only one of the

transitions with a classical excitation (see Section 3.3). Instead, the oscillator will

be driven into a coherent state that is nearly indistinguishable from a classical

state and is not useful for quantum computation. Thus, to build a quantum bit

where the ground and first excited states can be addressed separately from all
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other states using a classical excitation, one needs to change the spacing of the

energy levels, i.e. introduce a non-linearity into the potential. In general it is very

straightforward to make circuits behave in a non-linear fashion. In fact, almost all

circuits will show some kind of non-linear behavior if they are driven hard enough.

The problem here is to build a circuit that does so with only a single photon of

energy. Luckily, nature provides a way to achieve just that: The Josephson tunnel

junction [Josephson, 1962].

2.2.2 Josephson Tunnel Junctions

A Josephson tunnel junction is formed every time a superconducting lead is

interrupted by a thin barrier through which electrons can tunnel. The tunneling

provides a weak link between the two superconducting regions and allows the wave

functions of the superconducting order parameter on the two sides to interfere.

This leads to very interesting electrical characteristics of the junction that are

captured by the “Josephson Relations”, named after Brian Josephson who received

the Nobel Prize in 1973 for predicting them:

V (t) =
Φ0

2π

d

dt
δ(t) (2.8)

I(t) = Ic sin δ(t) (2.9)
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Figure 2.2: Josephson Tunnel Junction – a) Physical structure: Two supercon-
ducting regions separated by an insulating barrier. b) Circuit symbol: Possibly
depicting point-contact used in early junction fabrication. c) Effective circuit ele-
ment: The physical structure forms a parallel plate capacitor shunting the tunnel
junction. d) Current-voltage response: The junction’s response to an oscillating
bias is hysteretic and highly non-linear.

Here, the voltage V (t), the current I(t), and the superconducting phase difference

δ(t) across the junction are classical variables. Ic is the “critical current” of the

junction, which depends on the barrier thickness, and Φ0 = h
2e

is the flux quantum.

Figure 2.2d shows the electrical response of a Josephson junction on an I/V

plot. The plot shows three distinct features:

• The vertical line along the I-axis is commonly called the “zero-voltage state”

or the “supercurrent branch”. In this regime, the value of δ(t) is constant

(−π
2

< δ(t) < π
2

)
, which implies V (t) = 0. It can be seen from Equation 2.9

that the maximum current that can be conducted in this way is |I(t)| ≤ Ic.
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• The horizontal line along the V-axis, called the “sub-gap voltage”, corre-

sponds to a continuously increasing value of δ(t) as given by Equation 2.8.

This leads to a rapidly oscillating current which averages to zero.

• When the voltage across the junction is large enough to create one quasi-

particle-excitation in each superconducting lead, the junction will be able

to conduct electricity via quasi-particle tunneling. This process lets the

junction behave like a simple resistor, leading to the diagonal lines extending

to the edges of the plot. The voltage that is required to create the two

excitations is equal to twice the superconducting gap ∆, a material property

that depends on the superconductor in use. For aluminum the gap is around

190 µV.

If the junction is driven with a slowly oscillating current bias, its response

first follows the supercurrent branch along the I-axis to Ic. Then, the junction

“switches” to the “voltage state” and follows the diagonal trace to the edges of the

plot. As the bias current drops, the junction responds hysteretically and traces out

the remainder of the curve including the subgap voltage. Once the bias current

reaches zero, the junction returns to the supercurrent branch.

The cleanliness of the trace yields information about the quality of the fabri-

cation. Specifically, the flatness of the subgap voltage, i.e. the horizontal part of
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the trace along the V-axis, gives clues about the quality of the insulating barrier

of the junction.

The geometry of the junction causes it to also behave like a classical parallel

plate capacitor, which can be understood as simply shunting the junction in par-

allel as shown in Figure 2.2c. The junction’s capacitance CJ depends only on its

geometrical parameters according to the usual formula:

CJ =
ε A

d
(2.10)

Here, ε is the dielectric constant of the insulator, A is the junction’s area, and

d the insulator’s thickness. Since the junction’s capacitance scales linearly with

the barrier thickness while its critical current scales exponentially, it is possible

to control CJ and Ic independently of each other.

2.2.3 Circuit Potential

As the junction’s capacitance behaves exactly like a conventional capacitor, the

most straightforward way to integrate the junction into the standard LC-oscillator

circuit is by putting it in the place of the oscillator’s capacitor and designing it such

that CJ = C. The resulting circuit can be analyzed in a variety of different ways.

The easiest approach is to simply use the Josephson relations and Kirchhoff’s

current law. For this, the current I(t) flowing through the oscillator’s inductor
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Figure 2.3: Modified Inductor-Capacitor Oscillator – a) Circuit modification: The
oscillator’s capacitor is replaced by a josephson tunnel junction with its intrinsic
capacitance CJ designed to match the original capacitance C. b) Relevant cur-
rents and voltages: The voltage V (t) across the capacitor drives the current IJ(t)
through the junction and I(t) around the oscillator loop through the inductor.

is set equal to the current flowing through the junction and its capacitor given a

voltage V (t) across the elements:

I(t) = − 1

L

∫
V (t) dt = IJ(t) + C

d

dt
V (t) (2.11)

Plugging in the Josephson relations gives:

I(t) = − 1

L

∫
Φ0

2π

d

dt
δ(t) dt = Ic sin δ(t) + C

d

dt

Φ0

2π

d

dt
δ(t) (2.12)

This can be rewritten as:

C

(
Φ0

2π

)2
d2

dt2
δ +

∂

∂δ

(
−Φ0

2π
Ic cos δ +

1

2L

(
Φ0

2π

)2

δ2 − Φ0

2π
Idc δ

)
= 0 (2.13)

Here, δ is a function of t, and Idc is the constant of integration which captures an

initial flux bias applied to the inductor.

This equation can be interpreted as an equation of motion of a particle of mass

m = C
(

Φ0

2π

)2
at position δ in the potential V (δ) = −Φ0

2π
Ic cos δ + 1

2L

(
Φ0

2π

)2
δ2 −
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Figure 2.4: Josephson Qubits: Slight differences in the circuit can lead to very dif-
ferent qubits. – a) Charge qubit: By removing the inductor and replacing it with
a bias capacitor, the charge qubit circuit creates an island (dashed red box) onto
which cooper pairs can tunnel. This leads to a periodic potential that supports
the qubit states. b) Flux qubit: A small inductance leads to a parabolic potential
with a small bump created by the Josephson junction. This creates two minima
that together support the two qubit states. c) Phase qubit: A larger inductance
allows the Josephson junction to influence the potential more significantly. By
biasing the circuit, the potential can be tilted to create a shallow minimum along
one of the sidewalls of the parabolic part of the potential. This minimum holds
several unevenly spaced energy levels, the lowest two of which form the qubit
states.

Φ0

2π
Idc δ. This potential consists of three parts: a parabola created by the inductor,

a cosine oscillation created by the Josephson junction and a tilt that can be applied

by flux-biasing the inductor.

2.2.4 Circuit Parameters

Depending on the choice of the circuit parameters – the inductance, capaci-

tance, and critical current – the circuit can be turned into one of three different

types of quantum bits as indicated in Figure 2.4.
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If the inductor is removed from the circuit and replaced by an open, i.e. L = ∞,

the 1
L

δ2 term drops out of the potential equation. If no current bias is applied

either, i.e. Idc = 0, the only term left is the cosine. One can now understand the

circuit diagram as forming an island (as indicated in Figure 2.4a) onto and from

which electrons can tunnel via the Josephson junction. This island can be biased

via a gate capacitor to influence the equilibrium number of electrons on the island.

The number of excess electrons, the charge, on the island is then well quantified

and can be used as the qubit state. This design is therefore called the “Charge

Qubit” [Nakamura et al., 1999].

On the other extreme, one can choose a small inductance, leading to a potential

that is very close to the parabolic potential of the harmonic oscillator. If the

parameters are chosen such that the overlaying cosine simply adds a small bump to

the bottom of this parabola, one can create an energy landscape with two minima

that together only support two energy levels in a symmetric or antisymmetric

configuration as shown in Figure 2.4b. The next higher levels span across the

bump leading to a large energy difference between the desired transition and all

undesired ones. The two lowest states correspond to two distinct currents flowing

in the loop creating two well defined flux states in the inductor. Thus, these qubits

are called “Flux Qubits” [Orlando et al., 1999].

In between these two extremes, one can set up a potential landscape where
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the cosine forms a local minimum along one of the sidewalls of the parabola as

shown in Figure 2.4c rather than two equally sized ones in the center. This will

lead to quantum states that correspond to a very well quantified phase difference

across the tunnel junction. This type of qubit is therefore called “Phase Qubit”

[Martinis et al., 2002]. Historically the phase qubit has trailed behind the flux

and charge qubits in terms of the best reported energy relaxation times. But it

makes up for its lower T1 with much higher visibility single-shot readout, ease of

coupling, and frequency tuneability. This makes it currently the best candidate

for implementing an experiment to violate Bell’s inequality in superconducting

circuits.

2.3 Superconducting Qubit Operation

2.3.1 Initialization

Due to the relatively short energy relaxation times, all three types of qubits

automatically initialize into their ground state once cooled to their operating

temperature.

Since the states in the phase qubit are localized in any one of possibly many

stable minima in the potential, the qubit must be biased with a proper sequence to

“guide” the relaxation into the desired minimum. This can be achieved either with
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a constant bias at which the potential only has one minimum or with an oscillating

bias that destabilizes all minima except for the desired one (see Chapter 8.2).

2.3.2 Single Qubit Gates

Single qubit operations on all types of superconducting qubits are performed

by applying DC or RF pulses to the circuit via its bias line.

In the case of the charge qubit, this bias takes the form of a charge bias applied

across the gate capacitor.

For the flux and phase qubit, the bias consists of a flux applied to the qubit’s

inductive loop.

As explained in Section 3.3, the DC or RF biases can be used to create rotations

around the Z-axis or around a vector in the X/Y-plane of the Bloch sphere.

2.3.3 Multi Qubit Coupling

The methods used to couple qubits of the three types vary greatly. This is

primarily due to the difference in the electrical impedance of the different qubit

circuits.

The phase qubit has the lowest impedance (∼ 30 Ω) and can thus be coupled

with simple capacitive or inductive circuits. The most trivial coupling element

consists of just a capacitor wired between two qubits as shown in Figure 2.5a
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Figure 2.5: Example Qubit Coupling Circuits – a) Capacitive coupling: Phase
qubits can be easily coupled via a capacitor that provides fixed-strength always-
on coupling. b) Resonator coupling: Phase and charge qubits can be coupled via
a resonant bus. For the charge qubit the resonator enables long-distance coupling
despite the qubit’s high impedance, while for the phase qubit the resonator can
be used to provide a band-pass filter for the coupling.

[McDermott et al., 2005]. The low impedance allows the coupling wiring to be

quite long and thus gives great flexibility in the design of coupling geometries for

many qubits.

The flux qubit is commonly coupled by placing two qubits right next to each

other [Majer et al., 2005]. This allows their flux degree of freedom to interact

via the resulting mutual inductance between them. Long-distance coupling be-

tween flux qubits has not yet been demonstrated, but a one-dimensional chain of

nearest-neighbor coupled qubits is sufficient to achieve universal quantum compu-

tation. The required fidelities to successfully implement error correction for such

a geometry are much more stringent, though.

The high-impedance charge qubit is the least flexible when it comes to cou-

pling. It cannot be coupled with simple wires as the capacitive impedance to
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ground of a wire of any usable length would be much smaller than that of the

qubit, effectively shorting the coupling. The current proposal by the involved

groups consists of placing the qubits inside the cavity of a coplanar waveguide

resonator [Majer et al., 2007]. Coupling only via resonant excitations in the res-

onator then allows for long-distance communication between several qubits. The

lack of frequency tuneability of the charge qubit makes this method of coupling

fairly complex.

2.3.4 Readout

There are four primary types of readout schemes that differ in two binary

properties.

The readout can be either single-shot or non-single-shot. Single-shot readout

projects every qubit involved in the experiment into the | 0 〉 or | 1 〉 state and

returns one specific final output state like | 0110001 〉 for each experimental run.

Non-single-shot readout schemes return a measurement that is an analog function

of the possible output states. A simple example could consist of a measurement of

the total energy stored in all qubits, which is proportional to the number of qubits

in the | 1 〉 state. Even though single-shot readout is not required for quantum

computation, it is highly desirable as it yields results that don’t require extensive

post-processing or calibration to extract the actual state probabilities.
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Readout schemes can further be categorized by whether they destroy the quan-

tum state of the measured qubit necessitating re-initialization, or whether they

project the qubit into a state that can then be used in further operations. The lat-

ter are called “Quantum Non-Demolition” (QND) readout schemes. QND readout

might be desirable in the future for implementing error correction algorithms that

rely on classical feedback.

The charge qubit is commonly read out by the effect of the qubit state onto

a coplanar resonator’s microwave transmission behavior [Wallraff et al., 2005]. A

| 1 〉 state will cause a phase shift in the transmitted signal that differs from the

one caused by a | 0 〉 state by a measurable amount. Since this phase shift will be

a similar function of the states of all qubits connected to the same resonator, this

readout scheme is not single-shot. But as the readout does not destroy the qubit

state, it is a QND measurement.

Both the flux and the phase qubit use a Superconducting Quantum Interference

Device (SQuID) to read out the qubit state [Lupascu et al., 2004, Cooper et al.,

2004]. Squids are circuits that are highly sensitive to magnetic flux biasing. They

can be built by placing one or more Josephson junctions into an inductive loop as

shown in Figure 2.6a. The loop will turn an applied flux bias into a current bias

through the junction(s). This current bias will add to any additional externally

applied current bias. This changes the value of the external current bias that
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Figure 2.6: Squid Readout Scheme – a) Squid: A squid, to first order, behaves like
a junction with a critical bias current Ibiasc that can be tuned via an applied flux
bias current Iφ. b) Coupling: The squid is coupled to the qubit via a mutual in-
ductance M . c) Phase qubit measurement: A measure pulse IMeasure temporarily
lowers the barrier between the operating minimum and the neighboring minimum
to the point where the | 1 〉 state can tunnel, while the | 0 〉 state remains trapped.
This results in a flux difference in the qubit loop between the | 0 〉 and | 1 〉 state
of about one Φ0.

causes the junction to exceed its critical current and switch to the voltage state.

Squids can detect magnetic flux biases as small as fractions of a flux quantum,

making them useful for high-sensitivity applications like MRI or qubit readout.

In the flux qubit, the | 1 〉 state naturally causes a different flux bias in a

neighboring squid than the | 0 〉 state. This allows this qubit to be read out

directly. If each qubit is provided with its own squid, the readout can be single-

shot. The switching of the squid to the voltage state releases a large amount of

energy into the circuit and thus randomizes the qubit state making it a non-QND

readout scheme.

Since the | 0 〉 and | 1 〉 state of the phase qubit correspond to fairly similar flux
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states in the qubit’s inductor, the state needs to be transcoded into a more easily

distinguishable set of flux states before it can be measured. This is achieved by

tilting the qubit until the minimum in which the operations have been performed

becomes almost unstable as shown in Figure 2.6c. At this point, the higher energy

| 1 〉 state tunnels out of the minimum and settles into the neighboring minimum

while the | 0 〉 state remains in the operating minimum. This gives a difference in

flux in the qubit loop of about one flux quantum between the two states. This

can be detected easily with a squid that is inductively coupled to the qubit loop.

Just like in the case of the flux qubit, this readout scheme is single-shot, but not

QND.
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Chapter 3

Understanding Qubits

Numerically

3.1 Solving the Schrödinger Equation

The evolution of any quantum system is described by the Schrödinger equation

[Schrödinger, 1926], named after Erwin Schrödinger who discovered it in 1926:

i~ ∂t ψ (r, t) = Ĥ ψ (r, t) (3.1)

Here, ψ (r, t) is the state of the system expressed by its “wave-function” as a

function of position r and time t. The wave-function is also called the “probability

amplitude” as its square gives the probability of finding the system at position r
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at time t. r is not restricted to be a physical position, but contains all measures of

interest about the system. Ĥ is called the “Hamiltonian operator” and calculates

the total energy of the system if applied to ψ (r, t).

3.1.1 Time Dependent versus Time Independent Part

The Schrödinger equation is usually solved by separation of variables using:

ψ (r, t) = ψr (r) ψt (t) (3.2)

Plugging into Equation 3.1:

i~ ∂t

(
ψr (r) ψt (t)

)
= Ĥ ψr (r) ψt (t) (3.3)

If Ĥ is independent of time, dividing both sides by ψr (r) ψt (t) gives:

i~
∂t ψ

t (t)

ψt (t)
=

Ĥ ψr (r)

ψr (r)
(3.4)

For this equality to hold for all values of t and r, both sides must equal a constant:

i~ ∂t ψ
t (t) = E ψt (t) (3.5)

Ĥ ψr (r) = E ψr (r) (3.6)

The solution to Equation 3.5 is simple and describes the time evolution of the

states of the system:

ψt (t) = e−iEt/~ (3.7)
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Equation 3.6, also called the “time independent Schrödinger equation”, fre-

quently has many possible solutions for different values of E. These solutions, the

eigenvectors of Ĥ, are specific to each system and have physical meaning in that

they describe the possible pure quantum states that the system can exist in. They

are therefore called the system’s “eigenstates”. The eigenvalue E corresponding

to an eigenstate gives its energy and the eigenstate with the lowest eigenvalue (i.e.

lowest energy) describes the ground-state into which the system will relax if it is

cooled sufficiently (provided it does not get trapped in a local energy minimum).

Commonly, the states are sorted by ascending energy and labeled with an index

starting at 0. The nth eigenstate ψr
n (r) has energy En and is written as |n 〉. The

full solution to the Schrödinger equation for the nth eigenstate is:

ψ (r, t) = ψr (r) ψt (t) = e−iEnt/~ ψr (r) = e−iEnt/~ |n 〉 (3.8)

Since the eigenstates form a complete basis, any possible real state ψ (r) (or |ψ 〉

for short) that the system might exist in can be written as a linear superposition

of eigenstates, i.e.:

|ψ 〉 =
∑

n

an |n 〉 (3.9)

The coefficients an are calculated by projection:

an =

∫
ψ (r)∗ ψr

n (r) dr = 〈ψ |n 〉 (3.10)
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3.1.2 Effects of a Time Dependent Potential

To find the behavior of a system with a time dependent potential, Ĥ is broken

up into a constant and a time dependent part:

Ĥ = Ĥ0 + V̂ (t) (3.11)

The eigenstates are then found for V̂ (t) = 0 and used as the basis for the evolving

state ψ (r, t) by allowing the superposition weights an to vary with time. The

Schrödinger equation gives the evolution of the weights:

i~ ∂t

(∑
m

am(t) e−iEmt/~ |m 〉
)

= Ĥ
∑
m

am(t) e−iEmt/~ |m 〉 (3.12)

Projecting both sides of the equation onto eigenstate |n 〉 following the convention

established in Equation 3.10 gives:

〈n | i~ ∂t

(∑
m

am(t) e−iEmt/~ |m 〉
)

=

〈n |
(
Ĥ0 + V (t)

) ∑
m

am(t) e−iEmt/~ |m 〉

i~ ∂t

(∑
m

am(t) e−iEmt/~ 〈n |m 〉
)

=
∑
m

am(t) e−iEmt/~ 〈n | Ĥ0 + V (t) |m 〉

=
∑
m

am(t) e−iEmt/~
(
〈n | Ĥ0 |m 〉+ 〈n |V (t) |m 〉

)

=
∑
m

am(t) e−iEmt/~ (Em 〈n |m 〉+ 〈n |V (t) |m 〉) (3.13)
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As the eigenstates are ortho-normal, 〈n |m 〉 = 1 if n = m, otherwise 〈n |m 〉 = 0:

i~ ∂t

(
an(t) e−iEnt/~) =

∑
m

am(t) e−iEmt/~Em 〈n |m 〉+
∑
m

am(t) e−iEmt/~ 〈n |V (t) |m 〉

i~ e−iEnt/~ ∂t an(t) + En an(t) e−iEnt/~ =

En an(t) e−iEnt/~ +
∑
m

am(t) e−iEmt/~ 〈n |V (t) |m 〉

i~ ∂t an(t) =
∑
m

am(t) ei(En−Em)t/~ 〈n |V (t) |m 〉 (3.14)

V (t) is often a function of r, in which case:

〈n |V (r, t) |m 〉 =

∫
ψr

n (r)∗ V (r, t) ψr
m (r) dr (3.15)

3.2 Finding Eigenstates Numerically

The first step in understanding the qubit is to find its eigenstates. The qubit

behaves like a particle moving along a single axis x in a potential V (x). Its total

energy is given by the particle’s kinetic energy T and its potential energy V , i.e.:

Ĥ = T + V = − ~
2

2m

d2

dx2
+ V (x) (3.16)

With this, the time independent Schrödinger equation becomes:

En ψr
n(x) = − ~

2

2m

d2

dx2
ψr

n(x) + V (x) ψr
n(x) (3.17)
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In some cases, it is possible to solve this equation analytically, but for more com-

plicated systems, like the qubit circuits, this equation is often solved numerically.

This can be done fairly easily (even though not always quickly) by limiting x to

a range of interest and discretizing its allowed values. V (x) and ψr
n(x) can then

be approximated by vectors whose components are the values of V (x) and ψr
n(x)

at the allowed positions along x.

This can, for example, be applied to a particle in a simple parabolic potential

V (x) = x2. If x is limited to the range from −3 to 3 in steps of 1, ψr
n(x) and V (x)

become:

ψr
n = (ψr

n(−3), ψr
n(−2), ψr

n(−1), ψr
n(0), ψr

n(1), ψr
n(2), ψr

n(3)) (3.18)

V = (V (−3), V (−2), V (−1), V (0), V (1), V (2), V (3)) = (9, 4, 1, 0, 1, 4, 9) (3.19)

The derivative operator d2

dx2 can be approximated numerically as the change in the

change of ψr
n(x) from one x-value to the next, for example:

d2

dx2
ψr

n(x) =
d

dx

d

dx
ψr

n(x) =
d

dx
(ψr

n(x + 0.5)− ψr
n(x− 0.5))

= (ψr
n(x + 1)− ψr

n(x))− (ψr
n(x)− ψr

n(x− 1))

= ψr
n(x + 1) + ψr

n(x− 1)− 2ψr
n(x) (3.20)
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This can be expressed as a tri-diagonal matrix operating on the vector ψr
n, here:

d2

dx2
= D =




−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2




(3.21)

Note that if x is discretized in steps of dx 6= 1, D will need to be divided by

dx2. Now we can rewrite the time independent Schrödinger equation as a matrix

equation:

En ψr
n =

(
− ~

2

2m
D + IV

)
ψr

n (3.22)

where I in this case is the 7 × 7 identity. To solve this equation, one needs to

find the eigenvectors of the matrix M = (IV − ~2
2m

D). This can be done using

the “eig” function of the “LAPACK” software routines, e.g. via Matlab (eig) or

Python (numpy.linalg.eig). For m = ~2
4
, M in our example becomes:

M = (IV − 2D) =




13 −2
−2 8 −2

−2 5 −2
−2 4 −2

−2 5 −2
−2 8 −2

−2 13




(3.23)

The eigenvalues of this matrix are:

1.35, 3.91, 6.04, 8.34, 8.85, 13.75, 13.76
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Figure 3.1: Examples of Numerical Simulations: Potential shown with eigenstates
offset by their energy. – a) Eigenstates of coarse harmonic oscillator potential:
V (x) = x2, −3.0 ≤ x ≤ 3.0, dx = 1.0. b) Lowest 7 eigenstates of fine harmonic
oscillator potential: V (x) = x2, −5.0 ≤ x ≤ 5.0, dx = 0.1 c) Lowest 17 eigenstates
of qubit-like potential: V (δ) = δ2−5 cos δ +5δ, −8.0 ≤ δ ≤ 3.0, dδ = 0.05. States
localized in the shallow (deep) minimum are shown in green (red), while states
that span both minima are shown in gray.

Plotting the eigenvectors offset by their corresponding energies gives a plot like

Figure 3.1a. For the lower energy states this plot clearly shows the usual oscillating

behavior of the wave functions and for the ground state even the exponential

decay outside the potential. If the x-step-size is decreased from 1 to 0.1, i.e. the

resolution of the approximation is increased by 10×, the first 7 eigenvectors look

like Figure 3.1b. Their corresponding energies are:

1.58, 4.74, 7.89, 11.06, 14.23, 17.45, 20.80

These numbers show the expected equal spacing of the levels fairly well.

The energies of the levels are quite different in the two approximations. Es-
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pecially for the higher levels, for which the wave functions should extend signif-

icantly past the chosen x-range, the approximation becomes fairly poor in the

low-resolution case. But as the resolution of the approximation increases and the

x-range is expanded, the energy levels and wave-functions get closer and closer

to their true values. Unfortunately this also increases the size of the matrix M

and therefore the time to diagonalize it. The latter increases exponentially with

the size of M. This makes finding the eigenstates of a quantum system from its

potential a computationally hard problem. To ensure accurate conclusions, the

approximation should be repeated with several different step sizes and ranges to

verify that the energy levels have indeed converged to their true values.

3.2.1 The Eigenstates of the Qubit Potential

Applying this technique to the qubit potential is as straightforward and yields

a plot similar to Figure 3.1c. The important pieces of information to take away

from this analysis are:

• The number of states localized in the operating minimum as a function of

flux bias: Even though the potential might have two or more minima, they

might not be deep enough compared to the “mass” of the particle to support

the required number (≥ 2) of localized quantum states.
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• The energy difference between the ground and first excited state in the

operating minimum as a function of flux bias: Dividing this number by ~

will give the expected (angular) operating frequency of the qubit, i.e. the

frequency with which it needs to be driven to perform operations.

• The energy difference between the first and second excited levels in the

operating minimum: The frequency corresponding to this transition will

need to be significantly different from the operating frequency to allow for

operations on the qubit without exciting it into unwanted higher levels.

• The number of states in the right minimum: During measurement, the first

excited state in the operating minimum (here: left minimum) will be selec-

tively tunneled into the right minimum. There, it will end up in a level of

similar energy to the one it tunneled from, i.e. fairly high up in the mini-

mum. The rate at which the state will decay in the right minimum, and thus

the rate with which the measurement “latches” the outcome, is determined

by the number of the level that the state tunnels into. Higher states decay

faster with a rate of approximately T1/n, where n is the level number. Fast

decay is important to reduce the chance of the state tunneling back to the

left before latching.

For the calculation to yield trustable results, a few things need to be kept in mind:
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• The x-range over which the potential is approximated needs to be large

enough for the wave-functions to “comfortably” go to zero on both sides.

• In a real qubit potential, the right minimum will most likely have hundreds

of states at energies below the ground-state of the operating minimum. Since

an n× n matrix will yield only the lowest n eigenstates, M therefore needs

to have several hundred rows and columns.

• The ground-state in the operating minimum will usually not be the level

with the lowest overall energy if the other minimum is deeper. In the figure

shown, states 9 and 11 (counting from 0) are localized mostly in the left

minimum, the states above level 11 span both minima, and all other states

are localized in the right minimum. Thus, it is necessary to sort the levels

into the correct minimum before subtracting their energies to find transition

frequencies.

3.2.2 Eigenstates of Coupled Qubit Systems

It is theoretically possible to extend this method to finding the eigenstates of

a system of coupled qubits. For this, the state of the second qubit is added to

the Schrödinger equation, making it two-dimensional (a function of δ1 and δ2).

ψr
n(δ1, δ2) and V (δ1, δ2) would then be rewritten as vectors following a convention
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like this:

V = ( V (−1,−1), V (−1, 0), V (−1, 1),

V ( 0,−1), V ( 0, 0), V ( 0, 1),

V ( 1,−1), V ( 1, 0), V ( 1, 1) ) (3.24)

The derivative operators are calculated accordingly and could look like this:

d2

dδ2
1

= D1 =




−2 1
−2 1

−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2
1 −2

1 −2




(3.25)

d2

dδ2
2

= D2 =




−2 1
1 −2 1

1 −2
−2 1
1 −2 1

1 −2
−2 1
1 −2 1

1 −2




(3.26)

Unfortunately, going to a two-dimensional simulation squares the dimensions

of all involved matrices. Since the one-dimensional simulation usually requires

matrices of around 1, 000 × 1, 000 elements, the two-dimensional calculation will

now have to find the eigenvalues of matrices with 1, 000, 000×1, 000, 000 elements.
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This will most likely take forbiddingly long, making it necessary to find a different

approach to understanding the dynamics.

3.3 Interaction with the Qubit

The qubit is controlled by varying its potential via changes ∆Idc(t) in the

current bias Idc. As described above, the effect of this can be understood by

splitting the resulting Ĥ(t) into:

Ĥ(t) = Ĥ0 + V̂ (t) = Ĥ0 − Φ0

2π
∆Idc(t) δ (3.27)

This changes the level occupations according to:

i~ ∂t an(t) =
∑
m

am(t) ei(En−Em)t/~ 〈n |V (δ, t) |m 〉 (3.28)

where:

〈n |V (δ, t) |m 〉 =

∫
ψr

n(δ)∗V (δ, t) ψr
m(δ) dδ

= −Φ0

2π
∆Idc(t)

∫
δ ψr

n(δ)∗ψr
m(δ) dδ

= ∆Idc(t) Tnm (3.29)

Tnm gives the strength of the coupling between levels n and m. If Tnm = 0 for

certain n and m, no direct transitions can be driven between the levels.

Figure 3.2b shows |Tnm| for the harmonic oscillator potential shown with its

eigenstates in Figure 3.2a. This figure shows that a perturbation of the form c(t) x
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Figure 3.2: Simulation of LC Oscillator – a) Eigenstates: Lowest 30 eigenstates of
harmonic oscillator potential: V (x) = x2. b) Transition matrix: Absolute value
of transition matrix elements |Tnm| showing the expected

√
n behavior.

can only drive transitions between neighboring levels (only elements on the first

off-diagonals are non-zero). The fact that the diagonal elements of Tnm are zero

implies that it is not possible to change the phase of a level population with this

kind of a drive, making Z-rotations impossible (see Section 3.3.1). These results

match the analytic solution:

Tnm =

√
~

2µω




√
1√

1
√

2√
2

√
3√

3
. . .

. . .




(3.30)

Figure 3.3b shows |Tnm| for the qubit-like potential shown with its eigenstates

in Figure 3.3a. This plot consists of three distinct regions:

• The bottom-left corner corresponds to transitions between states confined

50



Figure 3.3: Simulation of Mock-Qubit – a) Eigenstates: Lowest 30 eigenstates of
example qubit potential: V (δ) = δ2−8 cos(δ+1). b) Transition matrix: Absolute
value of transition matrix elements |Tnm|.

to the deep minimum. Just like in the harmonic oscillator case, transitions

between non-neighboring states are very hard to achieve (Tnm ≈ 0 for n <

m − 1 or n > m + 1). In contrast to the harmonic oscillator, the diagonal

elements here are not zero. This allows for phase changes, i.e. Z-rotations,

of the states (see Section 3.3.1).

• The center region corresponds to transitions between states that are alter-

natingly confined to the shallow or the deep minimum. The fact that the

states’ confinement alternates perfectly between the minima is a result of

the exact potential chosen and does not hold in general. In this region

the dominating transitions are also between neighboring states in the same
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Table 3.1: Transition Matrix Elements for Qubit-Like Potential

m T| 12 〉,m T| 14 〉,m Left Index Right Index

| 0 〉 0.000 0.000 0
...

...
...

...
| 11 〉 0.000 0.000 11
| 12 〉 -3.180 -0.250 0
| 13 〉 0.000 0.000 12
| 14 〉 -0.250 0.311 1
| 15 〉 0.000 0.000 13
| 16 〉 -0.016 -0.359 2
| 17 〉 0.000 0.000 14
| 18 〉 0.000 -0.032 3
| 19 〉 0.000 0.000 15
| 20 〉 0.000 0.002 4
| 21 〉 0.000 0.000 16

...
...

...

minimum, i.e. next-to-nearest neighbors in energy.

• The top-right corner corresponds to transitions between states that span

both minima. In the region where the barrier is disappearing (around level

20), the potential looks less and less like a harmonic oscillator. This makes

transitions between non-neighboring states progressively easier.

Since the qubit will be formed by the lowest two energy levels in the shal-

low (left) minimum, the transitions of interest here are the ones between states
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| 12 〉 and | 14 〉 (desired transitions) and transitions from states | 12 〉 or | 14 〉 to

all other states (undesired transitions). The transition amplitudes Tnm are shown

in Table 3.1. Luckily, it is already virtually impossible to accidentally drive tran-

sitions between the desired states and states in the deep minimum. The main

concern therefore is to avoid driving unwanted transitions to states | 16 〉, | 18 〉, or

| 20 〉. Specifically, the transition from level | 14 〉 to level | 16 〉 needs to be watched

closely. To understand how this can be achieved, let’s examine how a drive of the

form

∆Idc(t) = X cos ωt + Y sin ωt + Z (3.31)

affects a specific transition between levels n and m, using:

i~ ∂t an(t) = an(t) ei En−En
~ t ∆Idc(t) Tnn + am(t) ei En−Em

~ t ∆Idc(t) Tnm (3.32)

i~ ∂t am(t) = an(t) ei Em−En
~ t ∆Idc(t) Tmn + am(t) ei Em−Em

~ t ∆Idc(t) Tmm (3.33)

By defining a vector A(t) = (an(t), am(t)) this can be written in matrix form as:

i~ ∂t A(t) = ∆Idc(t)

[
Tnn e−i(Em−En)t/~ Tnm

ei(Em−En)t/~ Tmn Tmm

]
A(t)

= ∆Idc(t)MA(t) (3.34)

Since Tmn = Tnm, M can be expressed in terms of the Pauli Matrices:

M = Tmn cos ωmnt σx + Tmn sin ωmnt σy +
Tnn − Tmm

2
σz +

Tmm + Tnn

2
I (3.35)
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with ωmn = Em−En

~ . Multiplying this with the drive ∆Idc(t) gives the following

evolution:

i~ ∂t A(t) =

[
Tmn

(
X

2
(cos (ωmn − ω) t + cos (ωmn + ω) t) +

+
Y

2
(sin (ωmn + ω) t− sin (ωmn − ω) t) + Z cos ωmnt

)
σx +

+ Tmn

(
X

2
(sin (ωmn + ω) t + sin (ωmn − ω) t) +

+
Y

2
(cos (ωmn − ω) t− cos (ωmn + ω) t) + Z sin ωmnt

)
σy +

+
Tnn − Tmm

2
(X cos ωt + Y sin ωt + Z) σz

+
Tmm + Tnn

2
(X cos ωt + Y sin ωt + Z) I

]
A(t) (3.36)

3.3.1 Interactions as Rotations on the Bloch Sphere

To understand the effect of this evolution, it is helpful to introduce a geomet-

rical representation of the system of the two states of interest |n 〉 and |m 〉. The

amplitudes an(t) and am(t) are complex numbers and thus described by two real

numbers each. As an overall phase of the state is not physically detectable, an(t)

can be chosen to be real without loss of generality. Thus, the vector A(t) as defined

above is described by three real numbers that can be interpreted as specifying a

point in three dimensions. The normalization requirement |an(t)|2 + |am(t)|2 = 1

confines this point to the surface of the unit sphere centered at the origin called
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Figure 3.4: Bloch Sphere – a) Bloch sphere: Quantum states in two-level systems
can be depicted as vectors on a sphere. b) Rotations: Operations on the system are
visualized as rotations of the state vector around an axis defined by the operation.
c) Off-resonant rotations: If the qubit is driven off resonance, the rotation vector
points out of the X/Y-plane leading to rotations that can no longer cover great
circles.

the “Bloch Sphere” after Felix Bloch. The states |n 〉 and |m 〉 are placed at

the poles of the sphere and any arbitrary superposition of the two is depicted by

a vector pointing to the surface of the sphere, called the “Bloch Vector”. The

spherical coordinates θ and ϕ that describe the direction of the Bloch Vector are

related to the described state via:

eiα|ψ 〉 = cos
θ

2
|n 〉+ eiϕ sin

θ

2
|m 〉 (3.37)

In this picture, the qubit interaction described above corresponds to a rotation

of the Bloch Vector around an axis pointing in the direction given by the prefactors

of σx, σy, and σz. The sum of the squares of the prefactors is related to the rotation

angle. Since the I-part of the interaction only influences the overall phase factor
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α, it can be ignored.

Thus, the interaction can be decomposed into nine different simultaneously

occurring rotations being applied to the state:

R1 =
Tmn

2
(Xσx + Y σy) cos (ωmn − ω) t (3.38)

R2 =
Tmn

2
(−Y σx + Xσy) sin (ωmn − ω) t (3.39)

R3 =
Tmn

2
(Xσx − Y σy) cos (ωmn + ω) t (3.40)

R4 =
Tmn

2
(Y σx + Xσy) sin (ωmn + ω) t (3.41)

R5 =
Tnn − Tmm

2
Xσz cos ωt (3.42)

R6 =
Tnn − Tmm

2
Y σz sin ωt (3.43)

R7 = TmnZσx cos ωmnt (3.44)

R8 = TmnZσy sin ωmnt (3.45)

R9 =
Tnn − Tmm

2
Zσz (3.46)

In eight out of the nine cases, the direction of the rotation oscillates as a

function of time. If the frequency of this oscillation is much faster than the rate

of rotation, the net rotation of the vector will average to zero and the overall

movement of the vector will remain at very small amplitudes. Therefore, if the

drive strengths X, Y , and Z are kept at low enough values, R3 through R8 can be
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safely ignored. This step is called the “Rotating Wave Approximation”. R1 and

R2 can also be ignored if ωmn is sufficiently different from ω.

Since R9 does not change the magnitude of the level populations, but only

their relative phases, a transition between levels can therefore only be driven if

ω ≈ ωmn. Thanks to the non-linearity in the qubit potential, this makes it possible

to operate the qubit solely in the lowest two states (the qubit states) of the shallow

minimum by ensuring that the interaction does not drive transitions between one

of the qubit states and undesired other states.

In our example case, if the qubit is initialized into state | 12 〉 and ω ≈ ω| 12 〉,| 14 〉,

the only states that will ever be populated are states | 12 〉 and | 14 〉, which we

will from now on call | 0 〉 and | 1 〉 to denote the two logical qubit states. The

drive ∆Idc(t) can then drive transitions between the qubit states via:

i~ ∂t A(t) =

(
Tmn

2
(X(t)σx + Y (t)σy) +

Tnn − Tmm

2
Z(t)σz

)
A(t) (3.47)

3.3.2 Operations on a Single Qubit

The evolution of the qubit can be simulated numerically by approximating

∆Idc(t) with sections ∆Idc(t) → ∆Idc(t + ∆t) of temporarily constant drive am-

plitudes Xt→t+∆t, Yt→t+∆t, and Zt→t+∆t. For each section, Equation 3.47 can then
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be solved exactly:

A(t + ∆t) = e−i(Tmn Xt→t+∆t σx+Tmn Yt→t+∆t σy+(Tnn−Tmm) Zt→t+∆t σz)∆t/2~A(t) (3.48)

Since the transition matrix elements Tmn are usually not known exactly and will be

calibrated away in the experiment, it is more useful to express the drive strengths

X, Y , and Z in terms of the frequency of rotation they cause. This equation then

becomes:

A(t + ∆t) = e−iπ∆t (Xt→t+∆t σx+Yt→t+∆t σy+Zt→t+∆t σz)A(t) (3.49)

Since the Zt→t+∆t σz term corresponds to a rotation of the state around the Z-axis,

it can be used to emulate an off-resonant drive. For example, a drive causing a

rotation at a rate of 20 MHz around the Y-axis that is detuned from the qubit by

5 MHz is simulated as:

A(t + ∆t) = e−iπ∆t (20MHz σy+5MHz σz)A(t) (3.50)

Effectively, this leads to a final rotation around an axis that is tilted out of

the X/Y-plane of the Bloch sphere. The vector therefore no longer traces out the

great-circle through the | 1 〉-state, but instead rotates faster with less amplitude

as shown in Figure 3.4c. This picture also visualizes nicely why a drive that is

far off resonance with a given transition can safely be ignored, as it does not

significantly move the state away from the pole.
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3.3.3 Single Qubit Operations in a Coupled System

To be able to simulate multi-qubit systems, the vector description A(t) needs

to be expanded to include all possible qubit states. For n qubits this vector has

2n entries to accommodate all binary combinations of the possible measurement

outcomes. For two qubits, for example, it would take the form:

A(t) =
(
a| 00 〉(t), a| 01 〉(t), a| 10 〉(t), a| 11 〉(t)

)
(3.51)

Here, a|xy 〉 is the complex amplitude of state |xy 〉. Again, the overall phase of

the state is arbitrary, allowing us to choose a| 00 〉 to be real. The normalization

requirement now applies to the entire state in the form:

∣∣a| 00 〉
∣∣2 +

∣∣a| 01 〉
∣∣2 +

∣∣a| 10 〉
∣∣2 +

∣∣a| 11 〉
∣∣2 = 1 (3.52)

This gives the qubit state six degrees of freedom. In general, an n-qubit state

has 2n+1 − 2 degrees of freedom. Since each degree of freedom can be used as

a register in a calculation, this leads to an exponential increase in the power of

a quantum computer with its number of bits. Unfortunately, this also makes it

exponentially harder to simulate. To simulate single qubit operations in an n-

qubit system, it is necessary to expand the Pauli matrices σx, σy, and σz to apply

to only one qubit in the set. This is done by forming the Kronecker product of

these matrices with the identity. For example, an X-rotation on the second of four
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qubits would be simulated using:

A(t + ∆t) = e−iπ∆t (X2 I⊗σx⊗ I⊗ I)A(t) (3.53)

Simultaneous X, Z, and Y-rotations on three qubits respectively would look like:

A(t + ∆t) = e−iπ∆t (X1 σx⊗ I⊗ I+Z2 I⊗σz ⊗ I+Y3 I⊗ I⊗σy)A(t) (3.54)

3.3.4 Qubit Coupling

As mentioned in the discussion of the DiVincenzo criteria in Chapter 1.3.4,

it is sufficient for universal quantum computation to implement a gate that acts

on two qubits at a time. For the phase qubit, a sufficient gate can be easily

constructed via a capacitive coupling between the qubits. This gate’s natural

evolution leads to the so-called i-Swap operation, which swaps the | 01 〉 with the

| 10 〉 state, applying a phase-shift in the process. The relevant matrix needed to

simulate the interaction is:

C =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 (3.55)

If the coupling strength C12 is defined in terms of the resulting swap frequency,

the evolution becomes:

A(t + ∆t) = e−iπ∆t (C12 C)A(t) (3.56)
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To couple qubits 2 and 3 out of five, one would use:

A(t + ∆t) = e−iπ∆t (C23 I⊗C⊗ I⊗ I)A(t) (3.57)

To combine this operation with a simultaneous X-rotation on qubit 1, one would

use:

A(t + ∆t) = e−iπ∆t (X1 σx⊗ I⊗ I⊗ I⊗ I+C23 I⊗C⊗ I⊗ I)A(t) (3.58)

If, instead, the coupling is followed by the X-rotation on qubit 1, the evolution is:

A(t + ∆tC + ∆tX) = e−iπ∆tX (X1 σx⊗ I⊗ I⊗ I⊗ I) e−iπ∆tC (C23 I⊗C⊗ I⊗ I)A(t) (3.59)

3.4 Simulating Imperfections

So far, apart from simulating an off-resonant drive via an additional Z-rotation,

all operations of the qubits have been assumed ideal. Unfortunately, in reality,

this is not the case, and to obtain useful predictions of experimental data, several

imperfections need to be taken into account.

3.4.1 Measurement Fidelities

Ideally, the probability of finding the qubit in one of the given states would be

calculated from:

P| 0 〉(t) = |a0(t)|2 and P| 1 〉(t) = |a1(t)|2 = 1− P| 0 〉(t) (3.60)
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This calculation assumes that the states can be identified correctly with 100% cer-

tainty. If this is not the case, one can simulate mistakes by defining classical error

probabilities E| 0 〉→| 1 〉 and E| 1 〉→| 0 〉 which capture the probability of misidentifying

a | 0 〉 as a | 1 〉 or vice versa. The measured probabilities then become:

P ′
| 0 〉(t) =

(
1− E| 0 〉→| 1 〉

) |a0(t)|2 + E| 1 〉→| 0 〉 |a1(t)|2 (3.61)

P ′
| 1 〉(t) =

(
1− E| 1 〉→| 0 〉

) |a1(t)|2 + E| 0 〉→| 1 〉 |a0(t)|2 = 1− P ′
| 0 〉(t) (3.62)

For multi-qubit simulations, this needs to be extended accordingly.

3.4.2 Measurement Crosstalk

In addition, in multi-qubit systems, it is possible that the tunneling of one

qubit influences the tunneling of other qubits [McDermott et al., 2005]. Specif-

ically, when one qubit tunnels to the deeper minimum and subsequently decays

to the ground-state in that minimum, it will radiate energy as it transitions to

lower energy levels. This radiation can couple into the other qubits in the circuit

and drive a transition to the excited state, which leads to an undesired tunneling

of those qubits as well. This form of crosstalk is a classically probabilistic event

and can thus be simulated using the same approach as used for the measurement

fidelities, e.g.:

P ′′
| 00 〉(t) = P ′

| 00 〉(t) (3.63)
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P ′′
| 01 〉(t) = (1−X21)P

′
| 01 〉(t) (3.64)

P ′′
| 10 〉(t) = (1−X12)P

′
| 10 〉(t) (3.65)

P ′′
| 11 〉(t) = P ′

| 11 〉(t) + X21P
′
| 01 〉(t) + X12P

′
| 10 〉(t) (3.66)

Here, X21 (X12) capture the classical probability that a tunneling of qubit 2 (1)

causes a tunneling of qubit 1 (2).

3.4.3 Microwave Crosstalk

Another source of errors in an actual qubit experiment is the commonly in-

sufficient electrical isolation between the microwave drives of the different qubits.

Due to the high frequency of the driving field and the close proximity of the qubits

it is fairly difficult to ensure that no photons leak from one drive line to another

qubit. Even though this effect is usually fairly small (−20 dB) and can be com-

pensated for by sending a correction pulse to all other qubits, it can be easily

simulated if needed by applying a simultaneous rotation to the other qubits with

a proportionally smaller amplitude and a potential phase-shift.

3.4.4 Decoherence – The Density Matrix Formalism

The final error source that needs to be included in the simulation is the one

specifically highlighted in the DiVincenzo criteria: Decoherence.
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Decoherence consists of two parts: Energy relaxation and dephasing. These

affect the two degrees of freedom of the qubit state in different ways.

Energy relaxation describes the process by which the qubit loses energy and

decays back to its | 0 〉-state. This decay primarily affects the θ degree of free-

dom of the state. It is caused by undesired coupling between the qubit and the

environment which provides a path for the qubit to dissipate its energy.

Dephasing captures a loss of information stored in the ϕ degree of freedom of

the state. This is usually caused by magnetic flux noise that effectively applies

random Z-rotations to the qubit’s state. Other noise sources, like critical current

noise in the Josephson junction, can lead to the same effect, but seem to be

less important [Bialczak et al., 2007]. The two decoherence mechanisms each

have a timescale associated with them. T1 captures the rate at which the qubit

relaxes back into the | 0 〉-state and Tϕ captures the rate at which the qubit’s phase

information is randomized. Since the decay to the | 0 〉-state also causes a loss in

phase information, a new timescale T2 is commonly defined to replace the less

physical quantity Tϕ:

1

T2

=
1

2T1

+
1

Tϕ

(3.67)

Both T1 and Tϕ are the result of classically random processes. Therefore, they

do not affect the quantum state in a coherent way. Dephasing, for example,

cannot be adequately described by a rotation of the state vector on the Bloch
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sphere. Instead, it corresponds to this vector shrinking towards the Z-axis. The

above described simulation formalism can therefore not be used in its presented

form to capture these processes as the state’s normalization requirement |an(t)|2+

|am(t)|2 = 1 forces the state vector to remain on the surface of the Bloch sphere.

To allow for the extra degree of freedom needed, it is necessary to move to the

“density formalism” for describing the qubit state. This formalism adds a degree

of freedom to the state by describing it as a probabilistic ensemble of pure states.

Each possible pure state |A 〉 is assigned a weight wA describing the classical

probability with which a randomly drawn member of the ensemble is in the state

|A 〉. The weights wA fulfill:

∑
A

wA = 1 (3.68)

In this formalism, the state is described by a “density matrix” ρ, which takes the

form:

ρ =
∑

A

wA|A 〉〈A | =
∑

n

wn|n 〉〈n | (3.69)

To simulate the evolution of the state, one simply needs to evolve both factors of

the outer product |A 〉〈A |:

ρ(t + ∆t) =
∑

A

wA|A(t + ∆t) 〉〈A(t + ∆t) |

=
∑

A

wAe−iπ∆t(...) |A(t) 〉〈A(t) | eiπ∆t(...)

= e−iπ∆t(...) ρ eiπ∆t(...) (3.70)
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Note the difference in signs of the two exponents. For example, an X-rotation

applied to the density matrix would be:

ρ(t + ∆t) = e−iπ∆t(X σx) ρ eiπ∆t(X σx) (3.71)

The density matrix of an n-qubit state is a hermitian 2n×2n matrix. Its diagonal

elements give the probabilities of the possible measurement outcomes, e.g.:

ρ =




P| 00 〉 a b c
a∗ P| 01 〉 d e
b∗ d∗ P| 10 〉 f
c∗ e∗ f ∗ P| 11 〉


 (3.72)

The complex off-diagonal elements capture coherences between the states. Since

the probabilities are real and need to sum to unity, i.e. Tr(ρ) = 1, the number of

degrees of freedom of the density matrix for an n-qubit system is given by:

D(n) = n2 − 1 (3.73)

3.4.5 Decoherence – The Kraus Operators

One way to simulate the decoherence of a qubit state expressed in the density

matrix formalism is with the use of the Kraus Operators [Kraus, 1983]:

K1a(∆t) =

[
1 0
0 e−∆t/2T1

]
(3.74)

K1b(∆t) =

[
0
√

1− e−∆t/T1

0 0

]
(3.75)

66



Kϕa(∆t) =

[
1 0
0 e−∆t/2Tϕ

]
(3.76)

Kϕb(∆t) =

[
0 0

0
√

1− e−∆t/Tϕ

]
(3.77)

K1a and K1b capture the energy relaxation process, while Kϕa and Kϕb capture

dephasing. Since both energy relaxation and dephasing are “non-unitary” process,

they need to be broken up mathematically into two steps, yielding the following

decoherence operations:

ρ′(t + ∆t) = K1a(∆t) ρ(t + ∆t)K†
1a(∆t) + K1b(∆t) ρ(t + ∆t)K†

1b(∆t) (3.78)

ρ′′(t + ∆t) = Kϕa(∆t) ρ′(t + ∆t)K†
ϕa(∆t) + Kϕb(∆t) ρ′(t + ∆t)K†

ϕb(∆t) (3.79)

Intuitively, K1b transfers some of the population from the excited state into the

ground state while K1a ensures that the resulting state is still normalized. Kϕb

reduces the phase information of the state while Kϕa, again, ensures normaliza-

tion. For accurate results, the decay operation needs to be interleaved into the

stream of rotation and coupling operations fairly frequently. ∆t should be chosen

to be much smaller than any timescales of rotation or coupling, i.e.:

∆t ¿ min

√
1

X2
n + Y 2

n + Z2
n

and ∆t ¿ min
1

Cnm

(3.80)
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Chapter 4

Designing the Phase Qubit

Integrated Circuit

The design of the actual phase qubit device consists of three steps:

• First, the electrical parameters of the circuit need to be chosen based on

experimental limitations and the understanding gained from the simulations

explained in the previous chapter.

• Second, these electrical parameters need to be implemented by defining the

physical geometry of the structures that will make up the different circuit

elements.

• Lastly, the right materials and processes need to be chosen or developed to
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Figure 4.1: Qubit Circuit: The qubit is controlled via a flux bias line that sends
RF and DC bias pulses to the qubit. It is read out via a squid.

build the structures in a way that minimizes imperfections.

4.1 Electrical Circuit Design

The simplest electrical circuit that can implement a viable phase qubit consists

of three components:

• The qubit itself is made up of an inductive loop containing a Josephson

junction with its parallel shunting capacitance.

• The qubit is controlled by a bias line that terminates in a single bias inductor

which connects to the qubit via a mutual inductance.

• The qubit is read out via a three-junction squid to which it is coupled by a
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mutual inductance between the qubit loop and the squid loop.

In addition, the design needs to include coupling circuitry that allows two or

more qubits to interact.

4.1.1 Qubit Circuit Parameters

The exact electrical values of the qubit’s inductance, capacitance, and junction

critical current are only very loosely specified. It is possible to build viable qubits

with a wide array of parameter combinations. But most choices involve a trade-

off of different performance parameters or ease of implementation. The simplest

approach is to use the eigenstate simulation outlined in the previous chapter to

design a qubit circuit that addresses the following concerns:

The easiest requirement to pin down is the frequency at which the qubit will op-

erate, i.e the energy difference of the lowest two states in the operating minimum.

To prevent thermal excitations from destroying the qubit state, the operating

frequency will need to be chosen to fulfill:

Ethermal = k T ¿ ~ω (4.1)

Since readily available cryogenic technology can cool devices to around 25 mK,

this requires the qubit’s operating frequency to lie significantly above 2 GHz. Cur-

rent wireless standards use frequencies around 2-3 GHz, which makes it easy to
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obtain control electronics that can handle signals up to 10-15 GHz. Thus, a fre-

quency choice of 5-10 GHz makes good sense.

For maximum flexibility, the signals that control the qubit will need to be

generated digitally. Since current high-speed digital electronics operates at fre-

quencies around 1 GHz, the pulses used to control the qubit should be on the order

of a few ns long. Given the best-case frequency spread of pulses of that length

(Slepian pulses), the non-linearity (i.e. difference in energy spacing between the

lowest three eigenstates) of the qubit should be at least 150-200 MHz to allow for

quick transitions (high amplitude pulses) that don’t drive undesired transitions.

The phase qubit needs at least two stable minima in its potential to allow for

the selective tunneling and decay of the | 1 〉 state into a state that is detectably

different from the | 0 〉 state. This existence of multiple minima adds a slight

challenge to the qubit reset process as a random initial state might decay into any

one of the potential’s minima. It is possible to design the qubit such that it can

be biased to have either one or two stable minima. Such a qubit is the easiest

to reset. It is also possible to reset qubits with three or more stable minima at

a time by using a back-and-forth-tilting bias that destabilizes all minima except

for the desired one. But as the number of minima grows, this probabilistic reset

process takes longer and longer. Therefore, potentials with maximally two or

three minima are the most useful.
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During the measurement, the | 1 〉 state is tunneled out of the operating mini-

mum into a neighboring minimum. After the tunneling, the state needs to decay

in the neighboring minimum to “latch” the measurement before it has time to tun-

nel back to the operating minimum. The energy relaxation time scales roughly as

1/n, where n is the number of the starting level. Therefore it is desirable to have

as many states as possible in the neighboring minimum at the time of tunneling.

This number should be in the several hundred states and needs to be increased as

T1 is improved.

The qubit will most likely be subject to 1/f flux noise, the origin of which is

still being investigated [Sendelbach et al., 2008]. This flux noise will be converted

to a bias noise by the qubit’s inductor leading to dephasing of the qubit’s state.

A larger inductance will reduce this effect and is therefore preferred.

These considerations taken together can lead to critical current values around

2 µA, inductances of around 720 pH and capacitances of around 1 pF, but none of

these values need to be hit exactly.

4.1.2 Biasing Circuit Parameters

The biasing circuit consists of three parts: The inductive coil in the phase

qubit integrated circuit, the filtering and wiring inside the dilution refrigerator,

and the electronics that will generate the required biasing sequences. This chapter

73



will focus only on the integrated circuit, while the other two components will be

discussed later.

The electrical characteristics of the bias coil are fully described by three pa-

rameters: The coil’s inductance, its mutual inductance with the qubit loop and

its mutual inductance with the squid loop.

Since the squid readout should be influenced as little as possible by the qubit

bias, the last value is easy to pick: The mutual inductance between the bias coil

and the squid loop should be as close to zero as possible.

The inductance of the bias coil and the mutual inductance between the qubit

loop and the bias coil are chosen based on two concerns: On the one hand, the

inductances need to be large enough to allow a reasonable current (< 2 mA)

in the bias inductor to cause a sufficiently large tilt of the qubit potential to

implement the reset. For this, it is sufficient if the bias coil can apply about

two flux quanta (Φ0) to the qubit loop. On the other hand, the bias line will be

subject to electrical noise generated in the elements at higher temperature stages

of the dilution refrigerator. Furthermore, the bias line is terminated with the

usual 50 Ω impedance, which allows it to dissipate energy. To reduce the amount

of noise coupled into the qubit and energy dissipated by the bias line, the mutual

inductance should be kept as small as possible. A ratio of the inductance of the

qubit to the mutual inductance to the flux bias line of
Lqubit

Mqubit/flux bias
∼ 100 yields
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the right impedance transformation to allow for long energy relaxation times T1

while still allowing for a sufficiently strong bias.

Given these two restrictions, values of 180 pH for the coils inductance and 2 pH

for the mutual inductance between the flux coil and the qubit loop seem to work

well.

4.1.3 Readout Squid Parameters

It turns out that the design of the readout squid is actually one of the most

interesting and complex parts of the circuit design process. This is due to the

fact that the squid needs to be strongly coupled to the qubit during the readout

process but preferably uncoupled during the qubit operation.

The readout squid consists of an inductive loop containing three Josephson

junctions. These junctions are arranged as shown in Figure 4.2a. The loop shares

a mutual inductance with the qubit loop. This allows the qubit to apply a state

dependent current bias IQ to the squid loop. In the branch of the squid containing

one junction, this current bias adds to any externally applied current bias Ibias

while in the other branch it subtracts. This changes the external bias needed

to exceed the critical current of the squid’s junctions at which point the squid

switches to the voltage state and thus generates a measurable signal. Just like

for a single junction, this voltage signal is large enough to create quasi-particle
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Figure 4.2: Readout Squid – a) Circuit: The squid consists of three junctions, two
of which have a critical current that is α× bigger than the third. The qubit state
creates a loop current IQ inside the squid via the mutual inductance M . circuit
is placed inside a cutout in the IC’s ground-plane. b) Dissipation coupling: The
loop current IQ creates changes in the bias current Ibias via the Josephson Effect
in the three junctions. This causes dissipation in the qubit unless the squid is
biased to one of the insensitive points where

d IQ

d Ibias
= 0. c) Complete circuit: To

create the mutual inductance, the squid loop needs to also contain inductors as
indicated.
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excitations. Since these are a potential source of decoherence for the qubit, the

squid’s voltage jump needs to be kept low. This is achieved by externally shunting

the squid with a resistor on the order of 30 Ω. This resistor does not need to be

placed on the phase qubit integrated circuit chip, but can instead be placed outside

the sample mounting box.

The three-junction design was chosen as it allows for the squid to be decoupled

from the qubit when it is not needed for the readout [Neeley et al., 2008b]. This

can be understood by examining the circuit shown in Figure 4.2a. The squid is

externally biased with a current Ibias. In addition, the qubit causes a current IQ

to flow in the squid’s loop. These currents are related via the phases across the

Josephson junctions as given by the Josephson relations:

Ibias = I0 sin δ + αI0 sin
δ

2
(4.2)

IQ = I0 sin δ − αI0 sin
δ

2
(4.3)

These equations assume that the two junctions αI0 are identical and therefore

show the same phase difference across them because of symmetry. Figure 4.2b,

a plot of Ibias versus IQ, shows how a change in the qubit’s loop flux translates

into a change in the squid bias current. If the squid is biased such that the slope

dIQ/dIbias is non-zero, the qubit can couple to the squid’s bias line and drive

current through the above mentioned shunting resistor. This opens a path for
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the qubit to dissipate energy and thus needs to be avoided. As can be seen in

Figure 4.2b, for values of α smaller than 2.0 the squid can be biased with a current

I∗bias at which the qubit does not couple to the squid’s bias line to first order. To

ensure the existence of such an insensitive point despite slight variations in the

critical currents during fabrication, a value of α = 1.7 makes good sense.

Another electrical characteristic of the squid that needs to be chosen is the

inductance L of the squid loop as shown in Figure 4.2c, which is used to generate

the mutual inductance with the qubit. The important concern here is the ratio of

this inductance to the inductance of the squid’s Josephson junctions at zero bias.

This ratio is given by:

β = 2π L I0/Φ0 (4.4)

This ratio is chosen to balance two counter-acting effects: On the one hand, a

larger loop inductance of the squid allows for a larger mutual inductance with the

qubit and thus increases the coupling during the readout. On the other hand, a

larger inductance will drop more of the phase difference δ across the squid loop,

reducing the exposure of the junctions to the bias. A value of β around 0.9 seems

to balance these concerns well.

The exact critical current of the squid is not quite as important, so, for fabrica-

tion convenience, one of the junctions, e.g. the single one, can be chosen to match

the qubit’s critical current around 2 µA. The other two junctions then need to be
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Figure 4.3: Squid I/V Traces – a) Large bias range: Due to the many junctions
in the squid, the trace shows a lot of structure even out to high bias values. b)
Medium bias range: The shunting resistor prevents the squid from switching all
the way to the gap to reduce quasi particle generation. The gap at 2∆ is still
visible as a step (around ± 200 µV). c) Small bias range: The squid’s switching
response is hysteretic.

designed with a slightly larger area to yield the required higher critical current of

3.4 µA given the same oxide barrier thickness.

The shunting resistor across the squid will change the shape of the squid’s

current voltage response to resemble Figure 4.3. The trace shows the same super-

current branch as a single junction, but its switching behavior and subgap voltage

are much less pronounced due to the shunt. The step at twice the superconducting

gap is still visible in the plot, but its height is significantly reduced.

4.1.4 Coupler Circuit

The phase qubit’s low impedance provides a large amount of flexibility when

it comes to the choice and design of circuitry used to couple multiple qubits
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Figure 4.4: Spice Coupler Design – a) Schematic: The qubit is emulated by a
damped LC oscillator. One qubit is driven with a microwave source and the
response of the second qubit is analyzed. b) Analysis: The resulting response
curve shows a splitting that is equal to the coupling strength.

to each other. The simplest way to design a coupling element is via the use of

circuit modeling software like SPICE. For this purpose, the qubit can be emulated

simply via a parallel RLC oscillator with its electrical values chosen to adjust its

resonance frequency to the qubit’s operating frequency. One of the qubits can

then be driven with an AC voltage and the response of the second qubit to this

bias can be measured. Figure 4.4b shows the frequency response of the second

qubit to a drive on the first. In this case, the two qubits are coupled through an

LC oscillator as shown in Figure 4.4a. This trace shows a response peak that is

split by about 20 MHz. This splitting gives a fairly good estimate of the coupling

strength that this element will yield in the final qubit circuit.
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Figure 4.5: Qubit Integrated Circuit: The qubit circuit is placed inside a cutout
in the IC’s ground-plane. The geometrical arrangement of the qubit, squid, and
flux bias coils determine their mutual inductances. The layout has three terminals
to connect the squid bias, flux bias, and qubit coupler.

4.2 Geometric Circuit Element Layout

Now that all electrical design values are chosen, the next step is to lay out

how the elements will be implemented. For almost all elements, their electrical

characteristics are primarily determined by their geometric shape.
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4.2.1 Qubit

When designing the inductor of the qubit it is important to reduce the circuit’s

sensitivity to any potentially fluctuating external background magnetic fields.

This can be achieved to first order by arranging the inductor into a symmet-

ric figure-8 configuration. With this, any current induced in one of the loops by

a background field is exactly cancelled by the current induced in the other loop.

This makes the qubit sensitive only to gradients in magnetic fields and is therefore

also called a gradiometer design. The actual shape of the inductor is best designed

with modeling software. A very powerful free tool that serves this purpose well

is FastHenry. It allows for the specification of traces of given dimensions and will

then calculate the resulting inductance of all connected traces and all mutual in-

ductances between different sets of connected traces. Again, the design allows for

a lot of flexibility in the choices of exact parameters but there are a few concerns

to keep in mind. The width of traces used in the design should be large enough to

yield reproducible results during fabrication, but not too large to avoid trapping

magnetic flux vortices. A good size here seems 2 µm. The number of turns in the

inductor needs to be balanced between the overall size of the structure and the

added capacitance due to the needed crossovers. Two turns here seem to be a

good number.
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The geometry of the qubit junction is a lot more strictly defined. It needs

to be as small as possible since even a single materials defect in the junction

couples strongly to the qubit and thus needs to be avoided. On the other hand

it cannot be so small as to not yield reliable fabrication results. Also, since the

junction’s oxide thickness is somewhat irreproducible, it is useful to generate an

array of junctions on the wafer with slightly different areas to guarantee that

some dies on the wafer will yield the desired critical current. A design with 2 µm2

wedge-shaped junctions, all oriented in the same direction so that they can be

pass-shifted together, works well.

The requirement that the junction needs to be as small as possible does not

allow for its capacitance to be large enough to reach the needed value. This can

be easily remedied with an external shunting capacitor. This capacitor can be

implemented with a trivial parallel-plate design. Its geometry is chosen using the

relations:

C = Cext + Cjunc (4.5)

Cext =
εA

d
(4.6)

When choosing A versus d, the only concerns are the reliability of fabrication and

the size of the final structure.
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4.2.2 Bias Coil

The design of the bias coil can be laid out using FastHenry as well. Here, it

is important to keep in mind that the gradiometer design of the qubit requires

the coil to be arranged to create the needed field gradient. This can be achieved

easily by placing the coil off to one side of the design. FastHenry will be able to

calculate the resulting mutual inductance to find the exact placement needed.

If the bias coil consists of two counter-wound loops, it creates fields that average

to zero along the axis of symmetry of the circuit. Since the mutual inductance

between the bias coil and the squid is desired to be zero, this provides a natural

place for the squid loop.

Since the bias coil needs to carry a relatively large amount of current, it is

important to design its traces with a sufficiently large cross-section to ensure that

it can carry the required current without losing its superconducting properties.

4.2.3 Squid

To achieve sufficient sensitivity to the qubit state while maintaining immunity

to outside biases the squid should also be laid out using a gradiometer design.

FastHenry, again, can generate the resulting mutual inductances between the

squid loop, the qubit loop, and the bias coil, as well as the inductance of the

84



squid loop. Thus, this tool can be used to optimize the size, shape, and relative

position of the squid loop. One additional point of concern here is to keep the

capacitive coupling between the squid and the qubit at acceptably low levels.

4.3 Materials and Processes

The last step in designing the phase qubit integrated circuit is to choose the

materials and processes to be used in the fabrication.

4.3.1 Superconductor

The first choice here is which material to use as the superconductor. Again,

many options are viable, but Aluminum, Niobium, or Rhenium make for good

candidates due to their accessibility, high superconducting transition temperatures

Tc, and the availability of processes for deposition and etching. Due to the relative

simplicity of oxidation, Aluminum has been the superconductor of choice for this

experiment.

4.3.2 Junction Dielectrics

The dielectric which forms the tunnel barriers for the Josephson junctions used

in the circuits is commonly a function of the used superconductor. Due to the
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small scales of these barriers, it is fairly hard to use anything but an oxide of the

superconductor. For this experiment, the junctions’ tunnel barriers will there-

fore be formed by amorphous aluminum oxide. Unfortunately, the quality of the

junction dielectric is one of the crucially important details that will determine the

final device performance. This is due to the very small thickness of these junc-

tions as it will causes large oscillating electric fields to form across the dielectric

during device operation. These fields can easily couple to individual defect states

in the tunnel barrier provided they resonate at the qubit’s operating frequency

[Neeley et al., 2008a]. Therefore, a crystalline barrier would be a very desirable

achievement.

4.3.3 Crossover Dielectric

Another material of great concern is that used for general insulating layers like

in the external parallel plate capacitor or the wiring crossovers. Even though the

fields formed across these during operation are much smaller, their larger bulk

more than makes up for this by providing a greater number of defects. According

to our current understanding, it is this bath of defect states that is the predomi-

nant cause for qubit energy relaxation [Martinis et al., 2005]. Thus, it is necessary

to pay close attention to the development of a material with as low a defect density

as possible. Again, crystalline dielectrics would be the preferred solution, but for
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now, amorphous silicon seems to provide a reasonable and much more obtainable

alternative.

4.3.4 Wafer

The last choice is the wafer to be used: Since electric fields created by amor-

phous dielectrics can polarize a 2D electron gas in silicon, we choose sapphire

(crystalline Al2O3).
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Chapter 5

Phase Qubit Fabrication

The fabrication process of building the qubit samples is very similar to the

process of building integrated semiconductor circuits. Its 1 µm-resolution seven-

lithography-step process is fairly involved by the standards of common condensed

matter physics experiments, but still rather straightforward by the standards of

current IC technology.

5.1 Mask Design

The process begins with the design of the qubit layout in a standard CAD

program like L-Edit. The design is fractured into the different layers described

below and exported to *.GDS files, which can be used to “print” the mask plates
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Figure 5.1: L-Edit Mask Layout Tool: The CAD program L-Edit assists the design
of integrated circuits by allowing for scriptable layered composition of geometrical
elements that represent traces in the final circuit.
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that will be used in the later fabrication steps. During processing, the features

on the mask will be reduced by a factor of 5 when they are transferred to the

wafer. Since the smallest features in our design are on the length scales of 1 µm,

the “printing” of the masks is somewhat involved and requires a specialized mask-

writer. It uses a laser or shuttered light source to create the pattern rather than

a simple ink-jet or thermo-transfer printer, which is sufficient for feature sizes of

10’s to 100’s of µms.

5.2 Fabrication Overview

The basic qubit design consists of five layers that are defined in seven lithogra-

phy steps. The bottom layer, the “Base Wiring” layer, contains aluminum traces

that define most of the electrical connections in the circuit. This layer is covered

by an “Insulator” layer followed by another wiring layer, the “Top Wiring” layer.

Vias (holes) in the insulator layer allow for electrical connections between the base

and the top wiring layers. Up to here, the qubit design very closely resembles a

miniaturized two-layer printed circuit board. The fourth layer, called the “Junc-

tion Dielectric” layer, is a very thin oxide layer on top of the top wiring layer.

This layer is capped with the “Junction Wiring” layer, another aluminum layer

that provides the electrical counter-contact to the junctions. Overall, these five
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Figure 5.2: Fabrication Building Blocks – a) Crossover: The insulator layer “I”
allows for a top wiring trace “T” to cross a base wiring trace “B” without making
electrical contact. b) Via: A hole in the insulator layer “I” allows the top wiring
“T” to connect to the base wiring “B”. c) Junction: A tunnel junction is formed
using a controlled oxide on the top wiring “T” to provide a thin barrier to the
junction wiring layer “J”.

layers provide the basic building blocks of the qubit circuit: Traces, crossovers,

vias, and junctions (see Figure 5.2).

5.3 Base Wiring Layer

5.3.1 Aluminum Sputter Deposition

The fabrication begins with the definition of the base wiring layer. For this,

a sapphire (crystalline Al2O3) wafer (thin round disk) is covered with a 150 nm

thick layer of aluminum using a method called “Sputtering”. Sputtering is a

process in which a disk of pure aluminum (called “Target”) is bombarded with

argon ions. The impact causes aluminum atoms to be ejected from the target. If
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the sapphire wafer is positioned close to the target, some of the ejected aluminum

atoms will hit and settle on the wafer to slowly build up an amorphous metal

layer on the wafer. The rate at which this layer grows is slow enough (∼ 10 nm
min

)

to allow for its thickness to be controlled to an accuracy of several nm. Sputtering

needs to be done in a vacuum system that is initially pumped to ≤ 10−7 Torr

to remove contaminants. The sputtering process itself is done with an argon

pressure of around 1-10 mTorr to find the right balance between a sufficiently

high availability of argon ions and a sufficiently long mean free path for the argon

ions and aluminum atoms so that they can reach their respective destinations.

5.3.2 Lithography

The blanket aluminum film now needs to be defined into the traces required

for the base wiring layer. This is done via an ICP etch (see Section 5.3.3) through

a photo-resist mask. The mask is created with a process called photo-lithography.

For this, the entire wafer is covered with a thin film of photo-resist (here: SPR-

955), a polymer-solution that changes its soluability when exposed to UV light.

A few drops of the solution are applied onto the wafer. The wafer is then spun at

4, 000 rpm for one minute to distribute the solution across the wafer. The speed,

spin-time, and viscosity of the photo-resist determine the final thickness of the

layer (here ∼ 1 µm). The covered wafer is then heated slightly to pre-harden the
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Figure 5.3: Photolithography and Etching – a) Exposure: Irradiation with UV
light changes the soluability of the photo-resist (PR). A mask is used to block the
UV radiation where desired. Optics reduce the pattern by 5×. b) Development:
Developer selectively removes the photo-resist. c) Completed development: The
mask pattern has been replicated in the photo-resist. d) Etch: A mixture of
ionized gases removes the metal where it is not protected by the photo-resist.
e) Completed etch. f) Strip: A solvent removes the remaining photo-resist. g)
Completion: The mask pattern has been replicated as traces on the wafer.

photo-resist before it is placed into a machine called a “Stepper”. The Stepper

exposes an array of 5× reduced copies of the base wiring pattern “printed” on

the mask plate created in L-Edit. For this it shines UV light through a system

of lenses and the mask onto the wafer for 1.2 s at a time. When all exposures are

complete, the wafer is dipped into a developer like MF-701, which removes the

more soluable parts of the photo-resist. This leaves a positive image of the mask

pattern on the wafer as shown in Figures 5.3a-c.
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5.3.3 ICP Etch

Next, the wafer is loaded into a machine called an “ICP Etcher” (ICP =

Inductively Coupled Plasma). Inside the etching chamber, the wafer is exposed

to ions that will attack and remove the desired material. In this case, the chamber

is filled with a low pressure mixture of BCl3 and Cl2 gas. An RF-plasma in the

chamber dissociates the gas into BCl+2 and Cl− ions. These are accelerated towards

the wafer by an electrostatic bias. There, they contact the aluminum film wherever

it is not protected by photo-resist. The Cl− ions will react with the aluminum

to form aluminum chloride gas, which is pumped out of the chamber via a turbo

pump. Since the etching is done primarily via the chemical reaction between the

ions and the substrate and not via physical bombardment, this etching method

can be highly selective in the materials that it will remove. For example, the

above described chemical mixture will remove the deposited aluminum, but not

the aluminum oxide (sapphire) wafer below it.

5.3.4 Photo-Resist Strip

After the wafer comes out of the etching chamber, the remaining photo-resist

is removed from it by a dip in acetone or in a chemical called “Stripper” which

is specially formulated to effectively remove the given type of photo-resist. Some-
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times the removal can be a bit tricky, since the Cl− exposure during etching can

harden the resist. Complete removal is important, though, since left-over resist

will impact adhesion of later layers as well as qubit performance. At this point,

the aluminum base wiring layer is completed.

5.4 Insulator Layer – Part I

5.4.1 PECVD Deposition

The process continues with the deposition of 250 nm of amorphous silicon

to form the insulator layer. This deposition is done with a PECVD (Plasma

Enhanced Chemical Vapor Deposition) system, which dissociates concentrated

silane gas SiH4 into its constituent ions using an RF-plasma. The silicon ions

settle on the wafer and form an amorphous insulating layer. The deposition rate

(∼ 80 nm
min

) is again low enough to allow for 10 nm resolution in the created film

thickness. The insulator deposited in this step helps to form the capacitor in

the qubit circuit. During the qubit operation, it will be subjected to electric

fields created by the capacitor plates. Since these fields “contain” the qubit state,

defects in the insulator that influence them will directly impact qubit performance.

Specifically, defects like loose bonds that can form quantum mechanical two-level

states contribute significantly to the qubit’s energy relaxation time T1. Thus, the
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quality of the film deposited in this step is of crucial importance for the final

performance of the devices. Since many parameters (deposition temperature, gas

pressure, plasma intensity, etc.) contribute to this film quality, a lot of material

science and engineering has to be invested into the optimization of this step. The

fact that the PECVD system used here is shared between many users from different

groups using very different materials further complicates this optimization since

the different recipes leave behind a constantly changing chemical environment

in the deposition chamber. Extensive cleaning and chamber conditioning before

each deposition is therefore required to achieve the needed film qualities. The bulk

quality of the film also needs to be balanced with other physical requirements like

the internal stress of the film and its adhesion to the base wiring layer as well as

the sapphire substrate.

5.4.2 Via Cut

Next, the above described lithography – ICP etch – strip process is used to cut

holes (vias) into the insulator layer in the locations where the traces in the base

wiring layer need to be contacted by the top wiring layer. The recipe used for the

etching is based on SF6 gas, which removes amorphous silicon, but not aluminum

or aluminum oxide.
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Figure 5.4: Clearing Vias from Native Oxide – a) Native oxide: Aluminum very
quickly forms a 2 nm-thick native oxide layer when exposed to air. b) Argon
mill: The entire sample is bombarded with argon ions to remove a thin layer
of material everywhere. c) Clean via: After a while, the native oxide has been
removed, exposing the clean base wiring layer and allowing for good electrical
contact to the top wiring layer.

5.5 Top Wiring Layer – Part I

5.5.1 Argon Mill

After the vias have been defined and the sample is cleared from any photo-

resist, the sample is returned into the aluminum sputter system for the deposition

of the top wiring layer. Since aluminum oxidizes fairly quickly when it is exposed

to air, an oxide layer will have formed on the surface (∼ 2 nm thick) of the

base wiring traces. As this oxide layer is not electrically conductive, it needs

to be removed before the top wiring aluminum is deposited to guarantee perfect

electrical contact between the two layers. This removal is done in situ with an

argon mill step that precedes the aluminum deposition as shown in Figure 5.4.

98



During this step, argon ions are accelerated with an electric field of around 500 V

towards the sample where they impact the surface and remove material through

physical bombardment. Since this process is not based on a chemical reaction, the

resulting etch cannot distinguish between the different materials on the substrate.

Thus, the etch needs to be timed such that it only removes the aluminum’s oxide

layer, but not the trace beneath. But as the mill rate can be closely controlled

with the beam current density, this is not hard to achieve.

5.5.2 Aluminum Deposition

Using the same aluminum sputter technique as described above, one can now

deposit 200 nm of aluminum to form the top wiring layer.

5.5.3 Junction Gap Cut

For reasons that will become clear during the junction definition, the first step

in defining the top wiring traces is to cut holes only in those regions necessary to

prevent a shorting of the qubit junctions (see Figure 5.5). The cutting is performed

with exactly the same lithography – ICP etch – strip process that was used to

define the base wiring traces.
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5.6 Junction Layers

5.6.1 Oxidation / Deposition

The next step is to form the qubit junction. The junction consists of a thin

layer of aluminum oxide sandwiched between two aluminum electrodes. The thick-

ness of the oxide needs to be very well controlled, since it will determine the junc-

tion’s critical current. Thus, the uncontrolled native oxide layer that formed on

the top wiring layer during exposure to air needs to be removed with the argon

mill step described in Section 5.5.1. After, a controlled amount of oxygen is bled

into the chamber of the sputter system to oxidize the exposed clean aluminum

to the desired depth. Immediately after, the entire wafer is covered with another

150 nm of sputtered aluminum to form the junction’s counter-electrode.

5.6.2 Junction Definition via Argon-Chlorine Etch

Since the critical current of the junctions not only depends on the thickness

of their oxide, but also on their area, a range of critical currents can be created

across the wafer by offsetting the position of the features slightly for the different

rows on the wafer during the photo-lithography. This time, the etching of the

junctions is not done via the usual BCl3/Cl2 etch, since the oxide layer on the top

wiring is too thin to allow for a selective ICP etch to stop on it. The usual etch
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Figure 5.5: 3D View of Junction: The qubit and squid junctions are formed by
cutting a hole into the top wiring layer “T”, forming a controlled oxide on it, and
covering it with the junction wiring “J”. This process forms two junctions at a
time: A small junction (left) under the wedge-shaped tip of the junction wiring
and a large junction (right) on the opposite side of the hole. The large junction
is big enough to essentially behave like a short.

would remove not only the desired aluminum from the junction layer, but also all

exposed aluminum from the top wiring layer followed by all parts of the base layer

that aren’t covered by the insulator. To prevent this, an argon-chlorine plasma

is used to perform a slow mill (Ar mill) that carries away the aluminum (reacts

with Cl) to prevent shorting of the junctions through re-deposited material. This

recipe has a much lower (< 10 nm
min

versus ∼ 1 µm
min

) and more controllable etch rate.

To ensure that the junction counter-electrodes are entirely disconnected from the

top wiring layer, the etch is timed such that it cuts a bit into the top wiring layer

to guarantee that the aluminum from the junction layer is fully removed. This is

the reason why the top wiring layer was deposited 50 nm thicker than the base

wiring and only small holes were cut into it in the previous step as it allows the
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top wiring layer to protect all lower layers from the milling. The mill is followed

by the usual photo-resist strip.

5.7 Top Wiring Layer – Part II

Next, the traces of the top wiring layer are defined with the usual lithography

– ICP etch – strip method. During this step, it needs to be ensured that the

traces in neither the junction layer nor the base wiring layer are exposed to the

etch. The latter should already be covered by the insulator layer or traces in the

top wiring layer, while the former need to be explicitly protected by photo-resist.

Since during all ICP etch steps the sample is bombarded with ions, electrical

charge accumulates across the wafer. To ensure that this charge does not arc

through and destroy the junctions, the top wiring traces need to contain shorting

straps that provide a current path around the junctions.

5.8 Insulator Layer – Part II

Since even the most optimized amorphous silicon is not defect-free enough to

not impact qubit performance, it is desirable to remove it wherever possible. This

is done in the next step using the same lithography – ICP etch – strip step that

was used to cut the vias into the insulator layer before.
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5.9 Top Wiring Layer – Part III

Since the insulator removal is the last etch step in the process, the above

mentioned shorting straps can now be removed. Due to the described charging

effect, they cannot be removed with the usual ICP etch. Instead, the lithography

is followed by a wet etch in which the sample is submerged into Transene-A, a

chemical that etches aluminum without creating a charge. The etch is followed

by the usual photo-resist strip.

5.10 Dicing

The main advantage of clean-room fabrication is that the stepper used during

photo-lithography can very quickly shoot almost 100 copies of our 0.25” × 0.25”

qubit design onto the 3” diameter wafer for each step. In all other fabrication

steps these 100 devices are processed in parallel at no extra effort. The only thing

left to do at the end is to cut the wafer into the desired dies. This is done on a

dicing saw which consists of a 200 µm-thick blade spinning at 30, 000 rpm that is

forced through the wafer. Since sapphire is the second hardest material known to

man, the blades cut with embedded particles made out of diamond, the hardest

material known to man. Before this, the wafer is protected with a fresh coat of

photo-resist. Once this coat is removed, the fabrication is complete.
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Chapter 6

Device Testing Equipment

The testing and characterization of the qubit devices employs a host of dif-

ferent tools which will be examined in this chapter. During this discussion, it

is important to keep in mind that, even though some of the described tools are

fairly sophisticated, almost all of them are based on well-developed technology and

are readily available for off-the-shelf purchase (although sometimes at significant

cost). This is one of the reasons that make superconducting integrated circuits

an interesting candidate for quantum computation.

105



6.1 Physical Quality Control during Fabrication

Already during the fabrication, the qubits need to be subjected to constant

quality control. Thus, the first section of this chapter focuses on the tools used in

the clean-room during fabrication

6.1.1 Optical Microscopy

The angular resolution of the unaided eye is about 0.02-0.03 ◦ and it can focus

on objects as close as 15-30 cm (depending on age). This corresponds to a mini-

mum feature size that the eye can resolve of about 50-150 µm. Since the features

in the qubit design get as small as 1 µm, it is often not possible to tell with the

naked eye whether a step in the fabrication yielded the desired result. But with

an optical microscope that can magnify the qubit’s features by up to 1, 000×, it

is fairly easy to tell whether the development of the photo-resist or an etch step

left residue behind, or whether the features in the different layers are correctly

aligned. It is even sometimes possible to judge the quality of the aluminum films

or insulator films by looking for proxy features like pitting or other large-scale

surface defects. This makes a good optical microscope an indispensible tool that

is usually used after every single deposition, lithography, etch, or strip step.
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6.1.2 Scanning Electron Microscopy

Optical microscopes quickly reach their limitations if the feature sizes drop

into the nm range. Things like step coverage or the quality of the insulating

barrier or even surface roughness at more detailed levels cannot be resolved with

an optical microscope. The reason for this is the finite wavelength of light. This

finite wavelength gives photons a “size” of several hundred nanometers, making it

impossible to resolve features smaller than this size without distortion to the image

due to interference effect. To circumvent this limit, a different type of microscope

can be used that is known as an SEM (Scanning Electron Microscope). As the

name suggests, this microscope does not use optical photons to probe the surface,

but a beam of electrons that is reflected off the sample. The small size of the

electrons allows for magnifications up to 250, 000×, which is sufficient to, for

example, look at the profile of the 2 nm oxide barrier inside the qubit junction.

The use of electrons requires the sample to be conductive so that it can reflect the

electrons efficiently. Commonly, non-conductive samples are therefore first covered

with a thin layer of gold. The images generated by the SEM can naturally not

preserve the color of the sample.
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6.1.3 Atomic Force Microscopy

To resolve even finer details than the SEM can deliver, one can employ the

help of an AFM (Atomic Force Microscope). It works by scanning a needle with a

tip the size of a single atom across the surface of the sample. The tip’s deflection

due to the forces between it and the surface is measured by reflecting a laser beam

off the cantilever supporting the tip. With this technique, it is possible to resolve

the surface structure of a film at the atomic level (∼ 0.1 nm). The process of

scanning a needle across a surface is a very delicate and therefore slow operation,

making the AFM much less convenient to use.

6.1.4 Dektak

Back at the opposite end of the resolution spectrum, the Dektak functions

as the AFM’s easier, less sophisticated cousin. It is also based on dragging a tip

across the sample surface, but the readout mechanism is much cruder. The Dektak

is very convenient to use as a tool that can quickly determine the step profile of

layered films with a resolution of around a few nm. The Dektak is therefore very

useful for investigating deposition and etch rates by giving a good estimate of the

resulting film thickness or trench depth.
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6.2 Electrical Screening after Fabrication

6.2.1 4-Wire Measurements

As described in Chapter 5.6.2, the junction features on the qubit wafer can be

exposed with pass-shifts such that they provide a gradient in the junction areas

across the wafer. This allows for post-selection of the correct junction resistances

which can compensate for variations in the junction oxidation process. For this,

the qubit design contains test junctions on each die that are geometrically iden-

tical to the qubit junctions but provide two contact pads on either side. Since

the junction resistance is fairly small and the contact between probes touching

the wafer has a comparable or even larger resistance, it is necessary to employ

a technique called a 4-wire measurement to measure the junction resistance in-

dependently of the lead resistance. For this, the junction is biased by a current

through one pair of pads as shown in Figure 6.1. The voltage developed across the

junction is then measured via the other two pads. Since the current can be deter-

mined reliably despite additional series resistance and since the lead resistance is

negligible compared to the internal resistance of the volt meter, this measurement

gives an accurate reading even under varying lead resistance. With this technique,

those dies can be chosen from the qubit wafer that are the most likely to yield

qubit junction resistances in the right range.
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Figure 6.1: 4-Wire Measurement – a) On-chip trace layout: Each side of the
junction to be measured is connected to two pads, one of which is used for a
current bias and the other for a voltage measurement. b) Electrical diagram: A
current source drives a known current I through the series resistor of interest
RJ . This causes a voltage V = I RJ to develop across the resistor, which can be
measured at the indicated terminals. If the volt-meter is assumed to have infinite
internal resistance, the wiring resistances RL1 through RL4 do not influence the
result.

6.2.2 Adiabatic Demagnetization Refrigerator

Unfortunately, the other circuit elements, like the inductor, capacitor, and

squid, can only be tested cold, i.e. at temperatures where the aluminum traces

become superconducting (< 1 K). Since the final cool-down in the dilution refrig-

erator (see Section 6.3.1) is rather time consuming and expensive, it makes sense

to screen the candidate dies further in an “Adiabatic Demagnetization Refrigera-

tor” (ADR). This refrigerator can cool samples to around 100 mK and stays cold

for a few hours at a time. The cooling happens in two stages: The first stage, a

closed cycle pulse tube cooler, works very much like a conventional refrigerator,

except that it circulates helium gas rather than tetrafluoroethane (the environ-

mentally conscious replacement for Freon). This cooler brings the refrigerator
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down to temperatures around 4 K. The final temperature is reached using the

cooling power of the randomization process of magnetic spins. Once the refrig-

erator reaches 4 K, a superconducting magnet is energized to generate a strong

field (∼ 4 T) through a gadolinium-gallium garnet (GGG) crystal and a ferric

ammonium alum (FAA) salt pill. The magnetic spins inside the GGG and FAA

align with the applied field, releasing heat that is absorbed by the closed cycle

cooler. After the system equilibrates, the stages are thermally disconnected and

the magnetic field is slowly relaxed back to zero. This causes the magnetic spins

to randomize and absorb heat to facilitate the increase in entropy. This effect

cools the GGG crystal to about 1 K and the FAA to around 100 mK until the

randomization is complete. These temperatures are cold enough to perform ini-

tial electrical tests on the qubits as described in Chapter 8 (Squid I/Vs and Squid

Steps). But due to the short duration of the cold period, the amount of electrical

and vibrational noise of the refrigerator, and the limited wiring possibilities due

to the low cooling power, more involved qubit experiments are not possible.
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6.3 Quantum Measurements at 25 mK

6.3.1 Dilution Refrigerator

Once a sample has been deemed likely to perform, it can be prepared for

the real cool-down in the “Dilution Refrigerator” (DR). This refrigerator reaches

25 mK in four stages. It consists of a vacuum that houses one tank filled with liquid

nitrogen (LN2) and one with liquid helium (LHe). Just like water at standard

pressure boils at 100 ◦C no matter how much energy is put into it, LN2 boils at

77 K and LHe boils at 4 K. This keeps the two reservoirs at these temperatures

as long as they are kept full of liquid. (This need for keeping the reservoirs filled

is one of the reasons why the DR is much more costly to operate than the ADR.)

Attached to the LHe reservoir is a thin tube that slowly feeds LHe into a small

volume called the “Pot”. This pot is pumped on by a vacuum pump to lower

the boiling point of the LHe further to 1.5 K. The remaining cooling to 25 mK is

achieved with a closed system that cycles a mixture of He-3 and He-4. Its cooling

power results from the entropy increase when He-3 mixes with He-4. A continuous

mixing is achieved with a two-chamber design consisting of a destillation chamber

(“Still”) that selectively removes He-3 by evaporation and a mixing chamber where

the He-3 is allowed to mix back in with the He-4. The entropy increase in the

mixing chamber cools the chamber down to around 25 mK. Since this process
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happens continuously, the DR can theoretically stay cold forever. The rather

large cooling power of the mixing process (∼ 20-50 µW) allows for a large sample

stage (∼ 150 in2) with several hundred electrical connections. The DR we use

in our lab is a custom design, but it is also possible to buy pre-built DRs from

companies like Oxford and Janis.

6.3.2 Sample Mount

Even though it might seem trivial at first thought, the exact design of the sam-

ple mount used for connecting the sample inside the DR is actually quite crucial.

This is due to the fact that the states of the qubit correspond to electromagnetic

oscillations inside the circuit at GHz frequencies. Therefore, any box-modes that

the sample holder might have that resonate in this frequency range will couple

to the qubit and degrade its performance. Also, several microwave drive lines

converge in a 0.25” square die that need to be electrically isolated in a way that

each qubit can be addressed individually with minimal electrical crosstalk from

its neighbors. Another concern is the reaction of the box to internal and exter-

nal magnetic fields. A printed-circuit-board (PCB) design with a centered hole in

which the qubit chip is placed, for example, is not a useful design since the current

loop formed by the PCB interacts with the flux biases applied to the qubit and

leads to flux settling times in the many 10’s of microseconds. An optimal design
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seems to be a box machined out of solid aluminum with coaxial feeds for the mi-

crowave lines. This allows the entire box to become superconducting and shield

the sample from external magnetic fields. The box needs to support the chip

with minimal contact above a cavity to not form a ground-plane underneath the

chip that capacitively disperses microwaves across the chip. Nevertheless, the chip

needs to be very well grounded to the box, which is achieved by hundreds of closely

spaced wire bonds (see Section 6.3.3) that reduce the overall inductance in the

grounding. The microwave lines should maintain their 50 Ω impedance throughout

the box to minimize pulse distortion caused by reflections. This makes the sample

mount one of the few parts that we have not been able to just buy off the shelf.

But after the box was designed in a CAD program, it was very straightforward to

have it machined to sufficient accuracy by the university’s machine shop.

6.3.3 Wire Bonding

To be able to wire the qubit into the DR, the sub-millimeter traces of the qubit

chip need to be connected to macroscopic coaxial cables that can be managed by

hand. This can be done with a device called a “Wire Bonder”. Wire bonding

works by feeding a thin (∼ 1 mil) aluminum wire through a tip such that the tip

can push the wire down onto the surface that it is meant to adhere to. While

applying pressure to the wire, the tip is vibrated rapidly with ultrasonic waves.
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This melts the aluminum wire and bonds it to the surface. This allows the system

to run wires between pads without the use of solder. This technique makes it

possible to make contact to pads that are only a few hundred µm wide.

6.3.4 Dilution Refrigerator Wiring

The other non-off-the-shelf component needed is the wiring inside the DR (see

Figure 6.2). It consists of several different parts that have to be chosen/built to

manage heat loads, noise, and cryogenic properties.

Starting at the outside of the qubit box, the squid is connected immediately to

a ∼ 30 Ω shunting resistor. This resistor is needed to limit the voltage generated

in the squid when it switches to the voltage state as explained in Chapter 4.1.3.

If this resistor is omitted, the squid switching generates a large amount of quasi-

particle excitations in the qubit circuit which reduce qubit performance. The next

component along the squid line is a copper powder filter (Cu). This device consists

of a wire wound into a spiral that is sitting in a cavity filled with copper powder

and epoxy for thermal contact. Electrically, it functions as a very quiet low-pass

filter that absorbs most noise coming down the squid line. The ∼ 30 Ω resistor

and the copper powder filter are both mounted at the 25 mK stage of the DR to

prevent them from creating noise due to their temperature. Along the squid line,

at the 4 K stage of the DR is a resistor network that splits the line into a bias and
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Figure 6.2: Dilution Refrigerator Wiring.
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a readout line. These two lines are identical up to room temperature where the

readout line goes into the PreAmp card (see Section 6.3.6) and the bias line goes

through a 10:1 divider/low-pass filter to a FastBias card (see Section 6.3.5).

The flux bias line of the qubit is split right outside the sample box into an

RF and a DC part by a “Bias-T”. The RF part simply passes straight through

the bias-T into a 20 dB attenuator, while the DC part passes through a shunted

inductor coil to a copper powder filter. For noise reasons, these components

are again all located at 25 mK. Up the bias lines at 4 K, the RF part passes

through another 20 dB attenuator and then straight to room temperature. The

total attenuation of 40 dB is split between the two temperature stages to balance

the heat load on the refrigerator with the noise generated. The DC line passes

through an RC low pass filter network at 4 K and terminates at room temperature

at another FastBias card.

6.3.5 FastBias Card

All DC (< 100 kHz) biasing is done via custom designed digitally controlled

voltage sources we call the “FastBias” cards. They consist of low-noise 16-bit

digital-to-analog converters (DACs) that are controlled by an FPGA which re-

ceives binary commands serially through a fiber-optic cable. The FPGA is pro-

grammed to turn off the card’s clock source whenever it is not receiving or pro-
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cessing data. This protects the voltage output from the large amount of white

noise that digital electronics always create during switching. The fiber-optic link

was chosen to allow for electrical isolation of the DR from the control electronics.

For the same reason, the FastBias and PreAmp cards are powered by a battery

box rather than a power supply that plugs into a wall outlet.

6.3.6 PreAmp Card

The PreAmp Card is used to detect the switching of the readout squid by

monitoring it through the readout line. After optional low- and high-pass filtering,

it amplifies the incoming signal by 1, 000× and then compares it to a digitally

controlled cutoff voltage. The result of this comparison is made available via a

binary fiber-optic line. Just like the FastBias card, the DAC that sets the cutoff

voltage is controlled by an FPGA that turns off the card’s clock whenever it is

not needed.

6.3.7 Bias Box

Both the FastBias and the PreAmp card are designed to plug into a rack-mount

bias box. This box supplies the cards with power from batteries and provides two

analog and two digital buses that the cards can use to make signals available

for monitoring. This is useful for the early stages of the qubit bring procedure
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described in Chapter 8 (specifically the Squid I/V measurement).

6.3.8 GHz DACs

The fiber-optical signals are sent to the FastBias and received from the PreAmp

cards by another custom electronic device, the GHz DAC. It is a high-speed

FPGA-based signal generator that uses two 14-bit DACs running at 1 GHz to

synthesize waveforms with frequencies up to 500 MHz. These waveforms are used

to control the RF portion of the qubit bias. This is done by compositing one

waveform that is directly synthesized by a DAC and another that is the result

of using the DACs to modulate a carrier microwave signal with an I/Q mixer.

The first half of the waveform generates Z-rotations and the measure pulse. The

second half of the waveform is used to generate X/Y-rotations. The GHz DAC

boards are controlled by a computer via a 100 MBit Ethernet connection and can

synchronize to each other via a 10 MHz reference clock and a daisy-chain trigger.

The GHz DACs as well as the bias cards could easily be replaced by off-the-

shelf electronics, but the cost of the commercial equivalents would increase the

price of adding one more qubit channel by a factor of more than 20. This, and the

desire for exact control over the electronics’ performance, prompted us to design

these modules ourselves.
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6.3.9 Anritsu Microwave Source

The microwave signal that is modulated by the GHz DACs is generated by a

CW microwave generator manufactured by Anritsu. The device is phase-locked

to the GHz DAC board with a 10 MHz reference clock and is controlled by a

computer via GPIB.

6.3.10 Microwave Components

Several off-the-shelf microwave components are used in the setup to shape the

pulses. These consist of attenuators, amplifiers, filters, and I/Q mixers.

Attenuators are used to weaken the signal strength without distorting its en-

velope. They are frequently used in microwave setups since any component or

connector that is not matched exactly to 50 Ω reflects part of the microwaves

passing through it. These reflections need to be damped from the signal to not

distort the final output. An attenuator in line with the offending component can

help reduce this problem since the desired pulse passes through it only once, while

reflections pass through it three or more times and thus get attenuated more.

Amplifiers perform the exact opposite function of attenuators: They increase

a signal’s amplitude. For cost reasons, we have developed our own microwave

amplifier circuits, but off-the-shelf components perform just as well.
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Filters selectively attenuate certain frequency components of a microwave sig-

nal. Low-pass filters, for example, remove frequencies above a certain cutoff.

Components like I/Q mixers frequently generate higher harmonics (e.g. they turn

a 5 GHz signal into mostly 5 GHz with some 10 GHz, 15 GHz, etc.). These unde-

sired harmonics can be filtered out easily with off-the-shelf low-pass filters.

I/Q mixers split an incoming microwave signal into two halves (I and Q) of

equal amplitude. One of the halves (Q) is then phase-shifted by 90 ◦. Each half is

passed through a mixer, which multiplies its amplitude by another input signal.

Finally, the two halves are summed together to create the output. I/Q mixers can

be used to generate signals of arbitrary phase and amplitude. This can be seen

from simple trigonometrics. The input signal, sin ωt, is split into a sin ωt part

(I) and a cos ωt part (Q). These are then multiplied by an I and Q input signal

and summed, yielding: I sin ωt+Q cos ωt. This can be rewritten as A sin (ωt + δ)

where A2 = I2 + Q2 and tan δ = I
Q

.
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Chapter 7

Control Software – LabRAD

7.1 Motivation

The electronics that control the qubits are extremely complex and need to

adapt very quickly for a wide variety of continuously changing experiments. This

inadvertently leads to a highly involved software effort to provide a meaningful

user interface to the experiment. The usual approach in physics is to write one

monolithic program to provide the required control. This frequently leads to a

code base that becomes unmanageable very quickly, especially if multiple people

are working on the same program. The general lack of formal training and pro-

gramming experience in physics labs commonly leads to “quick hacks” rather than

a well-structured, maintainable code base. Due to the complexity of this experi-
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ment, the scalability requirements, and the structure of the group, this approach

is unacceptable here. I therefore decided that we needed to develop a custom

software platform that allows us to efficiently attack all aspects of the project.

7.2 Requirements

7.2.1 Scalability

One of the requirements for this software platform is dictated directly by the

DiVincenzo criteria. Just like the qubit design needs to be scalable, so do the

control electronics and the software setup. To make a software platform scalable,

two main issues need to be addressed.

First, the software needs to abstract all resources in such a way that adding

or replacing control devices or qubits does not require a rewrite of the entire

code base. In the long run it will be unacceptable to have to develop an entirely

new control program for every additional qubit that gets added to the setup.

The basic software needs to look the same, independent of whether it drives one,

two, three, or many qubits. Furthermore, it needs to be possible to implement

calibration routines at different levels that seamlessly correct for imperfections in

the underlying hardware. Higher level functions need to be able to talk to a virtual

device that can be treated as ideal. I will call this requirement the Abstraction
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Requirement.

Second, as the control effort grows, it is quite possible that a single computer

will not be able to provide or control enough resources for the entire setup. Even

though computers are rapidly becoming more powerful, their processing power,

memory capacity, and hard-disk space will always be finite. On top of that,

there are resources that have actually become less plentiful in modern computers

than they used to be. One example is the number of PCI slots that a modern

computer offers. This can become an issue, since a quantum computer consisting

of hundreds of qubits might require a large number of different control devices that

interface over a GPIB bus, for example. Each GPIB bus can only support about

30 devices, though. Thus, to support 100 microwave generators, the computer

needs to provide room for three or more GPIB interface cards. It is therefore very

likely that any large-scale quantum computing effort will eventually be controlled

by several different computers that perform partially complementary and partially

identical tasks. The software should be able to transparently support this. I will

call this requirement the Load-Sharing Requirement.

7.2.2 Maintainability

As the size of a software project grows, it becomes harder and harder to keep

it maintainable. If such a software project is undertaken by a group of self-taught
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people without any formal training in best practices, it becomes virtually impos-

sible to keep the code base clean. This is aggravated by the fact that physicists

often see software development as a necessary evil that stands in the way of them

focusing on the actual experiment. This leads to an overwhelming preference for

selfish quick fix solutions without any thought about potential implications for

the rest of the project. If, for example, a Matlab function needs to be able to

perform a new task that requires more information, a quick addition of new pa-

rameters to the function definition is often preferred over the creation of a new

copy of this function. If this function had been used by other members of the

group, this modification will most likely break their code, leading to unnecessary

debugging headaches. Since it will not be feasible to train everyone in the required

best practices, the underlying software platform should instead try to support the

“physicist coding style” in such a way that the resulting damage to the code base

can be minimized or at least locally contained. To achieve this, there needs to be a

very well defined way to break the monolithic project into small modules that can

be independently developed, tested, and maintained. I will call this requirement

the Modularity Requirement.
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7.2.3 Efficiency

To promote acceptance of this software platform by the group it needs to fulfill

another very important requirement: The platform needs to make the develop-

ment process noticeably easier right from the start. If the benefits of learning and

using the framework are not immediately obvious, or, worse yet, if coding within

the framework is perceived to be a hassle, the common disinterest in the future

maintainability of the code base will cause the platform to be rejected. Therefore,

the platform needs to be well integrated with the programming language(s) that

would otherwise be used for the software effort. It needs to seem lightweight and

natural. I will call this requirement the Integration Requirement.

Since it is usually not a priori clear exactly which experiments will need to be

done in the future, the software platform also has to support quick turn-around

development of new functionality. To achieve this, the platform needs to allow for

features to be added and extended in a seamless, backwards-compatible way. It

also needs to provide straightforward access to all functionality available. I will

call this requirement the Flexibility Requirement.
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7.2.4 Performance

Last, but certainly not least, the platform has to be able to deliver enough

performance to not limit the data rate beyond the physical limits imposed by the

experimental setup itself. Since the rate at which data can be collected directly

impacts the group’s turn-around time, any slowdown due to the software will

translate directly into an undesirable overall slowdown of the project’s rate of

progress. I will call this requirement the Performance Requirement.

7.3 Approach

To address these issues, Matthew Neeley and I developed a platform called

LabRAD. RAD is a programming acronym that stands for Rapid Application

Development and usually refers to visual programming environments like Del-

phi. LabRAD is based on a set of core ideas that help attack the above listed

requirements.

7.3.1 Modularity

The most important concept for the development of LabRAD was the Mod-

ularity Requirement. Being able to break the project up into small pieces not

only allows for more rapid progress thanks to parallel development of indepen-
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dent modules, but it also provides some valuable clues for attacking the other

requirements.

Most modern programming languages already have the ability to modularize

source-code, but many of them lack important features to make the provided

facilities sufficient in a physicist driven project. The biggest problem is that most

languages do not have a way to manage and index the available modules. In most

cases the modules are kept somewhere in the file system and are accessed based

on their location or filename. In a physics lab, this usually leads to one code

repository per group member. Everyone works in their own directories on their

own code using their own conventions. If code is to be shared, usually a copy

is made from one user to another, effectively branching the development of that

module as both users will now make edits to their copies of the code. Duplication

of effort is extremely common due to the difficulties involved in reusing code. This

is further aggravated by the general lack of documentation.

To alleviate these problems, LabRAD takes modularization from the source-

code level to the “executable” level. Every module in LabRAD is developed as

a completely independent program (or script) and the interaction with exter-

nal functionality happens at runtime. The different modules communicate via a

well defined protocol through a central dispatching agent, the LabRAD Manager.

When connecting, each module has to identify itself as either a Server Module
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or a Client Module. Client Modules only use the functionality provided by the

LabRAD system, while Server Modules also provide new functionality that other

Server and Client Modules can use. This distinction allows the LabRAD Manager

to maintain an index of all available Server Modules to quickly give an overview of

the available functionality. Each Server Module then registers so-called “Settings”

with the Manager that provide the interface to the Server’s functionality. Both

the Servers and their Settings have a human-readable name for easy identification

as well as a numeric ID that allows for reduced traffic and quicker Request rout-

ing. When registering a Setting with the Manager, the Server also has to provide

a help text and specifications about which types of data this Setting requires and

returns. This information is made available by the Manager to provide a one-stop

source for basic documentation of all features of the system.

Since Settings are addressed by name and can register multiple acceptable

data types it is easily possible to extend the collection of Settings or the func-

tionality of individual Settings provided by a Server without breaking backwards

compatibility. Most modern programming languages can achieve this same result

through things like overloading of functions or polymorphic SubVIs, but this abil-

ity is usually seen as a fringe feature and does not get much attention. Therefore,

casual programmers like physicists usually either don’t know about it or don’t feel

comfortable using it.
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Another benefit of this hard separation of Modules are the “social” implica-

tions. Since Modules are accessed through the abstract interface provided by

LabRAD, it is possible to use them without ever having to look at their source-

code. Thus, Modules can and will be effectively treated as black boxes, which has

two main advantages.

First, since it is never necessary to look at a Module’s source-code, the percep-

tion of the Module as a magical whole remains, quenching the desire for another

user to ever mess with it. Just like most people would never consider editing a

program like Open Office despite the fact that the source code is available. Peo-

ple either find ways around missing features or request their implementation from

the original developers, rather than trying to add new features themselves, which

always bears the risk of breaking existing code.

Secondly, the hard separation makes it easy to declare a specific person re-

sponsible for the maintenance of the Module. This way, any code changes are

made by the person that has the best overview of potential implications for both

reliability and performance.

Last, but not least, the modular nature of LabRAD addresses the Abstraction

Requirement very effectively. A LabRAD system can be layered just like the HALs

(Hardware Abstraction Layers) used in operating systems. For example, there can

be one Module each to provide access to the lab’s different GPIB buses. A single
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second Module talks to all these and uses “*IDN?”-queries to create a central

list of all available GPIB devices by manufacturer and model number. A third

group of modules provides access to the higher-level functionality of a specific

type of device by translating a “Set Frequency to 6.5 GHz” request to an “Output

OF6500MHz to device 18 on GPIB bus X” request, and so forth. This translation

can even include calibration steps that transparently correct for the underlying

hardware’s imperfections, allowing the developer of higher level functionality to

assume the hardware to be ideal.

This approach makes it possible to build “driver stacks” inside the LabRAD

system that mimic the ones used in operating systems like Windows. These driver

Modules, if written correctly, immediately handle as many devices of the same type

as are available, making the system trivially scalable, just like it takes no extra

effort on the software side to add more than one USB flash drive to a computer.

It is even possible to replace an instrument with an entirely different model

that provides equivalent functionality. All one has to do is to make sure that the

interface presented by the managing Server Module provides the same Settings.

Just like most Windows applications don’t need to worry about the exact type of

video card that the system uses.

A hard separation of Modules is also helpful for the development of complex

systems. It makes it possible to attack the problem in small chunks (and from
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different angles simultaneously, if desired) making the overall effort a lot more

manageable.

Due to the dynamic nature of the experimental setups typically found in

physics labs and for debuggability, LabRAD employs a flat Module hierarchy,

meaning that all Modules sit at the same level, giving each Module access to all

other Modules. This allows Client Modules to tap into the system at any point

in an abstraction stack to gain as much direct access to the hardware as needed.

This way, every user can choose to bypass any Modules that are too restrictive

or unstable. It also makes the system a lot easier to debug as every layer in the

abstraction stack can be tested individually. This approach is different from many

operating system models where only special facilities (like DirectX) allow for lower

level module access.

7.3.2 Network Distribution

The next decision to make was how to interface the Modules with each other.

There are several different options, the two most relevant of which are using an

IPC (Inter Process Communication) mechanism or using a standard TCP/IP net-

work connection, like the ones used to connect a local browser to web services. IPC

allows different applications on one computer to exchange data, while a network

connection allows applications on the same (through loopback) or on remote com-
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puters to talk to each other. Usually IPC delivers quite a bit better performance,

but a TCP network connection has two major advantages that far outweigh the

performance impact in most cases.

First, a TCP connection can transparently support different Modules running

on different computers that are attached to the Internet from anywhere in the

world if needed. This allows LabRAD to be trivially distributed to inherently

address the Load-Sharing Requirement. It also provides other conveniences like

fast remote access.

Second, every major programming language has native support for TCP/IP

connections available. This makes it possible to provide an interface to the

LabRAD system from languages as diverse as Python, Delphi, LabVIEW, Java,

Matlab, etc.

The performance impact from using TCP over IPC is reduced significantly by

the immediate availability of fast networking infrastructure up to 10 GBit/s. This

performance is likely to increase even further in the future, making the choice very

acceptable. In fact, for the current requirements in our lab, a dedicated 100 MBit

connection is more than enough to not cause a noticeable performance impact,

so the dedicated 1 GBit LAN that we are currently using will be able to deliver

sufficient performance for quite some time. Furthermore, network latencies and

bandwidth limitations can often be hidden entirely by things like pipelining.
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7.3.3 Cross-Language and Cross-Platform

Since every programming language has its unique strengths but certainly also

its weaknesses, it is a major advantage to be able to write different Modules in

different languages. For example, Modules that require the best possible perfor-

mance should be written in a compiled language like Delphi or C++. Modules that

rely on a comprehensive user interface can easily be designed in LabVIEW. And

Modules that script complex processes can be quickly implemented in Python.

The data-structures that LabRAD supports were specifically designed to make

implementation in different languages as natural as possible and thus it is pos-

sible to provide very seamless interfaces to LabRAD for almost all programming

languages. In this way, LabRAD addresses the Flexibility and the Integration

Requirement in one shot.

Furthermore, it is possible to design LabRAD Modules for different operating

systems that can all communicate via the OS agnostic network protocol. This

allows for further flexibility in the choice of resources used for the project. For

example, employing computers running a free operating system like Linux can

slightly reduce the overall cost of the project.
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7.3.4 Performance

Addressing the Performance Requirement is a more pervasive task that spans

not only the general design criteria, but also every single line of implementing code.

It involves decisions like the exact choice of programming language for each mod-

ule, the threading structure for multi-threaded Modules (specifically the LabRAD

Manager), the binary layout of the protocol itself that influences parseability and

the amount of traffic, etc. It also dictates in part the way in which the project

needs to be broken up into Modules to allow for efficient implementation of con-

cepts like pipelining and parallel processing.

7.3.5 Open-Source

Due to its very general design, only a few Modules in our LabRAD Setup are

specific to the experiment at hand. A large fraction of the system can be useful

in many other labs that are facing the same issues, like code base maintainability,

remote access, etc. We therefore decided to share the project with the world and

publish it as open source software under the GPL license on SourceForge.net.

This not only gives us access to the software maintenance tools that SourceForge

provides, but also gives other developers from around the world a chance to join

the project and share Modules with us which they developed but may become
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useful to us in the future. Beyond that, it forces us to do a good job documenting

the project which will be useful for future members joining the group.

7.4 Components

The LabRAD platform consists of three fundamental components on which

every experiment-specific implementation is built: The LabRAD Protocol defines

the exact binary layout of the network packets that are exchanged between the

different components. The LabRAD Manager routes packets between different

Modules and provides some basic system features. The LabRAD APIs provide

access to the LabRAD system from different programming languages.

7.4.1 LabRAD Protocol

The LabRAD Protocol is designed for both speed and flexibility. Data is

encapsulated in Packets that consist of routing and context information followed

by an arbitrary number of Records that each wrap up one Request or Response

for a Server’s Setting. The ability to send multiple Requests in one Packet can

reduce network traffic significantly and can be used for other purposes like defining

atomic operations, etc.

LabRAD uses binary encoding of the data to reduce overhead. The Protocol
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is designed such that the LabRAD Manager can auto-detect whether a Client or

Server Module uses a little endian or a big endian data format (MSB versus LSB

first). This significantly simplifies Module implementations in different languages

and across different platforms.

All variable length components of the payload are prefixed by a length spec-

ification that allows the decoding algorithm to predict the amount of memory

needed to hold the parsed data. This greatly reduces the number of costly mem-

ory reallocation operations during the parsing. Furthermore, the Packet structure

is such that the data stream can be parsed in three independent steps, breaking it

first into Packets, then into Records, and finally into data. This again facilitates

efficient implementation and memory management by allowing for things like lazy

parsing.

The data types that LabRAD uses are modeled closely after the ones supported

by LabVIEW since it is the most restrictive language we use in the lab. In fact,

the native LabVIEW “Flatten to String” and “Unflatten from String” functions

are sufficient to implement the LabRAD protocol. Just like in LabVIEW, the type

of the binary data is described by a Type Tag, except the LabRAD Type Tags are

strings that are designed to be human readable. LabRAD supports the basic data

types listed in Table 7.1 and the composite data types listed in Table 7.2. Type

Tags can be annotated with unit information or comments using the conventions
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Table 7.1: Basic LabRAD Types

Type Tag Name Description Example Data

b Boolean Flag True
i Integer Signed whole number -1, 500, 000, 000
w Word Unsigned whole number 3, 750, 000, 000
s String Text “Hello World”
v Value Real number -1.637× 1023

c Complex Complex number 3.2 + 1.6i
t Timestamp Time and date 1/15/2006 12:53pm
? Any Placeholder for any type

Empty Unspecified array type

Table 7.2: Composite LabRAD Types

Type Tag Name Description Example Type Tag and Data

*? or *n? Array n-D list of data *s: “Tom”, “Tim”, “Jim”
(. . . ) Cluster Collection of data (sw): “Tim”, 27

E or E? Error Error message E: 15, “Can’t divide by 0!”
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Table 7.3: LabRAD Type Annotations

Type Tag Name Description Example Type Tag

[. . . ] Units Units of a Value or Complex v[GHz]
{. . . } Comment Type tag annotation s{Name}
:. . . End Marks end of type tag b: Turn on(T)/off(F)

Table 7.4: LabRAD Data Flattening Rules

Tag Length[Bytes] Description

b 1 False: 0x00, True: anything else
i 4 Signed 32bit Value
w 4 Unsigned 32bit Value
s 4 + len(s) Flattened i giving length followed by raw data
v 8 64-bit double precision value
c 8 + 8 Flattened (vv) for real and complex parts
t 8 + 8 Signed 64-bit Integer giving seconds since

1/1/1904 12:00am UTC followed by signed
64-bit Integer giving fractions of seconds

0 Nothing
(. . . ) 0 + len(. . .) Flattened cluster elements concatenated in order
*? 4 + len(?) Flattened i giving number of entries followed by

flattened elements concatenated in order
*n? 4× n + len(?) n Flattened i’s giving number of entries along

each dimension, followed by flattened elements
concatenated in order

E 4 + 4 + len(txt) Flattened (is)
E? len(E) + len(?) Flattened (is?)
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Table 7.5: LabRAD Packet Structure ((ww)iws)

Field Type Tag Description

Context (ww) Context in which the Packet is to be interpreted
Request i Packet’s Request ID:

> 0: Request
= 0: Message
< 0: Reply

Src/Tgt w Incoming packet: Source ID
Outgoing packet: Target ID

Records s Flattened Records concatenated in order

Table 7.6: LabRAD Record Structure (wss)

Field Type Tag Description

Setting w Setting ID that the data is meant for / came from
Type Tag s Type Tag of data contained in this record
Data s Flattened data
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listed in Table 7.3.

For transmission over the network, the data to be sent is encapsulated into

Records and Packets. The Packet and Record format can be described using

LabRAD Type Tags and is described in Table 7.5 and Table 7.6, respectively.

The Packets are flattened to binary using conventions that are compatible with

LabVIEW as explained in Table 7.4.

As an example, a Packet for Target 1 (the Manager) in Context (0, 8) with

Request ID 5 containing one Record for Setting 3 with String Data “Test Server”

would be flattened to either (Big Endian):

00 00 00 00 00 00 00 08 00 00 00 05 00 00 00 01 00 00 00 1C 00 00 00 03

00 00 00 01 73 00 00 00 0F 00 00 00 0B 54 65 73 74 20 53 65 72 76 65 72

or (Little Endian):

00 00 00 00 08 00 00 00 05 00 00 00 01 00 00 00 1C 00 00 00 03 00 00 00

01 00 00 00 73 0F 00 00 00 0B 00 00 00 54 65 73 74 20 53 65 72 76 65 72

Notice that “Test Server” is flattened by prepending the length (00 00 00 0B)

to form the data content, which is in turn prepended by a length again (00 00 00

0F) when it is inserted into the Record.

142



7.4.2 LabRAD Manager

The LabRAD Manager acts as the central routing agent for all LabRAD traffic.

This makes it a potential bottleneck for the entire system and thus extra care had

to be employed when designing it to ensure maximal performance. The LabRAD

Manager was written in Delphi, a version of Object Pascal that provides RAD

(Rapid Application Development) capabilities through visual designers that assist

in the design of the user interface. Delphi has not received much attention in

the US market, but in Europe it is highly valued as a very efficient language

with a compiler that produces code that rivals any modern C++ compiler’s in

execution performance. It provides the usual high-performance features like code

optimization, data alignment, inlined Assembly, etc.

Apart from optimized memory management, one major point of concern was

a well-designed thread layout for the application. A first approach that dedicated

one thread to each network connection had to be abandoned due to the high cost of

Windows context switching (switching between threads). Making the application

dual-threaded instead yielded an order of magnitude performance improvement.

The first thread, the network thread, is dedicated to routing all traffic and handling

Requests to the Manager and the Registry Server Module. It uses direct access

to the event-based, non-blocking methods provided by the Windows Sockets 2
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Architecture to manage network connections with maximum performance. The

second thread, the GUI thread, handles the user interface. It keeps the list of

active connections current and makes sure the application stays responsive to

user interaction. These two threads interact “rarely” and in a way that minimizes

impact on the network thread.

The LabRAD Manager provides several features, the most important of which

is Packet routing between Server and Client Modules. In the process of routing,

the Manager ensures that the data contained in a Request Packet matches the

types registered by the Server as acceptable. During this check, the Manager also

converts the units of any Values or Complex Values that are sent to a Setting

that specifies units in the accepted types. For this, the LabRAD Manager parses

composite unit strings into their base components and respective fractional ex-

ponents. For example “m/s∧2” will get parsed into “m” with exponent 1 and

“s” with exponent -2. This is done for the source unit string and the target unit

string. To find the conversion factor the Manager divides the source units by the

target units by subtracting the exponents of all base components in the target

units from the exponents in the source units. All base components that end up

with exponent 0 are then dropped. Now, for the first time, the Manager tries to

identify the base components and to convert them to SI units. This allows the

Manager to handle unsupported units as long as they drop out during the division
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process. The SI conversion factors then get raised to their corresponding expo-

nents and multiplied together to yield the final conversion factor. The resulting

quantity has to be unit-less for the conversion to succeed.

The LabRAD Manager implements a minimal set of security features. They

consist of an IP white-list that only allows connections to the Manager origi-

nating from certain computers as well as an MD5-hash based challenge-response

authentication mechanism. Currently there are no facilities for restricting access

to individual components of the LabRAD system. Once a Module is authenti-

cated, it can call any Setting on any Server with any of the accepted data types.

Thus, it is strongly recommended to limit access to the system to only trusted

agents employing additional techniques like secure tunnels through firewalls. In

our case, the LabRAD system runs on a dedicated LAN with no direct connection

to the Internet. A Linux computer provides outside access to this network via

authenticated SSH tunneling. It is possible, though, to implement access control

on a per-Module basis.

The LabRAD Manager is written such that any errors or exceptions that

happen during the processing of incoming or outgoing data get handled gracefully

either by an error message sent to the offending party, or, for more severe errors,

by the termination of only the offending network connection and an entry in the

Manager’s error log. This should allow for maximum uptime of the LabRAD

145



Manager. In fact, in our lab, the only time we ever have to restart the Manager

is if we add new features and in the process of debugging these. We frequently

run the Manager without problems for many months at a time.

7.4.3 LabRAD APIs

The LabRAD APIs (Application Programming Interfaces) provide access to

the LabRAD system from different programming languages and different plat-

forms. Currently these APIs include full support for Delphi and Python as well

as basic support for LabVIEW, Java, and Matlab (via Java). If needed, any other

language and platform that provides support for TCP/IP network connections

can be added.

Since the LabRAD API provides the interface to LabRAD for the Module de-

velopers, it is important that they are written with usability in mind to effectively

address the Integration Requirement. Due to the differences in data types, this

can mean very different things for different programming languages.

The feature that probably requires the most thought is the choice of interface

for handling the different LabRAD data types. This choice is highly dependent on

the type of programming language that is to be supported. The difficulty primarily

lies in LabRAD’s support for cascadable heterogeneous composite data structures

(Clusters), which lead to infinitely many valid data types. In dynamically typed
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languages like Python it should be possible to represent LabRAD data seamlessly

using its native counterpart (if available). In statically typed languages like Delphi

and Java on the other hand, an interface to a special data object needs to be

designed that makes the access to the contained data as painless as possible while

still providing good performance. Dynamic data types like Variants can sometimes

be used here to make implementation more natural. Thanks to Variants, for

example, it is possible in LabVIEW to simply pass any supported native data

structure directly into the Packet assembly functions. Unfortunately, converting

received Packets back into LabVIEW data is much less elegant as it requires

explicit type casting.

Since the LabRAD Protocol specifies target Servers and Settings by ID rather

than name, all APIs should implement seamless, preferably cached, lookup of

the required IDs at runtime. This not only makes the code more readable and

thus easier to troubleshoot, but also facilitates backwards compatible changes to

Servers. To make caching easier, the LabRAD Manager preserves a Server’s ID

across reconnects and provides mechanisms to announce the connection and dis-

connection of Server Modules. In addition, IDs can be looked up via the “Lookup”

Setting (ID 3) of the LabRAD Manager (ID 1).

The LabRAD APIs should also seamlessly handle Request IDs. To allow for

pipelining, it is possible for a Client to send multiple Requests to a Server before
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waiting for their completion. The Client then needs to be able to sort through

the Replies to re-associate them with their corresponding Requests. This is done

by tagging every outgoing Request with a unique, positive Request ID. When a

Server handles the Request, it tags the Reply with the negative of the Request

ID (Request 5 yields Reply -5). It should always be possible for the API to take

care of the entire management of these Request IDs. Therefore, if an API is

written well, the Module developer should not ever have to come in contact with

Request IDs. For the development of Server Modules, the API can even hide the

entire Packet structure of incoming Requests by always passing the Requests to

the Server on a Record by Record basis. This way, the Server developer does not

need to be concerned at all about whether, for example, two Request arrived as

two Packets with one Record each or as one Packet with two Records. By being

in sole charge of the construction of the Reply Packet, the API can then enforce

the correct Packet structure to ensure compliance with the LabRAD protocol.

The LabRAD APIs should also assist Server development as much as possible

with the management of Contexts. Contexts are intended to provide a method

for Server Modules to maintain data that persists across Requests. For example,

a Client might select a device it would like to use. To reduce redundant traffic,

the Server should be able to remember this selection as well as any relevant device

settings for future Requests. For this, Contexts provide an index into a memory
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structure kept in the Server that holds the collection of all relevant configuration

data.

As far as the LabRAD Protocol is concerned, a Context is nothing more than

a Cluster of two Words (ww). When forwarding Packets, the LabRAD Manager

makes the following alteration to a Packet’s Context before sending it on: For

incoming Packets where the first Context Word is 0, the LabRAD Manager sets

it to the ID of the source Module. For outgoing Packets where the first Context

Word is equal to the ID of the target Module, the Manager sets it to 0. Clients

will usually use 0 as the first Context Word. Servers will then receive Requests

“in a Context” where the first Word is equal to the ID of the Client that sent

the Request. If a Server needs to make secondary Requests to fulfill the original

Request, it can choose whether to make these in its own Context (first Word

equals 0) or in the Context of the original Request. The latter can make sense if

this Server simply assists Clients in the communication with an underlying Server.

The Client, for example, selects the device with the underlying Server and does

some initial setup and then calls the assistant Server to complete a more involved

part of the device setup.

The second Word of a Context can be chosen by the Client at will and allows

this Client to have multiple simultaneous Contexts open with any given Server.

Apart from being generally useful, this feature is indispensable for the imple-
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mentation of pipelining and certain types of parallel processing. The LabRAD

Manager keeps track of all Contexts that all Servers have ever seen and, when a

Client disconnects, it sends a Context Expiration Message to the relevant Servers

to allow them to free up the memory that stores the data associated with the

Context. Clients can also ask the Manager to send Context Expirations at any

other time to make sure a Context can be safely reused without having to worry

about a prior state. To allow for this assumption, all Context aware Servers (i.e.

the ones that preserve state across Requests using Contexts) need to honor these

Context Expirations.

To assist with the development of Server Modules, a LabRAD API should

provide at least basic Context management. In statically typed languages, this

can be as simplistic as maintaining a single untyped pointer for each Context

that the developer needs to manage by providing functions to create and free

the required data-structures. In dynamically typed languages like Python this

can be as comprehensive as automatically providing a dedicated dictionary (or

hash-table) for each Context that can contain all relevant data.

Contexts are also used to control the flow of Request handling. A Server

must handle all Requests within a Context in the exact order in which they were

received. To limit potential problems, this order should be enforced directly by the

API. Requests in different Contexts can be interleaved to handle them in parallel.
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This is especially useful if secondary Requests are used, since there is no reason for

the Server to idle while waiting for the completion of these secondary Requests.

All Servers that take part in pipelined Requests have to support multi-tasking at

least while waiting for secondary Requests, otherwise they will implicitly serialize

the Requests in the pipeline, which renders it ineffective. The API should provide

multi-tasking capability as seamlessly as possible. Again, this can mean very

different things for different programming languages. In event-based languages

like Delphi, an event can be provided that signals the arrival of a Request. The

event handler can then choose to complete the Request in one shot or to return a

flag that tells the API that the Request is still incomplete. The API then needs

to put all further Requests in this Context on hold, but can already announce the

arrival of Requests in different Contexts. Once a Request finally completes, the

Server calls an API function that handles the Reply and reactivates the Context

for processing. Another approach, in languages that support it, is the use of

co-routines or generators that allow a Request handler function to pause in the

middle of its execution and wait for a specified event to cause its continuation.

For performance reasons, it is NOT advised to handle each Request in a separate

thread, since the overhead of thread creation is usually immense. If multiple

threads are unavoidable, a thread-pool should be used to which the Requests are

dispatched.
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Since the API guarantees that all Requests in one Context are correctly serial-

ized, the Request handler function of a Server Module can always assume exclusive

access to the associated Context data. This makes it extremely straightforward to

write Servers that behave as if they were multi-threaded without having to worry

about the headaches associated with memory access race conditions.

7.5 Our Setup

Taking a closer look at the LabRAD setup used for this experiment will help

shed more light on the some of the concepts explained above. The setup consists

of several layers of hardware abstraction and makes use of pipelining, parallel pro-

cessing, and load-sharing to achieve essentially experiment-limited performance.

The full LabRAD setup handles almost everything in the lab including the

monitoring and control of the dilution and adiabatic demagnetization refrigera-

tors. But for the purposes here, a look at only the parts directly relevant to the

qubit operation shall suffice since the employed concepts are mostly the same.

7.5.1 Overview

As detailed in the previous chapters, the two qubits each use two “DC” lines

for the flux and squid bias, one high-speed line for measure pulses and Z-rotations,
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Figure 7.1: Control Layout: The control software layout mimics the hardware
layout as much as possible.
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one microwave line for X/Y-rotations, and one readout line to detect the switch-

ing of the squid. These lines get driven by several GHz DAC boards and one

microwave source. The GHz DAC boards connect to a computer via ethernet and

the microwave source uses a GPIB connection. Furthermore, the squid readout

pre-amplifier gets configured via a serial link.

These three hardware interfaces – GPIB, ethernet, and RS-232 – are exposed

to the LabRAD system via one dedicated Server Module each – the GPIB Server,

the Direct Ethernet Server, and the Serial Server. Above these sits a set of device

Servers that each implement the communication protocol of one device type to

provide higher level functions like “Set the output of the microwave source to 7

GHz at 2.7dBm”.

The next level in the stack – the Qubit and DAC Calibration Servers – ab-

stract the exact hardware configuration by allowing the user to, for example, load

a sequence of voltages into the “Squid Bias” channel on “Qubit 2” (rather than

“FO 1” on “GHz DAC 17”). This data is then corrected for imperfections in

the analog electronics chain and automatically sent to the right GHz DAC board.

Up to this level the software does not impose any limits on the hardware control

beyond preventing erroneous configurations. Until here, starting from the hard-

ware/software interface, the first layers in the software abstraction stack closely

mimic the first layers in the hardware stack.
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The next layers correspond to the “applications” (i.e. the experiments) that

are to be run on the quantum computer. For now, at the base of this stack is a

collection of Experiment Servers that provide functions to take one data point of

a specific experiment (Rabi, T1, Bell Violation, etc.). These Servers are called by

the “Sweep Server” which varies one or more of the experimental parameters to

generate n-D datasets. At the highest level in the stack sit several Client Modules

that allow the user to edit parameters, run sweeps, and view the resulting data

sets. Let’s go over the different Modules in detail starting from the Client end.

7.5.2 DC Rack Controller

Starting with the right-most branch of the diagram in Figure 7.1, the DC

Rack Controller consists of a LabVIEW VI that provides an interface to the user

to set up the DC bias rack, which houses the FastBias and PreAmp cards. Apart

from configuring diagnostic outputs, the most important feature is the ability to

control the cutoff voltage that the PreAmp uses to detect the squid’s switch to

the voltage state. The only function of the DC Rack Controller is to translate

user interactions with switches and dials on the front panel to calls to the DC

Rack Server that performs the actual updates.
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7.5.3 DC Rack Server

The DC Rack Server implements the binary protocol used by the different

bias cards to provide access to all features offered by the cards. It allows other

Modules in the LabRAD system to select active cards and change their settings,

e.g. initialize the reference DAC on a PreAmp-Card, control the behavior of the

front-panel LEDs, set the monitor channels, etc. One instance of this Server

manages all DC bias racks that are accessible from the LabRAD system via Serial

Servers that provide the actual hardware link.

7.5.4 Serial Server

The Serial Server provides direct access to all COM-ports of the computer

that it is running on. It can list the available ports, open a port by name, select

connection options like the baud-rate, byte-size, and parity, and control the state

of the RTS and DTR lines. One copy of this Server is run on every computer that

needs to share access to its ports. To give each of these Server Modules a unique

name, “Serial Server” is prefixed with the name of the computer that it is running

on.
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7.5.5 Grapher

At the far left of the connection diagram (Figure 7.1), the Grapher Client

Module gives the user a way to view datasets as they are taken or to browse

existing datasets. It offers 1D and 2D plotting capability as well as zooming and

basic curve fitting (exponentials and parabolas). The Grapher also provides access

to meta-data that is stored with a dataset as well as a mechanism for annotating

and discussing datasets that resembles an instant messaging chat session. Multiple

copies of the Grapher can be run by different users to allow for live discussion of

incoming data among collaborators located anywhere in the world. The Grapher

accesses the data and meta-information of different dataset via calls to the “Data

Vault” Server Module.

Being able to provide powerful data plotting and analysis tools as a separate

module rather than as a part of each data taking script significantly simplifies the

development of these scripts and thus improves experimental turn-around times.

Separating the plotting from the data acquisition and processing also allows for

higher data rates as the usually CPU intensive plotting does not take resources

away from the data taking. In fact, even over very slow network connections, the

same data rates can be achieved in remote data taking sessions as from inside the

lab. This is made possible by being able to run the bandwidth intense parts of the
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data taking on the lab servers and only having the very low bandwidth control

panel running on the remote machine. The Grapher will then display points as

quickly as it can retrieve them from the Data Vault, potentially reducing the

refresh rate of the plots, but usually not impacting the overall time it takes for an

experiment to complete.

7.5.6 Data Vault

The Data Vault Server Module acts as the central data storage location for

all datasets taken with the LabRAD system. Datasets are stored in a directory

structure and accessed by name, much like a conventional computer file system.

It provides the usual created/last-accessed/last-modified time stamps as well as

other named meta-data that can be stored alongside the data. The data itself

consists of a 2D table of LabRAD “Values” in which each row corresponds to

one data point. The columns contain first the values along the independent axes

followed by the values along the dependent axes. The Data Vault also associates

a message log with each dataset to provide the ability to annotate the data later

using, for example, the Grapher’s chat session. To allow for the Grapher to

automatically open datasets and to keep directory listings updated, the Data Vault

can send notification messages to other Modules to announce the availability of

new data, etc. The data itself is stored simply as flat files in folders on the local
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hard drive.

Having a central authority manage the data files has several advantages. For

one, it prevents access conflicts between different programs trying to open the

same data files at the same time. It also makes change notifications much more

straightforward than it would be for independent file access. Last but not least,

it makes the data available to anyone who is connected to the LabRAD system,

even if this connection comes from a remote computer behind a firewall, a scenario

that makes it somewhat tricky to make the actual hard drive containing the data

files available on the remote machine.

7.5.7 Registry Editor / Server

Just like the Data Vault provides a central location for data storage, the Reg-

istry Server provides a central location to store any relevant configuration data.

The configuration data is organized as named keys in a directory structure. The

keys can hold data of any possible LabRAD Data Type. When reading a key,

a Module can specify the desired type of the returned key data. In addition to

type-checking, this allows for on-the-fly unit conversion of any stored (Complex)

Values.

To guarantee availability and best possible performance, the Registry is inte-

grated directly into the LabRAD Manager. Combined with in-memory caching of
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keys and the ability to set Context-local override values this allows the Registry

to significantly simplify the development of complex experimental setups. This is

demonstrated by the interaction between the Sweep Server and the Experiment

Servers as detailed in Section 7.5.8.

Just like the Data Vault, the Registry Server stores its data as files in directo-

ries on the local hard drive.

The Registry Editor Client Module provides a convenient interface to the end

user for changing, adding, deleting, and copying keys in the Registry.

7.5.8 Sweep Client / Server

The Sweep Server uses the functionality provided by the Registry to greatly

simplify the implementation of new experiments. It allows the user to specify

keys in the Registry whose values get swept in an n-D pattern. For each step

in the sweep, the Sweep Server calls a user-selectable “Run”-Setting on another

Server. This Setting’s responsibility is to run the experiment once to take one

data point. All configuration data needed to run the experiment needs to be

read from the Registry. Using value-overrides in the Registry, the Sweep Server

can then use the “Run”-Setting to take data for different experimental conditions

automatically without knowing what the actual values in the Registry do. The

Sweep Server expects the “Run”-Setting to return an array of dependent values,
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which it prepends with the current sweep position (the independent values) and

forwards to the Data Vault.

The Sweep Server will automatically call the “Run”-Setting multiple times in

different Contexts in parallel. This will cause the execution of the data taking to

be pipelined, as actions in different Contexts are automatically executed in parallel

whenever possible. In fact, this shields the developer of the “Run”-Setting almost

entirely from having to worry about pipelining. All that has to be guaranteed

is that the code passes control back to the API whenever it is waiting for other

Servers to handle Requests. Since this should be done in any case, though, it does

not really add any new requirements. Furthermore, the APIs, if written correctly,

will make it very easy to write code in this way.

The Sweep Client provides an interface to the Sweep Server that allows the user

to quickly define sweeps and execute them. Before running a sweep, it initializes

the dataset with the Data Vault and sets up the Registry Server and Qubit Server.

The Qubit Server makes the Sweep Client specific to our experimental setup while

the Sweep Server is completely general and can be used in other LabRAD Setups as

well. The Sweep Client allows the user to store sweep definitions in the Registry

and run them seamlessly on different qubit configurations. It also provides a

progress-bar with an estimate of the remaining time until the sweep completes.

This can be extremely useful for preparing long sweeps that need to finish within

161



a certain time.

7.5.9 Optimizer Client / Server

Along with the Sweep Client / Server that performs n-dimensional sweeps,

we have also developed an Optimizer Client and Server that uses the exact same

execution model to perform n-dimensional optimization of a desired experimental

quantity using several different optimization algorithms: Nelder Mead Simplex,

Particle Swarm, or SPSA. The calling convention of the “Run”-Setting that the

Optimizer uses is identical to that of the Sweeper, such that any setting that can be

used with the Sweeper can be used without modification by the Optimizer. The

only requirement that the Optimizer adds is that the settings return the value

(either by itself or as part of an array) that is to be optimized. The optimization

can either be a minimization, maximization, or an attempt to get it as close as

possible to a given number. The Optimizer runs until it is manually stopped and

sends data to the Data Vault that shows its progress.

7.5.10 Experiment Servers

Below the Sweep/Optimizer Server sits a collection of Servers that provide

different “Run”-Settings for the different types of experiments needed. Apart

from hardware changes, these Servers should be the only part of the LabRAD
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system that needs to be changed in order to implement new experiments. Since

all that these Servers need to do is to provide a Setting that takes a single data

point with the parameters provided by the Registry, these Servers are usually

extremely simple and concise. This allows for very high turn-around for new

experiments. This is further assisted by the fact that these Servers do not even

need to know what parameters in the Registry are being swept for a given data run.

This commonly allows the Settings to be used for a variety of different types of

experiments. As an example, consider a Setting that runs a sequence that consists

of only a single microwave pulse on each qubit followed by a delayed measurement.

Such a Setting can be used to measure Rabi oscillations as a function of pulse

power and pulse length, T1 decays as a function of the delay of the measurement

pulse, multi-qubit swap operations, and even step-edges and s-curves by setting

the pulse amplitude to 0 (these experiments are explained in Chapter 8).

When running an experiment, the Sweep Client selects an experimental setup

with the Qubit Server that defines the list of qubits that are to be used in the

experiment as well as the hardware channels that are needed to control them. The

Qubit Server provides a Setting (“Experiment Involved Qubits”) that allows the

Experiment Servers to request the list of qubits that are part of the current setup.

This way, the Experiment Servers can automatically loop over all involved qubits

and run the desired sequence on all qubits with the different sequence parame-
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ters read from different sub-directories in the Registry. The “Run”-Settings can

therefore be written in a way that is independent of the number of qubits that

are being used, providing for maximum scalability of the experiment.

7.5.11 Qubit Bias Server

To assist the Experiment Servers in preparing and running an experiment, the

Qubit Bias Server provides Settings to set up common parts of the experimental

sequences with the Qubit Server. Specifically, it provides a Setting that uses

parameters stored in the Registry to generate the flux bias sequence necessary to

reset each of the involved qubits and set them to their respective operating biases.

Another Setting sets the flux biases to the respective readout bias and executes

the necessary squid ramps in the correct order to read out all qubits. Using these

two Settings, the only thing that a typical Experiment Server has to do is to

configure the high-speed microwave, Z-, and measure pulses and to analyze the

resulting timing data in the appropriate way.

7.5.12 Qubit Server

Both the Experiment Servers and the Qubit Bias Server perform their functions

via calls to the Qubit Server. This Server maintains a list of all qubits with their

respective hardware hook-ups. For example, it knows which GHz DAC boards
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are involved in the experiment and which qubits their different control lines are

connected to. This allows users to simply say “Output a top-hat pulse of this

amplitude and length on the ‘Measurement’ line of ‘Qubit 4’ ” rather than having

to generate the required memory content and sending it to “GHz DAC Board 17”.

The way in which the Qubit Server provides access to its features allows it

to automatically keep the sequences that are running on the different GHz DACs

aligned in time to ensure correct execution. It also makes sure that a microwave

source that is shared between different qubits is not configured twice with con-

flicting settings.

But the most powerful feature that it provides is to abstract away the sig-

nal deconvolution that needs to be applied to all analog channels to correct for

different imperfections in the electronics chain. Modules that talk to the Qubit

Server can simply assume that the hardware is ideal and a Gaussian pulse that is

to be output on a specific IQ Mixer Channel is automatically corrected to yield

the most optimal final output. The Qubit Server achieves this functionality via

calls to the “DAC Calibration Server”.

To run the actual sequence, the Qubit Server sends the required setup packets

to the “GHz DAC Server” to tell it to upload the correct data onto the right boards

and to run them with the right number of repetitions. These calls also contain a

collection of other initialization packets that are to be sent to other Servers right
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before the execution of the sequence. This allows the Qubit Server to forward the

burden of setting up the microwave generator and other involved hardware to the

GHz DAC Server. As described in Section 7.5.14, this is necessary to allow for

the execution of the sequences to be pipelined in the most efficient way.

7.5.13 DAC Calibration Server

The DAC Calibration Server provides functions to modify signal data that is

to be output via the GHz DAC boards in order to correct for imperfections in the

output electronics chain. For this, the DAC Calibration Server first takes a set of

calibration data that measures, for example, the response of the output electronics

to a delta-function signal. This data is stored in the Data Vault to later allow for

a signal to be corrected by taking the desired signal’s Fourier transform, dividing

the result by the Fourier transform of the delta-function response, and inverting

the Fourier transform to recover a corrected version of the data. The corrected

data is returned to (in this case) the Qubit Server so that it can be uploaded to

the respective GHz DAC boards.

To correct for as many different electronic deficiencies as possible, the DAC

Calibration Server needs to take several different calibration datasets. These in-

clude traces returned by a sampling scope as well as measurements with a spec-

trum analyzer. The DAC Calibration Server takes this data automatically via calls
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to the “Sampling Scope Server”, the “Spectrum Analyzer Server”, the “Anritsu

Server”, as well as the “GHz DAC Server”.

7.5.14 GHz DAC Server

The GHz DAC Server plays one of the most crucial roles in the data taking

process. Due to the fact that most of the data taking action is controlled by the

GHz DAC boards, it handles pretty much all of the resource scheduling required

to run multiple experiments at the same time on the same hardware. The GHz

DAC Server can receive requests for data runs in multiple different Contexts at

the same time and actively serializes them on the hardware in the most efficient

way possible. It does so by allowing a Context to already prepare its run by

uploading the required data onto the GHz DAC boards while the previous run

is still executing. It then halts the execution of that Context until the previous

run completes. This completion is detected via the arrival of all expected timing

data at the Direct Ethernet Server. Before this data is actually read from the

Direct Ethernet Server, though, the setup of the next run is finalized by sending

out the required hardware configuration packages (see Section 7.5.12) and the run

is started. This approach minimizes the amount and size of LabRAD Requests

that happen between data runs as much as possible to achieve the best possible

performance. Since all other processing of data happens in parallel with this, one
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can achieve very-close-to hardware limited performance by making sure that every

single step in the sequence generation and data processing takes less time than

the execution of the sequence. If a step in the sequence generation takes longer

than the execution, the GHz DAC Server will not have a new context waiting

immediately when the previous run is completed, which will lead to downtime. If

a step in the data processing takes longer, the data will be taken at maximum

speed, but it won’t be available for viewing and thus decision making, at the

maximum rate.

Since the GHz DAC Server controls all scheduling of data runs on the hardware,

it is not only possible to run a single sweep in multiple contexts to allow the

different steps of the data taking process to be pipelined, but also to run two

completely independent experiments at the same time. This allows two or more

users to take data simultaneously with reduced data rate due to the interleaving

of the actual runs.

7.5.15 Direct Ethernet Server

The Direct Ethernet Server uses the Winpcap packet capture library to read

raw ethernet packets (IEEE 802.3) directly from the network adapters present in

the computer it is running on. It provides Settings to select an adapter, send

packets, set packet filters (by MAC address, length, and content), wait for the
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reception of packets, and return the content of received packets. Since it handles

the traffic between LabRAD and the GHz DAC boards, its performance has a

great impact on the overall throughput achievable with the setup. Thus, this

Server was written in Delphi and great care was employed in the design of the

threading structure and memory management of the application. For debugging

purposes, the Direct Ethernet Server provides a user interface that shows statistics

on packet traffic and gives the user a way to monitor the raw byte traffic on the

wire. The latter, due to the large volume of data, can severely impact performance,

though, and is thus disabled by default.

Like the Serial Server, one copy of this Server is run on every computer that

needs to share access to its network adapters. To give each of these Server Modules

a unique name, “Direct Ethernet” is prefixed with the name of the computer that

it is running on.

7.5.16 Anritsu, Sampling Scope, and Spectrum Analyzer

Servers

The Anritsu, Sampling Scope, and Spectrum Analyzer Servers implement the

GPIB protocol to each control a certain type of instrument. By talking to all

GPIB Servers present in the lab, they compile a list of all devices of the respective
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type to provide a one-stop location for their control. Essentially, all that these

Servers do is generate GPIB command strings and parse GPIB response strings.

These strings are sent and read via calls to the respective GPIB Servers. As

an example, the Anritsu Server provides a Setting that allows another LabRAD

Module to set the output frequency of the microwave generator to a given value.

Thanks to the automatic unit conversion in the LabRAD Manager, this Setting

can be called with a “Value” with any units compatible with MHz. The Manager

will convert the value to MHz (e.g. 6.8 GHz to 6800 MHz) and the Anritsu server

will create the correct GPIB command (OF6800MH) and pass it on to the right

GPIB Server.

7.5.17 GPIB Server

The GPIB Server, much like the Serial Server, provides direct access to all

GPIB bus controllers connected to the computer that it is running on. It can

provide a list of connected devices, select an active device, and communicate with

the device using timeouts. One copy of this Server is run on every computer that

needs to share access to its GPIB buses. To give each of these Server Modules a

unique name, “GPIB Server” is prefixed with the name of the computer that it is

running on.
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7.5.18 IPython

In addition to using the user interface Client Modules described above, the

entire LabRAD Setup can also be controlled through a Python command shell,

like IPython, and other Python scripts. This gives a user of the system ultimate

flexibility to mix and match the access to any part in the system at any level to

achieve whichever effect he or she desires. This way, the system can be extensively

tested and debugged and it is ready for any form of future experiments that might

be devised.
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Chapter 8

Single Qubit Bring-Up and

Characterization

The limited connectivity to the qubit necessitates the development of a rather

involved calibration and characterization procedure. Many relevant quantities

cannot be measured directly, but must instead be inferred from proxy-experiments.

In fact, the only directly measurable parameter of the qubit is the voltage response

to a current bias of the readout squid. Thus, the bring-up procedure begins with

an examination of this response.
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8.1 Squid I/V Response

As explained in Chapters 2.3.4 and 4.1.3, SQuIDs (Superconducting Quantum

Interference Devices) can be used as highly sensitive magnetometers. To first

order, a squid can be understood to behave like a single Josephson function (see

Chapter 2.2.2) whose critical current Ic depends on the magnetic flux bias that is

applied to the squid’s inductive loop. The mutual inductance between the qubit

and the squid loop then makes it possible to measure the qubit’s magnetic flux

state by probing the squid’s critical current, i.e. it causes the critical current Ic to

depend monotonically on the qubit state’s position along the δ-axis.

To verify that the squid is operating correctly and to calibrate the readout

procedure, it is useful to measure the squid’s voltage response to an applied si-

nusoidal current bias (its I/V curve) as shown in Figure 8.1. The current bias in

this case is done by placing a 10 kΩ resistor in series with the squid and voltage

biasing the two elements. Since the squid’s resistance is much lower than 10 kΩ,

this results in a current bias Ibias ≈ Vbias / 10 kΩ. Since the qubit circuit at this

point is still unbiased, the qubit will have settled into a random magnetic flux

state which corresponds to an unknown (and potentially fluctuating) flux bias ap-

plied to the squid. The resulting X-Y trace should look similar to the one shown

in Figure 8.1b. The trace should be symmetric except for an offset on the critical
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Figure 8.1: Squid I/V: Axis scales are given in terms of the values applied and
measured outside the DR. These relate to the values at the squid as follows:
I ≈ SQbias/10 kΩ and SQV out ≈ 1, 000×V . – a) X-T and Y-T plots: The squid is
biased with an oscillating drive (top) to which it responds hysteretically (bottom).
b) X-Y plot: The I/V response shows the hysteretic switching to the voltage state
close to the center and the entry of the squid’s normal conductance at 2∆.

current due to the random flux bias. At sufficiently large biases the 2∆-rise should

be visible as explained in Chapter 4.1.3.

Just like a single junction, the squid can conduct a small amount of current

without generating a significant voltage. Once the current bias exceeds this flux

bias dependent critical current Ic(φ), the squid switches to the voltage state and

begins generating a voltage. The critical current can therefore be measured by

slowly increasing the bias and recording the point at which the squid’s voltage

jumps up. Since for the qubit readout only the point of the jump is relevant,

but not the exact behavior of the response voltage, the jump can be encoded into
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a digital signal via the use of a comparator that indicates whether the squid’s

response voltage is smaller or larger than half of the jump voltage. This cutoff

voltage SQcutoff is programmed into the PreAmp card (see Chapter 6.3.6) which

uses it to generate a fiber-optic digital signal that indicates whether the squid is

currently in the voltage state or in the supercurrent state.

To simplify the required control sequence, the Fast Bias cards (see Chap-

ter 6.3.5) that are used to bias the squids provide a switchable resistor-capacitor

filter that can set the ramp rate of the bias output. The GHz DAC (see Chap-

ter 6.3.8) then simply needs to set the bias voltage to the desired final value and

start a timer that waits for the PreAmp card to indicate the switching of the

squid. The measured time to the switch tSwitch is then a monotonic measure of

the critical current of the squid and thus of the δ-coordinate of the qubit’s state.

To shorten the sequence, this voltage ramp can be restricted to the range in which

the critical current may fall to yield a bias sequence like the one shown as SQbias

in Figure 8.2a.

8.2 Squid Steps

To understand how to properly bias the qubit for reset and operation, the squid

can now be used to map out the position of the minima in the qubit’s potential
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Figure 8.2: Squid Steps – a) Bias sequence: The qubit is biased to the minimum
(maximum) voltage before being biased to VBias. The time along the squid ramp
when the squid switches to the voltage state is plotted as the blue (red) dots and
gives a measure of the position along the δ-axis of the qubit’s potential minima.
b) Data: As the qubit’s potential is tilted, minima appear and disappear. The
qubit is reset into a known minimum by biasing it to a point where only one
minimum exists (VReset). It is operated in a shallow minimum (VOperate) and it is
biased with a maximal barrier between the left and the right minimum during the
readout squid ramp to protect the state from accidental tunneling (VReadout).
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energy landscape (see Chapter 2.2.3) as a function of the applied flux bias DCbias.

For this, the qubit is held at a given bias point for a time much longer than T1 so

that the qubit state has time to decay into the lowest energy state of one of the

local minima of the potential. The δ-coordinate of the minimum then corresponds

to a certain magnetic flux in the qubit loop and thus to a certain critical current

of the readout squid. This critical current is then probed via the described squid

bias current ramp and the switching time tSwitch is recorded. This procedure is

repeated many times each for various bias voltages VBias to generate a scatter plot

of the observed qubit states as a function of qubit bias as shown in Figure 8.2b,

which we call “Squid Steps”.

Since the choice of the local minimum into which the qubit state settles depends

hysteretically on the biasing history, it is useful to take this data in two steps.

First, the qubit is biased at the maximum negative bias Vmin before bringing it

to the bias point of interest VBias. Since the bias does not change instantaneously

from Vmin to VBias, this leads to the qubit state preferentially settling into the

left-most local minimum at VBias. To map out the right-most local minima as

well, the qubit is then biased at the maximum positive bias Vmax before bringing

it to VBias. This sequence is shown in Figure 8.2a.

The resulting scatter plot shows the location of the qubit potential’s minima

as a function of the qubit bias VBias. The qubit examined here shows bias regions
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where the potential has two stable local minima, e.g. for −1.2 V ≤ VBias ≤ −0.3 V,

and regions where the potential only has one stable minimum, e.g. for −0.2 V ≤

VBias ≤ 0.0 V.

As the bias is increased, i.e. the potential is tilted more and more, the plot

shows local minima appearing on the right (bigger δ, longer tSwitch), e.g. at VBias ≈

−1.2 V, growing to their maximum depth, e.g. at VBias ≈ −0.1 V, and becoming

shallower again until they disappear on the left (smaller δ, shorter tSwitch), e.g.

at VBias ≈ 1.0 V. We call all points in the scatter plot that correspond to the

same local minimum a “branch” and the maximum number of simultaneous local

minima the “overlaps”. The qubit here shows three full branches (and two partial

ones) and has two overlaps.

For a qubit to be usable, it must have at least two overlaps so it can be

measured (to hold the | 0 〉-state and the | 1 〉-state after tunneling) and it must

show at least one full branch so it can be reset. Figure 8.3 shows a collection

of non-optimal squid steps resulting from bad squid bias ramps, which should be

correctable by readjusting the ramp parameters. But qubits that show no bias

dependence of the scatter plot at all or have no regions of two or more overlaps

usually must be pronounced dead.

The squid steps dataset (Figure 8.2b) now tells us how to reset and read

out the qubit. The first step in desigining the operation sequence consists of
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Figure 8.3: Squid Steps Failure Modes: Insets indicate problem (red) and correc-
tion (green). – a) Low SQcutoff : The voltage cutoff detecting the switching is set
too low leading to false positives. b) High SQcutoff : The voltage cutoff is too high
to detect the switch; instead it is crossed when the squid moves along the resistive
part of the voltage branch. c) High VStart: The bias crosses Ic during the ramp to
VStart. d) Low VEnd: The bias barely/never crosses Ic. e) Large ramp: The bias
is ramped too quickly through Ic. f) Functional squid: Perfect at last.
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picking the “operating branch”, i.e. the potential minimum in which the qubit

state will reside during operations. Here, for example, we can choose the branch

that extends from VBias ≈ −2.4 V to VBias ≈ −0.3 V. The qubit is reset into

this branch by biasing it to a point VReset at which the operating branch is the

only minimum of the potential, e.g. VReset = −1.35 V. If the qubit is held at this

bias for a time tReset À T1, its state will decay into the operating branch with

certainty.

To maximize the non-linearity during operation, i.e. the difference in energy

spacing of the lowest levels in the operating minimum, the qubit is biased close to

the “end” of the operating branch, i.e. to a point where the operating minimum

becomes very shallow, for example around VOperate ≈ −0.3 V. This is necessary

so that the lowest two energy levels in the minimum can be addressed exclusively

as described in Chapter 3.3.

To measure the qubit, the excited state (| 1 〉) will be selectively tunneled out

of the operating branch as described in Section 8.5 into the neighboring branch –

here, the branch that extends from VBias ≈ −1.2 V to VBias ≈ −1.0 V. The qubit

is then biased to the point VReadout where the depth of the two potential minima

is maximized, e.g. VReadout = −0.75 V. This maximizes the barrier height between

the two minima to reduce the chance of the qubit state tunneling between the

minima by accident.
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At this point, the squid ramp can be executed and the switching time tSwitch

will indicate whether the qubit state remained in the operating branch during the

tunneling measurement (here: tSwitch ≈ 12.4 µs) or whether it tunneled to the

neighboring branch (here: tSwitch ≈ 16.2 µs). This completes the DC part of the

biasing sequence as shown in Figure 8.4a.

If the qubit’s ciritical current is too high and the qubit potential always has

many stable minima, i.e. three or more overlaps, the qubit can not be reset into

the operating branch as described above. In that case, the qubit is reset by

alternatingly biasing it to the points where the operating branch is the left-most

or right-most stable branch. This will dynamically destabilize all branches other

than the operating branch and leads to a probability for finding the qubit in the

target branch that increases with the number of reset cycles. Usually 3 to 5 cycles

are sufficient to bring this probability to above 99.99%.

8.3 Step Edge

To maximize the non-linearity and thus the speed at which operations can be

performed on the qubit without driving unwanted transitions, it is desirable to

bias the qubit such that the operating minimum is as shallow as possible. We

call the point at which the qubit ground-state (| 0 〉) in the operating minimum
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Figure 8.4: Step Edge – a) Bias sequence: The qubit is reset into the operating
minimum and moved to the operating bias VOperate for a few µs to allow for any
tunneling. After, the qubit is biased at the readout point and the squid is ramped
to measure Ic. This sequence is repeated many times for each value of VOperate.
b) Switching data: As VOperate is increased, the qubit state tunnels from the
operating minimum (lower branch) to the neighboring minimum (higher branch).
c) Probability: If the switching times are sorted using a cutoff time between the
switching distributions, the probability for the state to tunnel can be extracted
as a function of VOperate.
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starts to tunnel to the neighboring branch the “Step Edge”. To determine the

closest possible bias point to the step edge, it is useful to repeatedly run the qubit

through its biasing cycle while varying its operating bias VOperate as indicated in

Figure 8.4a. A scatter plot of the resulting switching times tSwitch as a function

of the operating bias VOperate might then look like Figure 8.4b.

At this point it is useful to move to a representation of the data that describes

the qubit state not in terms of a collection of switching times, but instead as the

probability PTunnel of finding the qubit in the neighboring branch versus in the

operating branch. This probability is obtained by defining a cutoff time tCutoff

that separates the switching times into two groups, each corresponding to one

branch. In the example here, all switching times tSwitch < 14.2 µs correspond to

the qubit state being in the operating branch during the squid ramp, while all

switching times tSwitch > 14.2 µs correspond to qubit states that have tunneled

out of the operating branch into the neighboring branch, i.e. tCutoff = 14.2 µs.

The probability PTunnel is then defined as:

PTunnel =
# of runs with tSwitch > 14.2 µs

total # of runs
(8.1)

From this equation it is clear that, to obtain an accurate measurement of PTunnel,

the experiment of interest needs to be repeated many times to collect enough

statistical samples for tSwitch.
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Plotting PTunnel versus the qubit’s operating bias VOperate now gives a much

more useful dataset like Figure 8.4c. In this plot we can easily see that the

probability of the qubit state tunneling out of the operating minimum rapidly

increases to unity once a certain bias threshold (here: V ∗
Operate ≈ −0.24 V) is

crossed. Therefore it is necessary to keep the qubit bias safely below this threshold

during qubit operation to prevent the states of interest from tunneling out of the

operating branch before the actual measurement.

It is interesting to note that often this transition does not occur smoothly but

instead shows many spikes. These are caused by the fact that the energy levels in

the neighboring minimum are also quantized and therefore provide a discretized

set of target states. If one of these target states happens to line up (in energy)

with the qubit state in the operating minimum, the probability for the qubit state

to tunnel is enhanced, leading to the observed resonance peak structure.

8.4 RF bias

This point marks a logical break in the bring-up sequence in the sense that the

control sequence up to here contains only “slow” bias changes, i.e. on the order of

microseconds. The following calibrations, on the other hand, are concerned with

the high-frequency operations of the qubit which happen on time scales on the
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Figure 8.5: General Bias Sequence – a) DC bias sequence: The qubit is initialized
and read out with slowly varying pulses with lengths on the order of 10 µs. b) RF
bias: At the very end of the operating bias time, microwave pulses (X/Y) and fast
bias pulses (Z) are used to perform the actual quantum operations. The entire
RF bias sequence is (currently) only a few hundred nanoseconds long.

order of nanoseconds. In fact, the “action”, i.e. the interesting qubit operations

like rotations, coupling, etc., all happens in a tiny window at the very end of the

time when the qubit is biased at its operating bias (see Figure 8.5).

Thus, to prevent unnecessary repetition of the invariant part of the bias se-

quence, the figures in the following chapters will, unless otherwise noted, focus on

solely the RFbias component of the control. The DCbias and SQbias, as well as the

SQV out behavior should be understood to resemble the sequence shown in Fig-

ure 8.5. To clarify the sequence traces, the RFbias components are split into X/Y

operations corresponding to I/Q modulated microwave pulses and Z operations

corresponding to fast flux bias pulses.
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Figure 8.6: S-Curve – a) Bias sequence: The qubit is pulsed with a progressively
larger measure pulse. b) S-curve: As VMeasure is increased, the potential is tilted
more and more until the qubit ground-state tunnels to the neighboring minimum.
c) Short measure pulse: If the measure pulse is too short, the potential tilts back
before the state has time to decay, leading to reduced visibility due to a chance
for the state to retrap in the operating minimum [Zhang et al., 2006].

8.5 S-Curve

The first calibration of the RFbias sequence will be the shape of the pulse that

selectively tunnels the population of the excited states from the operating mini-

mum on the left to the neighboring minimum on the right, but not the population

of the ground-state. We will call this pulse the “measure pulse”. The simplest

pulse that will achieve this is a rectangular (top-hat) pulse of calibrated length

and amplitude. This pulse temporarily tilts the qubit potential to lower the bar-

rier between the operating minimum and the neighboring minimum. The exact

barrier height during the pulse will then determine the tunneling behavior of the

different qubit states.
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Figure 8.7: Spectroscopy – a) Bias sequence: A long microwave pulse of varying
frequency is followed by a measure pulse. b) High power: If the microwave pulse
is strong enough, it can drive higher transitions, like for example | 0 〉 ↔ | 2 〉. c)
Low power: At lower power (here: 20 dB less than b) all peaks but the | 0 〉 ↔ | 1 〉
transition disappear.

For now, the length of the measure pulse is not too relevant and can be chosen

around 20 ns. To calibrate the amplitude, one can measure the tunneling proba-

bility of the ground-state as a function of the measure pulse amplitude to obtain a

plot like Figure 8.6b. For now, the point at which Ptunnel rises to about 5% (based

on experience) can be used as an initial guess for the right measure pulse ampli-

tude. A more exact value will be determined in a later experiment (Section 8.8).

The data here shows similar resonant tunneling behavior at the step edge as was

seen in Figure 8.4c.
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8.6 Spectroscopy

Using this preliminarily calibrated measure pulse, it is possible to investigate

the level structure in the operating minimum in more detail. Specifically, the

resonance frequency of the transition from the ground to the first excited energy

level is of particular interest as it is needed to perform logic operations on the

qubit. This resonance frequency can be found by irradiating the qubit with long

(À T1) microwave pulses of varying frequency and then measuring the occupation

of the excited levels in the qubit operating minimum using the measure pulse from

above. Depending on the power of the drive, the data should resemble Figure 8.7b

or 8.7c. If multiple peaks are visible in the data, the power can be reduced until

only one peak remains, which should correspond to the qubit’s transition frequency

from the ground-state to the first excited state. The width of the peak gives a

first hint at the relevant quality measures of the qubit, like the dephasing time Tϕ.

But since there are more sensitive measures for these, the only calibration value

that needs to be taken away from this dataset is the resonance frequency ω01.

8.7 Rabi Oscillation

The next step is to investigate the temporal response of the qubit to a mi-

crowave pulse like the one used above. For this, the qubit is driven with a micr-
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Figure 8.8: Rabi Oscillation – a) Bias sequence: A microwave pulse of varying
length is followed by a measure pulse. b) Low power: The microwave pulse drives
transitions between the qubit’s | 0 〉 and | 1 〉 states. c) High power: A 3× stronger
microwave pulse results in a 3× higher oscillation frequency.
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wave pulse at the qubit resonance frequency of length tRabi followed by a measure

pulse as indicated in Figure 8.8a. The probability of the qubit state tunneling out

of the operating minimum is recorded as a function of the microwave pulse length

to yield data as shown in Figures 8.8b and 8.8c. The data shows a decaying sinu-

soidal oscillation, which is caused by the qubit being excited into the first excited

state and then returned to the ground-state via stimulated emission. This effect is

called a Rabi oscillation and is the quantum two-level equivalent of a driven har-

monic oscillator. The decay of the oscillation is caused by the qubit state relaxing

back into the ground-state randomly on the timescales of the energy relaxation

time T1. The effect of this is different from the effect of damping on a driven

harmonic oscillator. In the oscillator case, damping will cause the maximum os-

cillation amplitude to be limited, while in the case at hand, the relaxation causes

a complete decay of the oscillation. This is due to the fact that the probability

measured in this experiment is obtained from an ensemble measurement of many

repetitions of the same experiment. In any single experiment, the occupation

probability of the first excited state will oscillate forever at full amplitude since

the period of the oscillation is much shorter than the energy relaxation time T1.

Every so often, though, while the qubit is in the excited part of the oscillation,

the qubit will relax back into the ground-state and the oscillation will start over.

This leads to a slow dephasing of the individual oscillations of the qubits in the
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ensemble with respect to each other and causes the population average to settle

at 50% for long pulses.

In addition to this, the qubit’s potential is subject to flux noise, i.e. a constant

“jiggling”. This leads to noise on the spacing of the energy levels, which causes

the qubit resonance frequency to vary slightly. This is equivalent to random Z-

rotations, i.e. phase shifts, being continuously applied to the qubit state. This

effect is called dephasing and its timescale is measured by the dephasing time Tϕ.

Overall, the decay envelope of the Rabi oscillation follows the following formula:

A ∝ e
− 3t

4T1
− t

2Tϕ (8.2)

Since there are more direct measurements available to determine T1 and Tϕ

separately and more accurately, there is only one value that needs to be taken

away from this measurement. This value is the length of the microwave pulse

that maximizes the probability of the qubit to be in the excited state. This pulse

is called a “π-Pulse” [Lucero et al., 2008] and corresponds to a classical “NOT”

gate. Since the frequency of the Rabi oscillation increases with higher amplitude

of the microwave pulse, another way to calibrate the π-pulse is to choose a pulse

length and to adjust the pulse amplitude to maximize the excited state probability.

A sweep of the pulse amplitude results in a sinusoidal oscillation as well and is

usually called a “Power-Rabi”.
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Figure 8.9: Visibility – a) Bias sequence: The qubit is either left in the | 0 〉 state
(blue trace) or excited into the | 1 〉 state via a π-pulse (red trace) before it is
measured with a pulse of increasing amplitude. b) S-curves: The blue (red) trace
shows the tunneling behavior of the | 0 〉 (| 1 〉) state. The green trace shows the
difference and gives the fidelity with which a measure pulse of given height can
distinguish between the | 0 〉 and | 1 〉 states.

8.8 Visibility

Being able to prepare the qubit in either the ground-state (with just the ini-

tialization) or the excited state (with the π-pulse) allows us to fully optimize the

measure pulse. This is done via a measurement of the “visibility”, i.e. our ability

to distinguish the excited state from the ground-state. It can be determined by

taking the difference of the tunneling probability when the qubit is in the excited

state and when the qubit is in the ground-state. This visibility can now be mea-

sured as a function of the measure pulse amplitude, length, and shape. Figure 8.9

shows the result of such a measurement as a function of measure pulse amplitude.

The sequence that yields the curve for the ground-state is identical to the one
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Figure 8.10: T1 – a) Bias sequence: The qubit is excited into the | 1 〉 state with
a π-pulse and measured after an increasing delay tDelay. b) T1: After the π-pulse,
the qubit decays exponentially from the | 1 〉 state back to the | 0 〉 state.

from Section 8.5. The 5% point used in the initial calibration of the measure-

ment pulse was chosen since, from experience (and from the math describing the

tunneling of the two states) the maximum visibility usually lies around the point

where the ground-state tunnels about 5% of the time. All parameters describing

the measure pulse can now be adjusted to maximize the visibility.

8.9 T1

Now that we have a calibrated way to prepare the qubit in the excited state

and to measure its state as accurately as possible, we can start determining the

qubit’s intrinsic quality measures. The easiest quantity to measure is the qubit’s

energy relaxation time T1. To determine it, all one needs to do is prepare the qubit

in the excited state with a π-pulse and then measure its excited state population
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as a function of the delay between the π-pulse and the measure pulse. The data

will look like Figure 8.10. Fitting the decaying part of the trace to the function

P (t) = Poffs + V iz ∗ e−t/T1 , gives the quantity of interest: T1. Since both the

measurement visibility (Viz) and the ∼ 5% offset (Poffs) are free parameters in

this fit, the measurement process does not affect the obtained value of T1. Even

an imperfect π-pulse would only affect the value if part of the state is excited into

the second excited state. Thus, this measurement yields a very robust number.

8.10 Ramsey

Unfortunately, measuring the dephasing time T2 is less straightforward. This

is due to the fact that the phase of the qubit’s state only has meaning relative to

an external clock source like the state of another quantum system. The phase of

the qubit’s state can also be measured by interfering it with the microwave drive.

This is done by using a pulse of half the area of the π-pulse, i.e. a π
2
-pulse, to

excite the qubit into the equator of the Bloch sphere. There, the qubit is allowed

to dephase for a time tDelay and finally hit with another π
2
-pulse to complete the

rotation into the excited state before it is measured. As a function of tDelay, the

occupation probability of the excited state looks like Figure 8.11b. The problem

with this measurement is that the decay envelope only gives a correct measure
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Figure 8.11: Ramsey – a) Bias sequence: A π
2
-pulse excites the qubit into the

equator of the Bloch sphere where it is allowed to dephase for a time tDelay. A
second π

2
-pulse continues the rotation of the qubit state (ideally) to the | 1 〉 state.

b) On resonance: As the qubit dephases its chance of making it to the | 1 〉 state
decreases. c) Off resonance: If the qubit and the pulses are not at the same
frequency, the qubit state spins around the equator of the Bloch sphere during
the delay. Depending on the angle at which the second pulse “catches” the state,
it either continues its rotation towards the | 1 〉 state or reverses it back to the
| 0 〉 state. The oscillation frequency of the data should match the detuning, here
20MHz.
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Figure 8.12: Spin Echo – a) Bias sequence: A π-pulse around the Y-axis that
is placed in the middle of the Ramsey delay reverses the qubit state’s precession
angle causing it to undo the precession during the second half of the delay. This
compensates for slow bias drifts and off-resonant pulses. b) Spin echo: The qubit’s
phase information decays following a gaussian shape.

of T2 if the frequency of the microwave pulse is exactly on resonance with the

transition frequency of the qubit. If the microwave drive is detuned, the qubit

will not only dephase, but also precess in the equator of the Bloch sphere, leading

to a trace like Figure 8.11c. The frequency of the oscillation is equal to the

detuning of the microwaves from the qubit. Thus, it is not necessarily clear, how

much of the “decay” in Figure 8.11b. is due to T2 and how much is due to the

beginning of a slow oscillation caused by a very slight detuning of the microwaves.

8.11 Spin-Echo

The detuning effect on the measurement of the Ramsey trace can be eliminated

by a trick called “Spin Echoing”. It works by inserting a π-pulse with a 90◦
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phase shift into the middle of the delay time. This pulse effectively inverts the

accumulated phase of the qubit state in the equator, such that any precession in

the first half of the delay time undoes itself in the second half of the delay time.

This removes the effect of a potential microwave detuning onto the data and yields

a better estimate of T2 if the data is fit to the function P (t) = Poffs +V iz ∗e−t/T2 .

Even if the qubit’s resonance frequency was perfectly stable, the trace measured

in this experiment would still decay to around 50% due to the fact that T1 decays

the qubit state from the equator back into the ground-state. Since the ground-

state does not have any phase associated with it, this decay also erases phase

information. T2 is defined as the timescale on which the qubit loses its phase

information and thus, this T1 effect does not need to be removed from the fit, but

instead does contribute to the real value of T2. This leads to the fact that T2 can

never be larger than 2T1. There also exists a quantity that measures the loss of

phase information due to only the instability in the qubit’s resonance frequency.

This quantity is called Tϕ and can be calculated from:

1

T2

=
1

2 T1

+
1

Tϕ

. (8.3)
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Figure 8.13: Fine Spectroscopy – a) High power: The | 0 〉 ↔ | 1 〉 and the | 0 〉 ↔
| 2 〉 transition are visible. This qubit couples to very few two-level states. b)
Low power: Only the | 0 〉 ↔ | 1 〉 transition is visible. This qubit couples to more
two-level states.

8.12 2D-Spectroscopy

The final scan that is part of our standard qubit bringup sequence is called

“2D-Spectroscopy”. It is probably the single most useful calibration scan we do

due to the large amount of information it provides. The scan is simply the 2D

extension of the above mentioned spectroscopy scan as a function of operating bias.

The data is usually drawn as a 2D color plot and should resemble Figure 8.13a

or b depending on whether the microwave pulse power is high enough to excite

the two-photon | 0 〉 → | 2 〉 transition. The dependence of the response frequency

ω01 on the operating bias follows a quadratic equation almost exactly. The two-
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photon excitation behaves similarly. The fits of ω01 and ω02 versus the flux bias

φ can be used to extract the actual values of the qubit’s inductance, capacitance,

and critical current.

The 2D-Spectroscopy scan also shows avoided level crossings that correspond

to the qubit interacting with a two-level defect in the tunnel barrier which re-

sponds at a certain frequency [Cooper et al., 2004, Neeley et al., 2008a]. Since we

believe that these defects are the primary source of energy relaxation in our qubit

[Simmonds et al., 2004, Martinis et al., 2005], one should choose an operating bias

that places the qubit far (in frequency) from one of these defects.
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Chapter 9

Coupled Qubit Bringup

The exact bringup sequence for running multiple qubits can vary greatly de-

pending on the coupling scheme. Nevertheless, there are several concerns that

apply to all coupling schemes. These will be examined first.

9.1 Controlling Multiple Qubits

9.1.1 Control Synchronization

Most multi-qubit sequences require the relative timing of operations on differ-

ent qubits to be tightly controlled. To achieve this, the control hardware needs

to provide a way to synchronize the control channels on the different qubits with

respect to each other. For the purposes of scaling to a large number of qubits, it
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is desirable to modularize the control hardware (and software) such that the dif-

ferent channels are independently deployable copies of each other. Each channel

then needs to provide a way to synchronize its signal stream to all other channels.

This synchronization consists of two components: Not only do the signal streams

need to start at the same time t = 0, they also need to progress at the same rate.

The definition of a common starting time t = 0 is usually achieved by a

trigger pulse for which the different channels wait before playing back their signal

sequence. For this, the trigger pulse needs to be distributed to all channels. This

can be done either by splitting the output of a single trigger source and distributing

it to all channels or by a so-called “daisy chain” in which each channel forwards

the trigger signal to the next. Usually, each channel needs to provide facilities to

shift its specific definition of t = 0 by an offset ∆t that compensates for any delays

in the arrival of the trigger pulse or any delays in the delivery of the channel’s

output signal to the respective qubit. The calibration of this delay is best done

with experiments run on the qubits. The type of experiment needed depends on

the involved channels and the type of coupling element used and will be discussed

below.

Actively synchronizing the rate at which the different channels play back their

signals is necessary since affordable clock sources do not natively provide the

desired accuracy. Specifically, the inter-channel phase jitter in the clock signals
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is of significant concern for reliable qubit operation. This is due to the fact that

for rotations around axes in the X/Y-plane of the Bloch sphere, the angle of the

rotation axis is determined by the phase of the signal.

The common approach is to synchronizing the clocks with the use of a 10 MHz

reference signal to which each channel locks a VCO (Voltage Controlled Oscillator)

circuit to generate the clock frequency it needs for its operation. To achieve

best possible phase locking between the microwave control signals on different

channels, we currently use a single carrier signal that is split and distributed to

the different channels. But this approach is only feasible for a small number of

channels. Beyond that, the carrier signal generators will need to be chosen and

synchronized with phase jitter in mind.

9.1.2 Flux Bias Crosstalk

Unless the qubits’ integrated circuit is laid out perfectly, the magnetic field

created by the flux bias coil of one qubit will also be seen by all other qubits,

although to a much lesser degree. This leads to changes in the actual bias seen by

the qubits and thus to changes of the operating parameters (reset bias, resonance

frequency, etc.) found by calibrating the qubits independently from each other.

Therefore, it is necessary to repeat the single qubit bringup experiments that lead

to the parameters while putting all qubits through their motions as if the final
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sequence was run. This allows for the DC component of the biasing crosstalk to

effectively be calibrated away. This will work “out of the box” if all qubits share

the same timing for the biasing pulses. The repeated bringup will then simply

yield slightly adjusted bias values that correct for crosstalk automatically. If the

qubits do not share the same pulse timing, corrective bias pulses might need to

be added into the sequence manually.

The flux bias crosstalk also concerns the RF component of the bias, i.e. the

microwave signals. The effect of this can also be removed by simply driving every

qubit with a pulse that exactly cancels the leaked signal. For this cancellation to

work correctly, not only the amplitude of the canceling pulse needs to be adjusted,

but also its phase. But since the RF components of the bias crosstalk are usually

very small in our samples (. −20 dB), they can often simply be ignored.

9.1.3 Readout Squid Crosstalk

Just like the flux bias line of one qubit can potentially couple to all qubits on

the chip, so can the different qubits’ squids. Even though the coupling strength

of this crosstalk is usually much smaller, it still constitutes a major problem as

the squids create a large voltage step when they switch to the voltage state. If,

at that time, another squid is close to its critical current, this step will usually

trigger it to switch as well. This will lead to a reliable measurement of Ic only
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Figure 9.1: Effect of Squid Crosstalk on Step Edge – a) “Blue” switches “Red”:
A switch in the “blue” qubit’s squid causes the squid of the “red” qubit to switch,
moving the “red” step edge on top of the “blue”. b) “Red” switches “Blue”: A
switch in the “red” qubit’s squid causes the squid of the “blue” qubit to switch,
moving the “blue” step edge on top of the “red”. c) No crosstalk: Both step edges
occur at their expected bias points with 0% tunneling before and 100% tunneling
after.

for the squid that switches first. To counteract this effect, it is necessary to ramp

the squids one after the other through their switching region while keeping the

respective other squids biased far away from their critical current.

For this to work reliably, it is necessary to bias all qubits such that the potential

barrier between their operating minimum and the neighboring minimum (minima)

is as large as possible to keep the measurements locked in until it is their turn

to be read out. Depending on the maximum possible barrier heights and the

strength of the squid crosstalk, not all ramp-orders will be guaranteed to work. It

is therefore necessary to run simple test experiments (e.g. step edges as shown in

Figure 9.1) to determine the right ramping order, if one can be found. If it is not
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possible to read out all qubits correctly, the squids and coupling strengths need

to be redesigned to reduce the crosstalk.

9.2 Always-On Capacitive Coupling

Qubits that are coupled with a simple capacitor suffer the most from the above

described crosstalk effects. In fact, if the coupling is too strong (& 30 MHz), it

might not be possible at all to find an order in which to ramp the squids such

that their switching does not randomize the measured state of all qubits.

9.2.1 Measurement Crosstalk and Timing

One of the biggest issues for a capacitively coupled qubit system is the problem

of measurement crosstalk [Kofman et al., 2007, McDermott et al., 2005]. Mea-

surement crosstalk is the process by which the tunneling of one qubit causes a

tunneling of other qubits even if they were in the | 0 〉-state. This happens be-

cause the tunneling process leaves the tunneled qubit in a highly excited state

in the neighboring minimum. As the qubit decays to the ground state of this

minimum, it radiates photons of progressively decreasing frequency into the cir-

cuit. These photons can couple via the coupling capacitor to the other qubits

and excite them into higher states in the operating minimum. If this excitation
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Figure 9.2: Measure Pulse Timing – a) Sequence: Both qubits are measured with
a pulse that tunnels the | 0 〉 state 50% of the time. The measure pulse on the
second qubit is shifted in time by tOffset relative to the first qubit. b) Crosstalk:
When the measure pulses reach the qubits at the same time (dashed line), the
measurement crosstalk is minimized leading to a dip in P| 11 〉.

happens before the measurement of these qubits is over, these states will tunnel

as well. For a two-qubit system, this leads to a | 01 〉-state or a | 10 〉-state to be

misidentified as a | 11 〉-state. The | 00 〉-state is not affected by this problem.

This crosstalk does offer an opportunity, though, in that it provides a way to

synchronize the timing of the measurement channels between the different qubits.

The method is based on the fact that the crosstalk can only affect qubits until the

point when their measurement is complete. This temporal asymmetry can be used

to adjust the relative timing of the different channels. For this, an S-Curve exper-

iment is used to independently calibrate a measurement pulse for each qubit that

yields a | 0 〉-state tunneling probability of about 50%. As this tunneling probabil-

ity is a purely classical probability, in a system without measurement crosstalk, a
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simultaneous application of such measure pulses would yield all possible outcomes

with equal probability. For a two-qubit system, this would mean that the readout

would yield the states | 00 〉, | 01 〉, | 10 〉, and | 11 〉 all with 25% probability. In a

situation with crosstalk where qubit 1 (2) was measured significantly before qubit

2 (1) the probability of measuring | 10 〉 (| 01 〉) would be reduced and | 11 〉 would

be increased. Thus, if the probabilities are measured as a function of the delay

tOffset between the measure pulses, one obtains a plot like Figure 9.2.

The point on this plot where the probability of | 11 〉 is minimized will then

correspond to the point where the qubits are measured at the same time. The

difference at this point between 25% and the measured probability of | 11 〉 captures

the amount of residual measurement crosstalk. It is possible to minimize this

residual crosstalk by carefully shaping the measure pulses in a way that maximizes

each qubit’s visibility while minimizing crosstalk. A saw-tooth shape seems to

work well for this.

9.2.2 Spectroscopy

In the same way that the frequency of the microwave bias needs to be matched

to the qubits resonance frequency in order to drive transitions, to get several qubits

to couple via a simple capacitor, they need to be biased such that their resonance

frequencies are the same. To achieve this, the most useful scan is the simple
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Figure 9.3: Spectroscopy of Coupled Qubits – a) Far off: Initially the flux bias
crosstalk will probably place the qubits off resonance. b) Closer: As the flux bias
is corrected, the resonance peaks move closer. c) Splitting: When the qubits are
on resonance, the coupling causes them to split.

one-dimensional spectroscopy scan introduced above. If it is run on all qubits

simultaneously, it will show each qubit’s resonance peak in the presence of all

other qubits’ biases. If the operating biases of all qubits are then adjusted to set

the resonance frequency of all qubits to the same value, the qubits will begin to

couple. This can sometimes be seen in a splitting of the response peak in the

spectroscopy sweep, as shown in Figure 9.3c.

9.2.3 Swaps

The next step is to examine the time dynamics from the qubits’ interaction.

This can be achieved with a sweep that is essentially a multi-qubit T1 experiment,

except that only one of the involved qubits is prepared in the | 1 〉-state with a

π-pulse, while all other qubits remain in the ground state. In addition to the
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Figure 9.4: Capacitive Coupling Swaps – a) Sequence: The first qubit is excited
into the | 1 〉 state with a π-pulse (Xπ). The qubits are allowed to interact for a
time tDelay. After, both qubits are measured (M). b) Swaps: The excitation swaps
between the qubits, leading to a final state that oscillates between | 10 〉 and | 01 〉.
Measurement crosstalk and the measurement error in identifying the | 0 〉 state
causes a relatively large probability for measuring | 11 〉. As a function of time, T1

decays the signal and relaxes the qubits into the | 00 〉 state.
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Figure 9.5: Capacitive Coupling Resonance Calibration – a) Sequence: The first
qubit is excited into the | 1 〉 state with a π-pulse (Xπ). The qubits are allowed
to interact for a time tSwap that should result in a swap when the qubits are on
resonance. After, both qubits are measured (M). The flux bias VOperate of the
second qubit is varied to find the optimal bias point. b) Data: At the point where
the qubits are exactly on resonance (dashed line), the swapping is maximized.

usual T1 decay, the energy of the excited qubit then gets transferred back and

forth among the qubits via the coupling capacitor [McDermott et al., 2005]. For

two qubits, this leads to a simple swapping of the excitation between the qubits

as shown in Figure 9.4, much like the oscillatory energy transfer in a system of

coupled pendulums.

9.2.4 Resonance Calibration

For small coupling capacitors (< 10 MHz), it is extremely important to make

sure that the qubits are biased exactly on resonance in order to achieve the max-

imum swap amplitude. The quickest way to calibrate the biases needed is by re-

peating the Swaps measurement with tDelay set to achieve one full swap (∼ 50 ns
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Figure 9.6: Capacitive Coupling Phase Calibration – a) Sequence: Both qubits
are hit with a π

2
-pulse (Xπ/2, Θπ/2) to generate the state | 00 〉+ | 10 〉+ ei θ| 01 〉+

ei θ| 11 〉. The qubits are allowed to interact for a time tDelay before they are
measured (M). b) Time trace: An X-pulse on both qubits results in an eigenstate of
the coupling that simply decays, while a pulse of different phase on the two qubits
results in a state that will undergo a swap operation. This swap is maximized
at tSwap (dashed line). c) Phase trace: If tDelay is set to tSwap, the phase θ of
the pulse on the second qubit can be swept to find the phase offset between the
qubits. The point where the curves cross (dashed line) gives this offset. Which of
the crossings is the right one depends on the definition of the coordinate system
used in the Bloch sphere.

in Figure 9.4) for slightly different operating bias values for the qubit that was

initialized in the | 0 〉-state (here: Qubit B). The data will look like Figure 9.5b,

showing a maximized swap at the bias that places the qubits exactly on resonance.

If tDelay was not picked exactly right, the maximal swap in this dataset might be

less than the maximum achievable swap, but it should still give the right bias

calibration.
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9.2.5 Phase Calibration

The trickiest calibration is that of the relative phase of the microwave signals

as seen by the qubits. Due to the high frequency of the drive (∼ 6 GHz), even

the slightest difference in the electrical length of the wiring can lead to significant

phase shifts. These need to be calibrated by interfering phase-sensitive states

created in the qubits via the coupling capacitor. The easiest way to do this is to

simultaneously drive each qubit with a π
2
-pulse into the state | 0 〉 + eiα| 1 〉 and

observe the qubits’ interaction (Figure 9.6b). If all qubits are driven with the

same phase, the resulting bell state (| 01 〉 + | 10 〉) will be an eigenstate of the

coupling Hamiltonian and thus show only the expected T1 decay. If the qubits

are driven with different phases, the resulting states (e.g. | 01 〉 + i| 10 〉) are not

eigenstates and thus will show oscillations similar to the ones seen in the Swaps

experiment.

The problem with this calibration is that driving the qubits at the exact oppo-

site phase will also lead to an eigenstate (| 01 〉− | 10 〉) that does not show swaps.

This ambiguity reflects the freedom in choosing the exact representation of states

on the Bloch sphere in terms of whether a left-handed or right-handed coordinate

system is used or (equivalently) whether then | 0 〉-state is placed at the South or

North pole of the sphere. The choice of which swapping minimum corresponds to
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a phase difference of 0◦ rather than 180◦ will then need to be made by predicting

the direction of the swaps (does | 01 〉 or | 10 〉 go up first?) for a drive with a 90◦

phase shift.

9.2.6 “Controllable Coupling” via Bias Changes

Since the qubits will only couple to each other if they are biased to have

the same resonance frequency, it is possible to turn the coupling on or off to

a certain degree by changing the qubits’ biases over the course of their RFbias

control sequence. The coupling strength hereby depends on the on-resonance

coupling strength g and the detuning ∆ via:

C =
g√

g2 + ∆2
(9.1)

To calibrate the amplitude of the bias pulse that sweeps the qubits onto resonance

and thus turns on the coupling, the same method can be used as described above

under Resonance Calibration. The important thing to realize is that these bias

pulses also perform Z-rotations on the qubit that can be quite large (many full

revolutions). These need to be understood and taken into account when determin-

ing the phase of any following microwave pulses. For this to work, it is important

to ensure a repeatable bias pulse shape as run-to-run differences will introduce

phase errors.
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9.3 Resonator Based Coupling

The measurement crosstalk described in Section 9.2.1 can be extremely detri-

mental to the quality of the final data for a coupled qubit experiment. Espe-

cially for an experiment that attempts to violate Bell’s inequality, measurement

crosstalk is unacceptable as it actively introduces correlations into the dataset,

the very thing that the experiment is trying to quantify [Kofman and Korotkov,

2008b]. Therefore, it is necessary to develop coupling schemes that prevent mea-

surement crosstalk as much as possible. One such scheme is based on placing a

resonator between the qubits as shown in Figure 2.5b. This resonator will effec-

tively act as a band-pass filter for the coupling between the qubits. Thus, during

the decay of the tunneled state, only photons at the frequency of the resonator

can couple to the other qubit. Since this frequency will not be on resonance with

that other qubit, there will be no unwanted excitations, effectively eliminating the

problem of measurement crosstalk.

For the purpose of understanding the following sections, and even for the

implementation of the Bell experiment described in Chapter 11, the resonator can

be understood simply as a third qubit that is capacitively coupled to each of the

two real qubits. This works here, since there is always only one photon present

in the circuit during coupling operations, which prevents the resonator from ever
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Figure 9.7: Fine Spectroscopy of Resonator Coupling – a) First qubit: The qubit’s
spectroscopy shows a splitting at around 7.18 GHz due to the coupling to the
resonator. The width of the splitting matches the 40 MHz coupling strength. b)
Second qubit: The splitting is located at the same frequency, but is smaller due
to the 27 MHz coupling strength.

being excited into the | 2 〉 state. In general, though, since the energy levels in the

resonator are equally spaced, this equivalence does not hold, as the resonator will

be able to store more than one photon by populating its higher excited levels. For

example, while a | 11 〉 state of two coupled qubits does not evolve, a | 11 〉 state of

a qubit-resonator system will result in the system swapping photons to transition

to the | 02 〉 state and back [Hofheinz et al., 2008].
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9.3.1 2D-Spectroscopy

To couple a set of qubits via a resonator, one needs to find a way to bias

these to the same frequency as the resonator. Due to variations in the fabrication,

the resonance frequency of the resonator might not be known exactly and thus

needs to be measured. Since, in the simplest design, the resonator cannot be read

out directly, this is best done with the 2D-Spectroscopy experiment described

in Chapter 8.12. In the dataset, the resonator will show up as a splitting, just

like the two-level states. The size of the splitting will depend on the coupling

strength between the qubit and the resonator. Since this coupling strength is

often comparable to the coupling strength between the qubit and a two-level

state, it might not be immediately obvious which splitting corresponds to the

resonator. In most cases, though, due to the random frequencies of the two-level

states, looking at the 2D-Spectroscopy of both qubits and finding a splitting at

the same frequency resolves this ambiguity.

9.3.2 Swapping a Photon into the Resonator

Since the resonator can accept many photons from an on-resonant microwave

drive, it is not possible to perform single qubit operations while the qubits are on

resonance with the resonator. Thus, the qubits need to be kept off resonance and
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Figure 9.8: Swapping Photon into Resonator – a) Sequence: The second qubit is
excited into the | 1 〉 state with a π-pulse (Xπ). The qubit is then hit with a bias
pulse of height VSwap that sweeps its resonance frequency closer to the resonator
for a time tSwap. Both qubits are measured (M). b) Swaps: The excitation in the
qubit swaps between the qubit and the resonator. If the bias pulse places the
qubit exactly on resonance with the resonator (dashed blue line), the swaps are
slowest and have the largest amplitude. At exactly the right time (blue circle),
the interaction causes the excitation to swap to and remain in the resonator.

swept on resonance only when needed. The easiest way to calibrate this sweep is

by preparing one qubit in the | 1 〉-state via a π-pulse and then adjusting the length

and amplitude of the bias pulse to transfer as much of the excitation as possible

out of the qubit and, in this case, into the resonator. A 2D-sweep of P| 01 〉 versus

bias pulse amplitude versus bias pulse length could look like Figure 9.8b. The

minimum in this dataset describes the optimal swap pulse.

9.3.3 Retrieving the Photon from the Resonator

This can now either be repeated for all qubits, or the other qubits’ bias pulses

can be calibrated to retrieve as much of the excitation as possible out of the
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Figure 9.9: Swapping Photon out of Resonator – a) Sequence: The second qubit
is excited into the | 1 〉 state with a π-pulse (Xπ). The qubit is the brought on
resonance with the resonator for the time needed to swap the excitation into the
resonator (S). The first qubit is then hit with a bias pulse of height VSwap that
sweeps its resonance frequency closer to the resonator for a time tSwap. Both qubits
are measured (M). b) Swaps: The excitation in the resonator swaps between
the first qubit and the resonator. If the bias pulse places the qubit exactly on
resonance with the resonator (dashed blue line), the swaps are slowest and have
the largest amplitude. At exactly the right time (blue circle), the interaction
causes the excitation to swap to and remain in the first qubit.
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resonator. The latter calibration is preferred as it simultaneously ensures that the

excitation indeed was swapped into the resonator rather than a two-level state.

For this, a second bias pulse is added to the sequence to sweep one of the other

qubits onto resonance with the resonator. The amplitude and length of this second

pulse can then be swept to maximize the excitation of the respective qubit. The

data looks like Figure 9.9b.

9.3.4 Timing Calibration

Due to the absence of measurement crosstalk, it is now no longer as straightfor-

ward to calibrate the timing of the bias channels for the different qubits. Instead,

the coupling of the excitation through the resonator needs to be used. If the sec-

ond pulse on the receiving qubit is placed progressively earlier, it will eventually

happen before the excitation is fully swapped into the resonator. At this point,

the measured final amplitude will decrease as more and more of the excitation

remains in the resonator after the swap is over. Since the swaps take a finite time,

though, this reduction in the final amplitude happens gradually and might show

features resulting from complicated dynamics while both qubits are on resonance

with the resonator. Therefore, this method only gives a rough calibration of the

timing delay. If the final sequence only requires a single coupling operation in one

direction, though, it does not matter too much if the excitation remains in the
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Figure 9.10: Resonator Swaps – a) Sequence: The second qubit is excited into
the | 1 〉 state with a π-pulse (Xπ). The qubit is brought on resonance with the
resonator for a time tDelay allowing it to swap the state back and forth between
the qubit and the resonator. After, the first qubit is brought on resonance for the
time needed for one full swap (S) to transfer the state from the resonator into the
first qubit. Finally both qubits are measured (M). b) Swaps: The final coupled
qubit state oscillates between the | 10 〉 and | 01 〉 state. The measurement error in
identifying the | 0 〉 state causes a non-zero probability for measuring | 11 〉. As a
function of time, T1 decays the signal and relaxes the qubits into the | 00 〉 state.

resonator for a while before it is retrieved, especially since the T1 of our current

coplanar resonators are much better (few µs) than the T1’s of the qubits.

9.3.5 Swaps

At this point it is possible to reproduce the time resolved swapping experiment

described above. In this case, though, the oscillation will be either between the
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Figure 9.11: Resonator T1 – a) Sequence: The second qubit is excited into the | 1 〉
state with a π-pulse (Xπ). The qubit is brought on resonance with the resonator
for the time needed for one full swap (S) to transfer the excitation into the res-
onator. There, the excitation is allowed to decay for a time tDelay. After, the first
qubit is brought on resonance for the time needed for one full swap (S) to transfer
the resonator state into the first qubit. Finally both qubits are measured (M). b)
T1: The excitation in the resonator decays exponentially.

source qubit and the resonator or between the resonator and the target qubit.

The former will reproduce the dataset from above more faithfully as the latter

will lead to some of the excitation sometimes remaining in the resonator at the

end. Varying the length of the first swap pulse in the last used sequence will yield

the familiar plot shown in Figure 9.10.

9.3.6 Resonator T1 and T2

To fully characterize the coupling, it is desirable in this case to also measure

the resonator’s T1 and T2. The T1 can be easily measured by delaying the retrieval

of the excitation from the resonator as shown in Figure 9.11. To measure the T2,
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a Ramsey-type experiment needs to be conducted where a π
2
-pulse prepares the

source qubit in a state in the X/Y-plane of the Bloch sphere. This state is then

swapped into the resonator. After a variable delay tRamsey, the state is retrieved

with another swap operation and the result is interfered with another π
2
-pulse.

The same concerns apply to the resulting data of this experiment as described for

the single qubit case.
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Chapter 10

Hidden Variable Theories versus

Quantum Mechanics

10.1 Introduction

10.1.1 Is Quantum Mechanics Incomplete?

Due to its radically new way of seeing the world, quantum mechanics was ini-

tially met with great skepticism from many renowned physicists, including Albert

Einstein. Specifically the idea that the world was inherently non-deterministic and

random did not sit well with Einstein and many of his colleagues. This dislike

culminated in Einstein’s famous statement: “I, at any rate, am convinced that
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He does not throw dice” [Einstein et al., 1971], which is commonly paraphrased

as “God does not play dice with the universe”. The fact that quantum mechan-

ics does not provide a way to predict outcomes of all possible measurements with

certainty lead to the suspicion that quantum mechanics had to be incomplete [Ein-

stein et al., 1935], i.e. the wave-function representation of a system’s state does

not contain all relevant information about the system. To complete the theory,

a way must be found to capture the missing information in extra variables, often

called “hidden variables” as they could not be measured. A deterministic alter-

nate theory to quantum mechanics would therefore be called a “Hidden Variable

Theory” (HVT).

10.1.2 Is Quantum Mechanics Wrong?

In 1964, John S. Bell investigated the theoretical implications of a possible

local HVT and showed that quantum mechanics could not be derived from such

a theory to arbitrary accuracy [Bell, 1964]. With this, a hidden variable theory

could no longer be a compatible extension to quantum mechanics, but would

instead refute quantum mechanics altogether.

226



10.1.3 Settling the Question Experimentally

J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt later formulated one

example of an incompatibility between a hidden variable theory and quantum

mechanics into an experiment that could test whether quantum mechanics was

indeed incomplete [Clauser et al., 1969]. In the proposed experiment a source is

used that produces pairs of particles (e.g. photons or ions) in a perfectly anti-

correlated state (e.g. opposite polarization or spin). For the purposes of illustra-

tion, the state of the entangled pair (particle A and B) can be taken to be the Bell

singlet state | 01 〉−| 10 〉√
2

. These particles are then physically separated by a large

enough distance to disallow any classical transfer of information between them

throughout the remainder of the experiment, i.e. dAB À c texpt. At those remote

locations the particles are then measured along random axes (e.g. projected onto

the X, Y, or Z-axis of the Bloch sphere). If the singlet state is re-expressed in

the basis of the measurement axes, it will still show perfect anti-correlation if the

axes are equal, e.g.:

|X−X+ 〉 − |X+X− 〉√
2

=

| 0 〉−| 1 〉√
2

⊗ | 0 〉+| 1 〉√
2

− | 0 〉+| 1 〉√
2

⊗ | 0 〉−| 1 〉√
2√

2

=
| 00 〉+| 01 〉−| 10 〉−| 11 〉

2
− | 00 〉−| 01 〉+| 10 〉−| 11 〉

2√
2

=
| 01 〉 − | 10 〉√

2
(10.1)

Thus, every time both particles happen to be measured along the same axis
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(independent of which axis it is), they will yield an opposite outcome with cer-

tainty. But since measurements along orthogonal axes do not commute, quantum

mechanics not only forbids a simultaneous prediction of the outcome of all pos-

sible measurements, but states that this information is not present in the state

of the two particles before the measurement. Instead, a measurement of particle

A instantaneously collapses the wave-function (changes the state) of particle B

despite the fact that they are causally disconnected by their distance. Einstein

called this non-local effect of entanglement the “spooky action at a distance”.

A possible local hidden variable theory would instead state that the particles

agree on all possible measurement outcomes before their separation. This agree-

ment would be contained in the state of the particles in extra unmeasured degrees

of freedom, the hidden variables. If the measurements of particles A and B are

limited to two possible choices of axes each, a and a′ as well as b and b′, and the

outcomes are encoded in binary (1 or 0), this agreement implies that the particles

have to choose at the time of separation to belong to one of the 16 possible pop-

ulations shown in Table 10.1. Next, one defines a correlation measurement Exy

which takes the value 1 if the outcome of a measurement of particle A along axis x

and particle B along axis y yields the same result for both particles and a value of

−1 for opposite results. For experimental implementation, the expectation value
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Table 10.1: Possible Populations for Locally Deterministic Particle Pairs

Pop. a a′ b b′ Eab Ea′b Eab′ Ea′b′ S

n0 0 0 0 0 1 1 1 1 2
n1 0 0 0 1 1 1 -1 -1 2
n2 0 0 1 0 -1 -1 1 1 -2
n3 0 0 1 1 -1 -1 -1 -1 -2
n4 0 1 0 0 1 -1 1 -1 -2
n5 0 1 0 1 1 -1 -1 1 2
n6 0 1 1 0 -1 1 1 -1 -2
n7 0 1 1 1 -1 1 -1 1 2
n8 1 0 0 0 -1 1 -1 1 2
n9 1 0 0 1 -1 1 1 -1 -2
n10 1 0 1 0 1 -1 -1 1 2
n11 1 0 1 1 1 -1 1 -1 -2
n12 1 1 0 0 -1 -1 -1 -1 -2
n13 1 1 0 1 -1 -1 1 1 -2
n14 1 1 1 0 1 1 -1 -1 2
n15 1 1 1 1 1 1 1 1 2
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of Exy is measured by expressing it in terms of the measured state probabilities:

Exy = P| 00 〉(x, y)− P| 01 〉(x, y)− P| 10 〉(x, y) + P| 11 〉(x, y) (10.2)

The correlation values Exy are then combined into a measure S using:

S = Eab + Ea′b − Eab′ + Ea′b′ (10.3)

The value of S for each of the possible pair-populations ni is either +2 for

i = 0, 1, 5, 7, 8, 10, 14, 15 or −2 for i = 2, 3, 4, 6, 9, 11, 12, 13. Thus, a measurement

of the expectation value of S over an ensemble of many particles drawn from these

populations will result in a measured value of S that is a weighted average of −2

and +2 with the weights given by the respective fractions ni:

S = 2 (n0 + n1 + n5 + n7 + n8 + n10 + n14 + n15)

−2 (n2 + n3 + n4 + n6 + n9 + n11 + n12 + n13) (10.4)

Since ni captures the probability of the particle pair belonging to population

i, it needs to fulfill:

0 ≤ ni ≤ 1 (10.5)

∑
i

ni = 1 (10.6)

This gives the following restriction for the measured value of S:

|S| ≤ 2 (10.7)
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This restriction is called the Bell inequality. The beauty of this inequality is

that its derivation does not assume anything about the used measurement axes

a, a′, b and b′ or even about the fractions ni, i.e. about the distribution of pairs

that the source produces. This allows for a lot of freedom in the implementation

and makes the inequality very robust against imperfections.

It turns out that there are choices for the possible measurement axes a, a′,

b and b′ for which quantum mechanics predicts a value that violates the Bell

inequality for certain pair states. To give an example, the source can be taken to

prepare particle pairs in the Singlet state |ψ 〉 = | 01 〉−| 10 〉√
2

and all measurements

can be confined to axes to the X/Z-plane. The measurement axes a, a′, b, and

b′ can then be specified by the angles they form with the Z-axis, α, α′, β, and

β′. Quantum mechanics predicts the probability P| 1 〉 of a positive outcome of a

measurement around an axis x of a single particle in state |ψ 〉 in the Z-basis | 0 〉

and | 1 〉 as:

P| 1 〉,ψ(θ) = |〈 θ |ψ 〉|2 =

∣∣∣∣
(

cos
θ

2
〈 0 |+ sin

θ

2
〈 1 |

)
|ψ 〉

∣∣∣∣
2

(10.8)

The probability P| 0 〉 of a negative outcome can be seen as the probability of a

positive outcome if the measurement had been in the opposite direction, i.e.:

P| 0 〉,ψ(θ) = P| 1 〉,ψ(θ + 180◦) (10.9)
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For a measurement of two particles in state |ψ 〉, this is extended to:

P| 11 〉,ψ(x, y) = |〈x, y |ψ 〉|2

=
∣∣∣
((

cos
x

2
〈 0 |+ sin

x

2
〈 1 |

)
⊗

(
cos

y

2
〈 0 |+ sin

y

2
〈 1 |

))
|ψ 〉

∣∣∣
2

=
∣∣∣
(
cos

x

2
cos

y

2
〈 00 |+ sin

x

2
cos

y

2
〈 10 |

+ cos
x

2
sin

y

2
〈 01 |+ sin

x

2
sin

y

2
〈 11 |

)
|ψ 〉

∣∣∣
2

(10.10)

Applied to the Singlet state | 01 〉−| 10 〉√
2

, this gives:

P| 11 〉,ψ(x, y) =
∣∣∣
(
cos

x

2
cos

y

2
〈 00 |+ sin

x

2
cos

y

2
〈 10 |

+ cos
x

2
sin

y

2
〈 01 |+ sin

x

2
sin

y

2
〈 11 |

) | 01 〉 − | 10 〉√
2

∣∣∣∣
2

=
1

2

(
sin

x

2
cos

y

2
− cos

x

2
sin

y

2

)2

(10.11)

P| 00 〉,ψ(x, y) = P| 11 〉,ψ(x + 180◦, y + 180◦)

=
1

2

(
− cos

x

2
sin

y

2
+ sin

x

2
cos

y

2

)2

(10.12)

P| 01 〉,ψ(x, y) = P| 11 〉,ψ(x + 180◦, y)

=
1

2

(
cos

x

2
cos

y

2
+ sin

x

2
sin

y

2

)2

(10.13)

P| 10 〉,ψ(x, y) = P| 11 〉,ψ(x, y + 180◦)

=
1

2

(
− sin

x

2
sin

y

2
− cos

x

2
cos

y

2

)2

(10.14)
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This leads to the correlation values:

〈Exy 〉 = P| 00 〉,ψ(x, y)− P| 01 〉,ψ(x, y)− P| 10 〉,ψ(x, y) + P| 11 〉,ψ(x, y)

= 2 cos2 x

2
+ 2 cos2 y

2
− 4 cos2 x

2
cos2 y

2

−4 sin
x

2
cos

x

2
sin

y

2
cos

y

2
− 1 (10.15)

If the angles are chosen for example as α = −135◦, α′ = +135◦, β = 0◦, and

β′ = −90◦, quantum mechanics therefore predicts the following expectation value

of S:

〈S 〉 = 〈Eαβ 〉+ 〈Eα′β 〉 − 〈Eαβ′ 〉+ 〈Eα′β′ 〉 = 2
√

2 ≈ 2.8284 (10.16)

This value clearly violates the Bell inequality. Thus, quantum mechanics predicts

that an experimental measurement of S can potentially yield a value > 2 and if

it does, the idea of a possible local hidden variable theory has to be rejected.

10.2 Experimental Results

Many experiments have meanwhile implemented versions of this test and ob-

tained values for S that violated the Bell inequality by many standard deviations.

Despite some potential points of criticism, this, together with quantum mechanic’s

other predictive successes, has lead to a broad acceptance of the theory.
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10.2.1 Photons

The first and most notable experiments to violate the Bell inequality were

based on measurements of entangled pairs of polarized photons. The sources used

to create the pairs produced a random stream of photon pairs and the measure-

ment was based on coincidence detection of photons received by a detector behind

a polarization filter. This setup necessitated the development of modified versions

of the Bell inequality, like the CH74 [Clauser and Horne, 1974] inequality. This

is due to the fact that the unpredictability of the photon source effectively makes

it impossible to ever identify a | 00 〉 measurement and the inefficiencies of the

detectors make | 01 〉 or | 10 〉 measurements highly unreliable.

Using the CH74 inequality, Aspect et al. showed a violation of the inequality by

9 standard deviations in 1981 [Aspect et al., 1981]. Meanwhile, the experimental

setups have become so optimized that more recent experiments are trying to obtain

a value of S as close as possible to the quantum mechanical limit of 2
√

2. For

example, in 2005 J.B. Altepeter reported a value of S = 2.7252± 0.000585, which

corresponds to a violation by 1239 standard deviations [Altepeter et al., 2005].

Unfortunately, due to the non-ideal detector efficiencies, these types of exper-

iments are vulnerable to criticism. They suffer from a flaw called the “Detection

Loophole” [Pearle, 1970], which is based on the fact that the photons besides
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“choosing” between polarizations also have the option to not be detected at all.

If two photon pairs are emitted by the source in close succession and in each

pair one photon “decides” to remain undetected, the remaining two photons can

incorrectly be attributed as belonging to the same pair.

10.2.2 Ions

To close the detection loophole, M.A. Rowe et al. re-implemented the exper-

iment using entangled pairs of 9Be+ ions [Rowe et al., 2001]. Since these ions

could be sourced predictably, one pair at a time, this allowed the group to use a

complete set of measurements of all four possible outcomes. The group obtained

a value for S of S = 2.25 ± 0.03, also disproving the existence of local hidden

variable theories in favor of quantum mechanics.

This experiment was still susceptible to criticism, since the ions remained

in relatively close proximity during the entire time of the experiment. Thus,

one could postulate an interaction between the ions at the time of measurement

that leads to an apparent higher correlation. This flaw is called the “Locality

Loophole”.
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10.2.3 Ion and Photon

In the attempt to close both loopholes, D.L. Moehring published an experi-

ment in 2004 that used an atom and a photon as the entangled pair [Moehring

et al., 2004]. The high detection efficiency of the measurement of the atom’s state

combined with the theoretical possibility to remove the photon far from the atom

could eventually allow this approach to implement a loophole-free Bell inequality

test. But due to limitations of the experiment, the group was not able to close

the locality loophole in this version of the experiment. The group reported an

S-value of S = 2.218± 0.028.

10.3 The Bell Inequality versus Phase Qubits?

Given the fact that the overwhelming evidence [Weihs et al., 1998, Roos et al.,

2004] has effectively settled the question of whether a local hidden variable theory

should replace quantum mechanics, one might ask why another implementation

of a test of Bell inequality in superconducting qubits is desirable, especially since

such an experiment would most likely also be susceptible to the locality loophole.

The argument in favor of the experiment is two-fold:

• On the one hand, it would be the first implementation of the test using

a macroscopic quantum state. All experiments to date have relied on mi-
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croscopic quantum systems like atoms, ions, photons, etc. The quantum

state of a superconductor can extend over many hundreds micrometers and

involves a collection of around a billion electrons.

• On the other hand, a successful implementation of this experiment will

provide strong evidence that superconducting qubits can indeed show non-

classical behavior and are thus a viable candidate for the implementation of a

quantum computer [Clarke and Wilhelm, 2008]. In addition, the operations

required for a successful implementation cover almost all of the DiVincenzo

criteria (except scalability) and the experiment places extremely high de-

mands on the fidelities of these operations. Thus, the S-value obtained can

be used as a very powerful single-number benchmark for the overall quality

of the qubit pair.
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Chapter 11

Implementing the Bell Test

Due to the inherent freedom in the circuit design, a Bell inequality test with

superconducting phase qubits can be implemented in several different ways. Here,

two approaches are investigated that differ primarily in the coupling scheme used

to prepare the entangled state of a pair of qubits. In one case, the coupling

is achieved with an always-on coupling capacitor, while in the other a coplanar

resonator is used to act as a band-pass filter for the coupling to eliminate mea-

surement crosstalk. Measurement crosstalk is a major concern for testing the

Bell inequality as it actively introduces correlations into the results, an effect that

needs to be avoided as it constitutes a major loophole [Kofman and Korotkov,

2008b].
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11.1 State Preparation

Since the ability for quantum states to violate the Bell inequality is rooted

in their entanglement, the first step to any implementation is the generation of

a highly entangled state between two qubits, i.e. building the source of particle

pairs.

11.1.1 Initialization in the | 10 〉 state

The sequence begins by initializing the qubit pair into the | 10 〉-state. For this,

both qubits are first allowed to reset into the ground state | 00 〉 via energy decay.

This is followed by a π-pulse on one of the qubits to create the state | 10 〉. The

procedure for calibrating the π-pulse is outlined in Chapter 8.7.

11.1.2 Entangling the Qubits – Capacitive Coupling

Next, the qubit pair needs to be entangled using a coupling operation. The

procedure for this varies depending on the coupling scheme. For always-on capac-

itive coupling, the qubits are brought on resonance with each other as described

in Chapters 9.2.2 and 9.2.4 for enough time to allow for half of a swap operation.

This leads to the application of the
√

i− Swap gate which (ideally) leaves the

qubits in the | 10 〉 − i| 01 〉 state. Even though this state is not quite the Bell
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singlet state due to the extra factor of i, it nevertheless shows the same degree of

entanglement. Since the initial state of the qubit pair prepared by the source is

not a condition used in the derivation of the Bell inequality, it is not of fundamen-

tal importance that the state created by the “particle source” yields qubit pairs

in the Bell singlet state. In fact, depending on the specifics of the experiment’s

imperfections, a different initial state might yield a higher S-value.

Simulations and experiments show that imperfections in the state preparation

caused by sweeping the qubits on or off resonance are more detrimental to the

value of S than imperfections caused by an impaired π-pulse due to the qubits

being coupled during the pulse. Thus, it turns out to be beneficial for the outcome

and the simplicity of the experiment to begin the sequence with both qubits

immediately on resonance and applying the π-pulse while the coupling is on.

This works due to the fact that the π-pulse is shorter than the time-scales of the

coupling operation. The final entangling sequence for the qubit pair source using

always-on capacitive coupling is shown in Figure 11.1a.

11.1.3 Entangling the Qubits – Resonator Coupling

The pair preparation using a resonator based coupling element requires a se-

quence that is slightly different from the simple capacitive coupling. This is due to

the fact that the resonator can itself store excitations which impede the entangling
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Figure 11.1: Bell State Preparation – a) Capacitive coupling: The qubits are
biased on resonance. One of the qubits is excited into the | 1 〉 state with a π-
pulse. The qubits are allowed to interact for a time t√i−Swap resulting in the
state | 10 〉 − i| 01 〉. b) Resonator coupling: One of the qubits is excited into the
| 1 〉 state with a π-pulse and brought on resonance with the resonator for a time
t√i−Swap to entangle the qubit with the resonator. The other qubit is brought on
resonance with the resonator for a time ti−Swap to transfer the entanglement to
that qubit. This leaves the qubit system in the state | 10 〉 + ei α| 01 〉, with the
unknown phase α caused by the Z-rotations inherent in the bias changes needed
to bring the qubits on and off resonance with the resonator.
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process of the qubits in two ways:

• If the circuit is driven with microwaves at a frequency that matches that

of the resonator, the resonator will begin accepting photons as described in

Chapter 3.3. This leads to complicated entangled states between the qubits

and the resonator that make it very hard to create a clean entanglement

only between the two qubits. Thus, the qubits need to be prepared in the

| 10 〉 state while they are biased at a frequency far away from the resonator.

• If both qubits are placed on resonance with the resonator at the same time,

the interaction between the three systems also leads to very complicated

dynamics that will prevent clean qubit-only entanglement. Therefore, the

qubits need to interact with the resonator one after the other to create the

state.

Overall, the entangling sequence consists of bringing the excited qubit on reso-

nance with the resonator for a time that yields half a swap operation and then

bringing the second qubit on resonance for a full swap time, as indicated in Fig-

ure 11.1b. The half-swap creates the entangled state | 10 〉 − i| 01 〉 between the

first qubit and the resonator, while the full-swap transfers the resonator’s share of

the entanglement into the other qubit, leaving the resonator in the ground state

and the two qubits in the state | 01 〉+ eiα| 10 〉. The phase factor eiα results from
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Table 11.1: Entangled State Density Matrix – Raw

ρraw | 00 〉 | 01 〉 | 10 〉 | 11 〉

| 00 〉 0.151 −0.005 + 0.034i 0.041 + 0.034i −0.003 + 0.005i
| 01 〉 −0.005− 0.034i 0.369 −0.380− 0.000i −0.030− 0.012i
| 10 〉 0.041− 0.034i −0.380 + 0.000i 0.428 −0.004− 0.054i
| 11 〉 −0.003− 0.005i −0.030 + 0.012i −0.004 + 0.054i 0.051

Table 11.2: Entangled State Density Matrix – Corrected for Visibilities

ρcorr | 00 〉 | 01 〉 | 10 〉 | 11 〉

| 00 〉 0.135 −0.006 + 0.040i 0.046 + 0.037i −0.003 + 0.006i
| 01 〉 −0.006− 0.040i 0.387 −0.431 + 0.000i −0.034− 0.015i
| 10 〉 0.046− 0.037i −0.431− 0.000i 0.449 −0.004− 0.061i
| 11 〉 −0.003− 0.006i −0.034 + 0.015i −0.004 + 0.061i 0.029

the fact that the pulses that sweep the first qubit off and the second qubit on

resonance also cause Z-rotations.

11.1.4 Verifying Entanglement – State Tomography

At this point, for either coupling scheme, the qubit pair should be prepared

in a highly entangled state similar to the Bell singlet. To verify the quality of the

created state, one can employ a technique called “Quantum State Tomography”
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[Steffen et al., 2006] (the details of which are beyond the scope of this thesis) to

measure not just the fractional populations of the possible states, but the entire

density matrix. The result is shown in Table 11.1 for the entangled pair created

using the resonator coupling scheme.

Comparing this density matrix to the ideal Bell singlet state | 10 〉−| 01 〉 yields

a trace-fidelity of F(ρraw) =
√

Tr(〈Singlet |ρraw|Singlet 〉) = 88.3%. Calculating

the “Entanglement of Formation” [Hill and Wootters, 1997] (EoF) of the state

yields a value of EoF(ρraw) = 0.378. The EoF gives a monotonic measure of the

entanglement shown by the coupled quantum state. It ranges from 0 for classical

states to 1 for maximally entangled states. Intuitively, it gives the inverse of the

number of identical copies of the state needed that would allow a purification

protocol to combine the copies into a maximally entangled state.

To get a better understanding of the true state of the coupled pair, the data can

be corrected for measurement visibilities to obtain the result shown in Table 11.2.

This state shows a trace-fidelity of F(ρcorr) =
√

Tr(〈Singlet |ρcorr|Singlet 〉) =

92.1% and an entanglement of formation of EoF(ρcorr) = 0.449.
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Figure 11.2: Bell Measurements – a) Rotation: Since the tunneling measurement
always measures the qubits along the Z-axis, a measurement along a different axis
needs to be emulated by rotating that axis onto the Z-axis first. b) Measurement
sequence: The entangled qubits are rotated and then measured.

11.2 Correlation Measurements

The entangling sequence can now be repeated many times over to predictably

yield an ensemble of entangled qubit pairs one at a time. These pairs then need

to be put through the different measurements to obtain values for the correlation

measures Exy and S as described above. The measurements need to be executed

in two steps, though, since the tunneling measurement scheme used to read out

the qubits always measures the Z-component of the qubit state and therefore does

not directly allow for the needed measurements around arbitrary axes.
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11.2.1 Bell Rotations

The first step in the measurement consists of applying a rotation operation to

each qubit that rotates the qubits’ states along the Bloch sphere in such a manner

that the axis along which the measurement is to be done is moved onto the Z-axis.

As described before, this is achieved with a microwave pulse of the right phase

and amplitude as indicated in Figure 11.2b. For different experimental runs, i.e.

different pairs from the ensemble, the rotation is adjusted to correspond to the

axes a, a′, b, and b′ as defined in the previous chapter.

11.2.2 Tunneling Measurement

In the second step, the usual tunneling measurement is used to measure the

state along the Z-axis. Each experimental run will then yield one of the four states

| 00 〉, | 01 〉, | 10 〉 or | 11 〉. Their occurrences are counted for the different rotations

a, a′, b, and b′ and their relative rates for each axes combination are interpreted

as the probabilities P| 00 〉(a, b), P| 00 〉(a′, b), P| 00 〉(a, b′), P| 00 〉(a′, b′), P| 01 〉(a, b), etc.

These probabilities are combined into the correlation measures Exy according to

Equation 10.2, which in turn give the value for S (Equation 10.3).
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11.2.3 Statistical Analysis

For the final value of S to carry meaning, it needs to be supplemented with an

estimate of its standard deviation σS. To come up with a meaningfull estimate

of this standard deviation turns out to be somewhat involved. A simple-minded

approach is to break up an experiment consisting of N runs into n sections of N
n

runs each. For each section i, an S-value Si can be calculated and the resulting

sample set can be statistically analyzed to obtain an estimator for the sample

mean S, the sample standard deviation σSi
, and the resulting standard error of

the sample mean σS:

S =
1

n

n∑
i=1

Si (11.1)

σSi
=

√√√√ 1

n− 1

n∑
i=1

(
Si − S

)2
(11.2)

σS =
σSi√

n
(11.3)

The problem with this analysis is that it assumes the errors of Si to be uncorre-

lated, an assumption that does not hold in the presence of systematic errors in

the experiment like drift and 1/f noise. This leads to different estimates of σS

for different choices for the number of sections n. In reality, the overall standard

error in S as a function of sampling-time is the result of two competing effects:

• S is calculated from a linear combination of 16 probabilities (P| 00 〉(ab), . . . ,
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P| 11 〉(a′b′)) estimated by sampling four multinomial distributions. As the

number of samples increases, the statistical sampling noise goes down and

the estimates of the probabilities becomes better following σp =
√

p(1−p)
n

.

• Since the experiment is subject to 1/f noise, the drift in the “true” value

of S over the course of the experiment becomes worse and worse as the

sampling time is increased.

For small sample sizes, the standard error on S is therefore limited by statistical

sampling noise, while for large sample sizes, the error will be limited by drift of S.

Thus, there will exist a certain sample size n∗ for which the two effects become

equal and the error switches from being dominated by sampling noise to being

dominated by experimental drifts. For sample sizes smaller than n∗, the above

described simple-minded analysis approach is valid, while for sample sizes larger

than n∗, this approach can severely underestimate the standard error σS.

To avoid having to model the statistical effects of 1/f noise on S, the data

in this thesis will be presented as a collection of several measurements of S with

individual estimates of σS, each of which is based on data taken over short enough

periods to guarantee sample sizes smaller than n∗.
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11.3 Calibration

The most difficult part of implementing any qubit experiment is that of cali-

brating the different control signals. The beauty of the Bell inequality used in this

experiment is that its derivation is independent of almost all of these calibrations.

If a hidden variable theory existed, the inequality would have to hold for any

prepared state of the qubit pair as long as the preparation is entirely independent

of the choice of measurement axes. It would also have to hold for any choice of

measurement axes a, a′, b, and b′. It would even have to hold in the presence of

energy relaxation, dephasing, and reduced measurement visibility as long as these

effects are uncorrelated with the choice of measurement axes and do not introduce

artificial correlations into the qubit pair’s state [Kofman and Korotkov, 2008a].

11.3.1 Global Optimization

This implies that it is not necessary to calibrate the relevant experimental

parameters in detail independently, but instead gives the freedom to include most

of them in a global optimization that maximizes (minimizes) the measured value

of S. The parameters that can be included in this optimization are given in Tables

11.3, 11.4, and 11.5.

For the optimization, the experiment is simply viewed as an oracle that evalu-
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Table 11.3: Sequence Parameters – Capacitive State Preparation

Name Description Comments

ΦA Qubit A flux bias Places qubit far from TLS’s
ΦB Qubit B flux bias Places qubits on resonance
tπ Length of π-pulse Much less than t√i−Swap

Aπ Amplitude of π-pulse Sufficiently small to avoid | 2 〉-state errors
fπ Frequency of π-pulse Corrects for AC stark shift

→ function of Aπ

φπ Phase of π-pulse Shouldn’t matter
t√i−Swap Swap time Can be absorbed into rotation pulse delay

ates S as a function of all free parameters. Since it is not possible to measure the

derivative of S, the optimization is limited to “Direct Search” methods that do not

rely on the knowledge of such derivatives. The algorithms to be used need to fur-

ther be evaluated with respect to their tolerance for noisy data. Three algorithms

seem to be good candidates for this optimization: Manual search, Nelder-Mead

Simplex Optimization [Nelder and Mead, 1965], and Particle Swarm Optimization

[Eberhart and Kennedy, 1995].

11.3.2 Manual Search

Manual search, as the name suggests, involves the experimenter probing the

oracle manually in order to gain an understanding of the behavior of S to eventu-
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Table 11.4: Sequence Parameters – Resonator State Preparation

Name Description Comments

ΦA Qubit A flux bias Places qubit far from TLS’s
and resonator

ΦB Qubit B flux bias Places qubit far from TLS’s,
resonator, and other qubit

tπ Length of π-pulse Short
Aπ Amplitude of π-pulse Sufficiently small to avoid

| 2 〉-state errors
fπ Frequency of π-pulse Corrects for AC stark shift

→ function of Aπ

φπ Phase of π-pulse Shouldn’t matter
dt√i−Swap Entangling pulse delay Ensures π-pulse is done
t√i−Swap Entangling time Maximizes entaglement
A√

i−Swap Entangling pulse amplitude Brings qubit and resonator
on resonance

O√
i−Swap Entangling pulse overshoot Adds delta function to

beginning and end of pulse to
compensate for qubit slowly
moving onto resonance

dti−Swap Swap pulse delay Ensures entangling is done
ti−Swap Swap time Adjusted for maximal state

transfer
Ai−Swap Swap pulse amplitude Brings qubit and resonator

on resonance
Oi−Swap Swap pulse overshoot Compensates for qubit slowly

moving onto resonance
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Table 11.5: Sequence Parameters – Correlation Measurement

Name Description Comments

dtA Qubit A rotation delay Ensures state prep. is done
ta Length of a-rotation pulse As short as possible
Aa Amplitude of a-rotation pulse Determines angle α
fa Frequency of a-rotation pulse Corrects AC stark shift → fn of Aa

φa Phase of a-rotation pulse Shouldn’t matter
ta′ Length of a′-rotation pulse As short as possible
Aa′ Amplitude of a′-rotation pulse Determines angle α′

fa′ Frequency of a′-rotation pulse Corrects AC stark shift → fn of Aa′

φa′ Phase of a′-rotation pulse Should equal φa

dtMPA
Qubit A meas. pulse delay Ensures rotation pulse is done

AMPA
Qubit A meas. pulse ampl. Maximizes visibility

tMPA
Qubit A meas. pulse length Maximizes visibility

(cap. coupl.: Minimizes crosstalk)
dtB Qubit B rotation delay Ensures state prep. is done
tb Length of b-rotation pulse As short as possible
Ab Amplitude of b-rotation pulse Determines angle β
fb Frequency of b-rotation pulse Corrects AC stark shift → fn of Ab

φb Phase of b-rotation pulse Should result in same phase as φa

(corrects for cable lengths)
tb′ Length of b′-rotation pulse As short as possible
Ab′ Amplitude of b′-rotation pulse Determines angle β′

fb′ Frequency of b′-rotation pulse Corrects AC stark shift → fn of Ab′

φb′ Phase of b′-rotation pulse Should equal φb

dtMPB
Qubit B meas. pulse delay Ensures rotation pulse is done

(cap. coupl.: Minimizes crosstalk)
AMPB

Qubit B meas. pulse ampl. Maximizes visibility
tMPB

Qubit B meas. pulse length Maximizes visibility
(cap. coupl.: Minimizes crosstalk)
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ally determine an optimal value for each parameter. The easiest way to implement

this approach is by varying one parameter at a time while holding all other pa-

rameters fixed to find a local optimum along the resulting line through parameter

space. This process can be iteratively repeated for all free parameters.

The main benefit of this method of optimization is that it provides a rough

intuitive understanding of the behavior of S which can be used to expose flaws

in the experimental setup or potential loopholes. This method of optimization,

if implemented correctly, is also fairly immune to wasting time in parts of the

parameter space that are known to have no hope of yielding a good outcome.

There also are three shortcomings to this method:

• For one, this method becomes very hard to implement if different parameters

influence the value of S in a correlated way. For example, a change in the

bias pulses used to sweep the qubits on or off resonance will cause a change

in the Z-rotation associated with the pulse, which will in turn affect the

optimal value for the phase of the Bell rotation pulses.

• The duty cycle with which this method will be able to query the oracle is

fairly low as each completed run is followed by a period of analysis, parame-

ter adjustment, and preparation for the next run. Not only does this reduce

the rate at which information is learned about S, but the irregular breaks in
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the data taking can lead to thermal drifts between runs that cause changes

in the optimal parameter values.

• The method is extremely labor intensive.

11.3.3 Nelder-Mead Simplex Algorithm

A very common Direct Search optimization algorithm is the Nelder-Mead Sim-

plex algorithm [Nelder and Mead, 1965]. It is based on the definition of a simplex,

i.e. a geometrical object in the n-dimensional parameter space consisting of n + 1

vertices. Each vertex is assigned a fitness value which is given by the S-value

reported by the oracle for the parameters that specify the position of the vertex.

The vertex with the lowest fitness (worst S-value) is then mirrored around the

“center of gravity” (average position) of all other vertices. Its fitness is evaluated

at the new position and compared to the fitness of all other vertices. If the mod-

ified vertex has a better fitness than all other vertices, it is moved even further

in the same direction. If the vertex remained the worst in the set, it is moved

closer towards the center of gravity of the remaining vertices. If it still remains

the worst, the entire simplex is shrunk towards the current best vertex.

This algorithm performs extremely well for functions with only a few small

local minima. Most common optimization routines included in software pack-
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ages are based on this method, including Matlab’s “fminsearch” function. The

algorithm also handles noise reasonably well.

The major drawbacks of the simplex method are that its performance is ex-

tremely dependent on the choice of the initial simplex, which is not always easy

to do right. It also gets stuck fairly easily in local minima. Furthermore, the

algorithm interleaves function evaluations with decision steps that are based on

the results of these function evaluations. This makes it impossible to pipeline the

evaluations except for the rare cases when all vertices need to be reevaluated. This

leads to a low and somewhat random experimental duty cycle and thus potential

thermal drifts.

11.3.4 Particle Swarm Optimization

Relatively recently, an attempt to model social decision making behavior led

to the invention of a new class of Direct Search algorithms called “Particle Swarm

Optimization” [Eberhart and Kennedy, 1995]. These algorithms are based on the

random placement of “particles” throughout the parameter space. Each particle

probes the fitness of the function at its position and keeps track of the position

of the best fitness it has ever observed. The particles’ positions are updated

sequentially by simulating their motion through parameter space under forces

that accelerate them randomly towards the current globally known best position
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and back towards the position of their personal best fitness. The particles are

assigned a uniform inertial mass to favor exploration, and the space is given a

viscosity to eventually damp the motion and cause convergence.

Particle Swarm Optimization is considered a class of algorithms, as there are

many possible ways in which the algorithm can be implemented. Choices include

whether the particles’ knowledge of the global best position is limited to infor-

mation about only a few neighboring particles, whether particles get added to

or removed from the swarm dynamically, whether other points of attraction or

repulsion are kept, and the exact values of the particles’ mass and the space’s

viscosity. This flexibility makes it possible to customize the algorithm to yield

optimal behavior for the circumstances of the given problem.

Particle Swarm Optimization has several major advantages. It is very robust

against noisy data and getting stuck in local minima (if the number of particles,

their mass and the vicosity are chosen right). It can be modified to allow for

pipelining with 100% function evaluation duty cycle. The modification requires a

slight relaxation of the definition of global best fitness in that it must exclude the

new values for points that are currently being evaluated. This restriction does not

noticeably reduce the performance of the algorithm, though. Last, but not least,

it is extremely easy to implement and has very little overhead.

One disadvantage is the number of function evaluations that the algorithm
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requires to converge. Since the algorithm has much less built-in “smart” deci-

sion making, it needs to draw its information from more data. But due to its

pipelineability and thus higher duty cycle, it does not run for much longer than

the Nelder-Mead Simplex algorithm before it converges.

11.4 Experimental Results

Even though the main result of the experiment consists of only the obtained

S-value together with its standard deviation, this number needs to be supple-

mented with several datasets that test the experiment for flaws. The most useful

of this additional information are the parameters of the sequence found by the op-

timization, since angles that match the theoretically expected values are a strong

indication that the implementation can be trusted. To claim a reliable violation,

the dataset should further address all known mechanism for the introduction of

artificial correlations during the time of measurement, e.g. microwave and mea-

surement crosstalk. Additional checks that show the variation of S as a function

of certain parameters can be of assistance in debugging the experiment, but are

of lesser importance for proving its correctness due to the robustness of the in-

equality. Finally, to explain the obtained S-value, the performance parameters of

the involved qubits (and resonator), like T1 and T2, can be used in a simulation
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Table 11.6: Qubit Sample Parameters – Capacitive Coupling Implementation

Parameter Value

Qubit A:
T1 340 ns
Visibility 85.8%

Qubit B:
T1 480 ns
Visibility 85.3%

Coupling:
Swap Frequency 11.4 MHz
Measurement Crosstalk ∼ 10%

to create an error budget for the experiment.

11.4.1 Capacitive Coupling

For the capacitively coupled sample, the optimization yielded an S-value of

1.816 (see Table 11.7) for the sequence parameters shown in Table 11.8. As ex-

pected from theory, the two measurements on each qubit are roughly perpendicu-

lar (α−α′ ≈ 73◦−(−16◦) = 89◦ and β−β′ ≈ 168◦−82◦ = 86◦). The phases of the

rotation pulses, i.e. the planes in which the qubits are measured, seem less correct

at first glance. But it is hard to come to a reliable conclusion since φa′ and φb
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Table 11.7: Bell Violation Results – Capacitive Coupling Implementation

Parameter ab a′b ab′ a′b′

P| 00 〉 0.262 0.290 0.111 0.325
P| 01 〉 0.101 0.072 0.297 0.128
P| 10 〉 0.140 0.184 0.356 0.119
P| 11 〉 0.497 0.454 0.237 0.427

E 0.518 0.489 -0.305 0.505

S 1.816

have little influence on the state as their associated rotations are close to 0◦ and

180◦ respectively (−16◦ and 168◦). The two remaining phases are not expected

to have a predictable relationship since they include the phase difference caused

by the different electrical delays in the two bias lines. The coupling time t√i−Swap

of 6.0 ns can be understood by realizing that the qubits are on resonance during

the π-pulse and during the Bell rotations. If one assumes that this contributes

roughly half of the pulse length to the coupling time, this yields a total coupling

time of 20.0 ns
2

+ 6.0 ns + 16.0 ns
2

= 24.0 ns. Given the coupling strength of 11.4 MHz

(see Table 11.6), one would expect t√i−Swap = 1
4×11.4MHz

= 21.9 ns, a reasonably

good match.

Since this experiment did not yield the desired S-value greater than 2.0, it is
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Table 11.8: Optimization Results – Capacitive Coupling Implementation

Parameter Value Comments

ΦA −174.4 mV
ΦB 384.1 mV
tπ 20.0 ns Overall length of Slepian pulse

(∼ 10.0 ns FWHM)
Aπ 0.635 Corresponds to ∼ 180◦

fπ, fa, fa′ , fb, fb′ 5.477 GHz
φπ −11◦

t√i−Swap 6.0 ns
dtA, dtB 0.0 ns
ta, ta′ , tb, tb′ 16.0 ns Overall length of Slepian pulse

(∼ 8.0 ns FWHM)
Aa 0.320 Corresponds to ∼ 73◦

φa −112◦

Aa′ −0.070 Corresponds to ∼ −16◦

φa′ −107◦

dtMPA
, dtMPB

3.0 ns Includes cable delay compensation
AMPA

0.336
tMPA

, tMPB
3.0 ns + 40.0 ns 3.0 ns flattop followed by 40.0 ns ramp

Ab 0.740 Corresponds to ∼ 168◦

φb −129◦

Ab′ 0.360 Corresponds to ∼ 82◦

φb′ 136◦

AMPB
0.500
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Table 11.9: Error Budget – Capacitive Coupling Implementation

Error Contribution New S

Theoretical 2.828

Ideal simulation 0.000 2.828
T1 decay 0.133 2.695
Visibility 0.512 2.183
Finite pulses during always-on coupling 0.116 2.067
Measurement crosstalk 0.240 1.827

Experimental result (T2, calibrations, . . . ) 1.816

useful primarily as a tool for understanding the error mechanisms that led to the

lower number. With the help of the numerical simulations described in Chapter 3.3

it is possible to create an error budget that identifies the contributions of different

imperfections to the reduction of the S-value. The results of this analysis are

shown in Table 11.9. Even though T1 decay is commonly cited as the biggest

challenge faced by the field, for this experiment it has a relatively small effect

since the overall sequence is fairly short. The biggest reduction results from the

problems associated with the measurement, specifically the low visbilities and

high crosstalk. Measurement crosstalk affects the experiment in an additional

way since it actively introduces correlations into the result. It can be shown that
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this leads to a modification of the inequality that raises the bound on the value

of S that can be achieved with a locally realistic hidden variable theory [Kofman

et al., 2007]:

−2 + 4 min{pa
c , pb

c} ≤ S ≤ 2 + 2
∣∣pa

c − pb
c

∣∣ (11.4)

Here, pa
c (pb

c) is the classical probability that a tunneling of qubit A (B) causes a

tunneling of qubit B (A), i.e. the probability that the state | 10 〉 (| 01 〉) is measured

as | 11 〉 for reasons other than the non-ideal measurement fidelity of qubit B (A).

This effect on the inequality itself makes measurement crosstalk very unde-

sirable as it significantly complicates the justification of a claimed violation. To

address this issue, a different coupling scheme can be used that allows the qubits to

be decoupled during the measurement. Since controllable coupling was not avail-

able at the time of the implementation of this experiment, a temporary solution

can be found by coupling the qubits through a coplanar resonator.

11.4.2 Resonator Coupling

Resonant buses are frequently used in other qubit designs (like the charge

qubit) to enable coupling despite the qubits’ high impedance [Majer et al., 2007].

Here, the purpose of the resonator instead is to act as a band-pass filter for

the coupling. Since the qubits are far off resonance from the pass-band during
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Table 11.10: Bell Violation Results Total – Resonator Coupling

Parameter ab a′b ab′ a′b′

P| 00 〉 0.4162 0.3978 0.1046 0.3612
P| 01 〉 0.1575 0.1759 0.3700 0.1136
P| 10 〉 0.0852 0.0731 0.3904 0.1185
P| 11 〉 0.3412 0.3531 0.1350 0.4066

E 0.5147 0.5019 -0.5208 0.5358

S 2.0732

measurement, this shields them very effectively from unwanted excitations. Mea-

surement crosstalk as explained in Section 3.4.2 thus is small. In fact, for the

same coupling strength, this coupling method yields about two orders of mag-

nitude less measurement crosstalk. In addition, this allows for the qubits to be

strongly decoupled during the π and Bell rotation pulses. Not only does this ad-

dress one additional error mechanism in the error budget above (the errors caused

by always-on coupling), it also makes the experiment conceptually much cleaner

as the qubits can be assumed to be much more causally disconnected during the

measurement as required by the derivation of the inequality.

As shown in Table 11.10, this experiment yielded an S-value of 2.0732 for the

sequence parameters shown in Table 11.11 suggesting a successful violation of the
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Table 11.11: Optimization Results – Resonator Coupling Implementation

Parameter Value Comments

ΦA −213.0 mV
ΦB −304.95 mV
tπ 8.25 ns FWHM of Gaussian pulse
Aπ 0.293
fπ 6.659 GHz
φπ 0◦

dt√i−Swap −0.6 ns
t√i−Swap 9.92 ns
A√

i−Swap −0.281
O√

i−Swap 0.0
dti−Swap 0.0 ns
ti−Swap 12.43 ns
Ai−Swap −0.218
Oi−Swap −0.3
dtA, dtMPA

, dtMPB
−1.0 ns

ta, ta′ 6.5 ns FWHM of Gaussian pulse
Aa 0.379 Corresponds to ∼ 149◦

fa, fa′ 6.750 GHz
φa 185◦

Aa′ 0.442 Corresponds to ∼ 156◦

φa′ 13◦

AMPA
0.533

tMPA
, tMPB

10.0 ns + 70.0 ns 10 ns flattop + 70 ns ramp
dtB −14.0 ns
tb, tb′ 5.75 ns FWHM of Gaussian pulse
Ab 0.003 Corresponds to ∼ 1◦

fb, fb′ 6.651 GHz
φb 143◦

Ab′ 0.257 Corresponds to ∼ 92◦

φb′ 166◦

AMPB
0.497
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Bell inequality. To make this claim, the number needs to be supplemented with an

estimate of its standard error as described in Section 11.2.3. Since the experiment

was run over roughly 8 hours to collect around 34.1 million statistical samples

for each of the involved probabilities, the standard error is most likely dominated

by 1/f noise and drifts in the experiment. Thus, one would need to model these

error mechanisms in order to obtain a meaningful estimate for the standard error.

This can be avoided by breaking the dataset into sections for which the standard

error is known to be dominated by statistical sampling noise.

11.5 Analysis and Verification

11.5.1 Standard Error of the S-Value

To find the right section size, the dataset is tentatively split into n sections.

Each section is then divided into two halves that each yield an S-value Si,1 and

Si,2. The difference between these can be used as a drift-sensitive estimate of the

internal variance for each section:

vi = (Si,2 − Si,1)
2 (11.5)
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Figure 11.3: Standard Error Analysis: As the sample size increases, the standard
error of the estimated mean shifts from being dominated by statistical sampling
noise (red line) to being dominated by 1/f drift in the experiments (green line).
The point where the two lines cross gives the maximum sample size that can be
statistically analyzed in a meaningful way without modeling the 1/f noise.

The variances vi are then averaged over the entire dataset to give an estimate of

the standard error:

σn =

√√√√ 1

n

n∑
i=1

vi (11.6)

The resulting σn’s as a function of the section size N
n

are shown in Figure

11.3. As the section size is increased, the statistical noise in the estimate of Si

goes down, leading to the expected 1√
N/n

decrease in σn. Eventually, the sections

become large enough for drifts to dominate their internal variance (as defined

by Equation 11.5) and the resulting σn’s level off. If straight lines are fitted

through each of these two regions, their point of intersection gives an estimate of

the maximum acceptable sample size, in this case 1.55 million samples, or about
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Table 11.12: Bell Violation Results By Section – Resonator Coupling

Section S Violation

1 2.06952± 0.00138 50.3σ
2 2.07227± 0.00134 53.9σ
3 2.07003± 0.00139 50.3σ
4 2.07249± 0.00137 53.1σ
5 2.06769± 0.00141 48.0σ
6 2.06661± 0.00143 46.7σ
7 2.07200± 0.00144 50.1σ
8 2.07419± 0.00142 52.4σ
9 2.06758± 0.00144 46.8σ

10 2.06933± 0.00146 47.6σ
11 2.07177± 0.00138 52.1σ
12 2.07251± 0.00130 55.8σ
13 2.07573± 0.00144 52.6σ
14 2.07739± 0.00137 56.3σ
15 2.07413± 0.00142 52.1σ
16 2.07482± 0.00146 51.4σ
17 2.07679± 0.00138 55.7σ
18 2.07646± 0.00140 54.6σ
19 2.08055± 0.00135 59.5σ
20 2.07769± 0.00137 56.9σ
21 2.07438± 0.00138 54.0σ
22 2.07197± 0.00145 49.7σ

All 2.07320± 0.00030 244.0σ
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20 minutes worth of data. Within each section, the standard error can now be

assumed to be dominated by statistical sampling noise, i.e. the errors on S are

independent of each other. The standard analysis technique described in Section

11.2.3 then yields 22 S-values with their standard errors as shown in Table 11.12.

With this, we can now claim a violation of the Bell inequality by 59.5σ with an

S-value of 2.08055± 0.00135 based on section 19.

Each section’s Si and σi imply a probability (erfc Si−2.0
σi

≈ 10−1200) for the

actual S-value of that section to be less than 2.0. The probability for the actual

S-value of the combined dataset to be less than 2.0 is then the product of the

probabilities for the individual sections:

PS<2.0 =
22∏
i=1

PSi<2.0 =
22∏
i=1

erfc
Si − 2.0

σi

= 1.27× 10−26253 (11.7)

This probability can be used to calculate the corresponding standard error for

the average S-value for the combined dataset using:

PS<2.0 = erfc
S − 2.0

σ
= erfc

0.07320

σ
= 1.27× 10−26253 → σ = 0.00030 (11.8)

With this, the entire dataset shows a violation of 244.0σ with an S-value of

2.07320 ± 0.00030. It is interesting to note that the standard error estimated in

this way is very close to the value estimated if the entire dataset is treated as one

single section.
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11.5.2 Dependence of S on Sequence Parameters

Since, for example, an experiment without measurement pulses yields an S-

value of 2.0 as all states are read as | 00 〉, it is possible for the optimization process

to get stuck in a local maximum that shows a maximized classical correlation but

little or no quantum entanglement. Any artificially introduced correlations during

the measurement might then yield a value of S > 2.0 and thus a false claim of a

violation.

A simple check of the behavior of S versus one of the sequence parameters

is useful to quickly expose such major problems in the experiment. Figure 11.4a

plots the dependence of S on the phase of the Bell rotation pulses (the plane in

which the qubit is measured) on the second qubit. The data shows the sinusoidal

response predicted by quantum mechanics, and thus provides strong evidence that

the experiment is implemented in the expected way.

Due to the short coherence times of the involved qubits, it was necessary to

minize the overall sequence length as much as possible. This included moving the

Bell rotations and measurement on the second qubit forward to place them right

after the pulse that entangles the qubit with the resonator. Even though the short

distance between the qubits relative to the time-scales of measurement makes

it impossible to close the locality loophole in this experimental setup anyway,
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Figure 11.4: Behavior of S: Examining the behavior of S versus sequence param-
eters can verify a trustworthy implementation – a) S versus phase b, b′: As the
phase of the rotation pulses on the second qubit is varied, S shows the expected
sinusoidal response. b) S versus measurement delay: The fact that S shows only
the expected T1 and T2 decay, but no other features indicating a dependence on
the relative timing of the measurements, is strong evidence that the qubits are
truly decoupled during measurement.

the early measurement of one qubit might still prompt criticism as it opens the

locality loophole even wider by giving the qubits even more time to interact via the

unknown processes postulated by the loophole. To counter this criticism, it can be

shown that the relative timing of the measurement does not influence the resulting

S-value in a way that suggests the existence of an additional interaction allowed

by the time difference. Figure 11.4b shows the dependence of S on the delay of

the Bell rotations and measurement on the second qubit. As expected from the

additional qubit decoherence, S decreases as the measurement is delayed. But the

plot shows no features that correlate with the relative timing of the measurements

on the two qubits. Specifically, there is no reduction in S around t = −1 ns, the

271



point where the measurement happens simultaneously. This dataset can therefore

be seen as strong evidence against a problem introduced by the early measurement.

11.5.3 Microwave and Measurement Crosstalk

The most important step in the verification of the claim is the analysis of

known mechanisms that introduce artificial correlations into the result during the

measurement. The experimental setup at hand is susceptible to two of these:

Microwave and measurment crosstalk.

Microwave crosstalk results from insufficient electrical isolation of the two

qubits that allows a microwave drive applied to one qubit to be seen by the other.

Earlier investigations have shown this microwave crosstalk to be suppressed by

about 20 dB, i.e. the second qubit sees about 1% of the drive applied to the first

qubit. Since, in this experiment, the qubits are placed off-resonance from each

other by at least 100 MHz, even these leaked microwaves are not able to have any

effect on the “wrong” qubit. Therefore, microwave crosstalk does not constitute

a problem for this experiment.

Measurement crosstalk, on the other hand, is still present despite the band-

pass filtering provided by the resonator coupling. Figure 11.5 shows the result of

experiments that quantify this crosstalk. In the experiment, a Rabi oscillation is

driven on one of the qubits to cause it to be alternatingly measured as | 1 〉 or | 0 〉.
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Figure 11.5: Quantifying Measurement Crosstalk: Measurement crosstalk can
be quantified by driving a Rabi oscillation on one qubit and observing the other
qubit’s response. Fourier transforming the data allows the isolation of the relevant
features. – a) Rabi oscillation on the first qubit: The measured state of the second
qubit only shows a very weak dependence on whether the first qubit is in the | 1 〉
or | 0 〉 state. b) Fourier transform of a: The ratio of the responses of the two
qubits at the same frequency as the Rabi oscillation on the first gives a number
for the measurement crosstalk, here: 19.1

6108
= 0.31%. c) Rabi oscillation on second

qubit. d) Fourier transform of c: The data shows 41.9
7091

= 0.59% measurement
crosstalk.
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The second qubit is not driven and should thus remain in the | 0 〉 state.

Measurement crosstalk causes the second qubit to be sometimes measured as

| 1 〉 conditionally on the first qubit being measured as | 1 〉. Therefore, measure-

ment crosstalk should introduce a small oscillation of P|x1 〉 at the same phase

and frequency of the oscillation of P| 1x 〉 caused by the Rabi drive. Fourier trans-

forming the measurements of both qubits exposes this oscillation as a peak at the

same frequency as the peak on the driven qubit. The amplitude ratio of the two

peaks then gives a number for the strength of the measurement crosstalk. Here,

the crosstalk is less than 1% in either direction.

As mentioned above, measurement crosstalk causes a correction to the limits

on S that are achievable by a hidden variable theory. According to Equation 11.4

the crosstalk measured here yields the following new limit on S:

S ≤ 2 + 2
∣∣pa

c − pb
c

∣∣ = 2 + 2 |0.0059− 0.0031| = 2.0056 (11.9)

This new limit lowers the violations quoted in Table 11.12 by about 10%. For

example, the S-value and standard error of section 19 imply a violation in the

presence of measurement crosstalk of 55.5σ rather than the quoted 59.5σ. This

correction is sufficiently small to not challenge the underlying claim of a violation.
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11.5.4 Numerical Simulation

To understand whether the obtained S-value makes sense, it is useful to sim-

ulate the experiment numerically using the techniques described in Chapter 3.

For accurate results, the simulation must include the resonator used for the cou-

pling. In general, a resonator needs to be simulated as a harmonic oscillator along

with its higher excited states. In this experiment, though, there is always only

one photon available during the coupling between a qubit and the resonator, and

therefore the higher levels in the resonator will never be excited. This allows us

to treat the resonator simply as a third qubit, yielding a combined system with

the eight possible states | 000 〉, | 001 〉, | 010 〉, . . . , | 111 〉, descibed by an 8 × 8

density matrix.

The system is initialized in the | 000 〉 state, which corresponds to a density

matrix with a single 1 in the top left corner and all other elements equal to 0.

According to the sequence used, the second qubit is then excited into the | 1 〉

state (overall: | 001 〉) with a π-pulse:

Aπ = e−iπ( 180◦
360◦ (I⊗ I⊗σx)) | 000 〉 = | 001 〉 (11.10)

Next, the second qubit is coupled with the resonator for enough time to cause half

of a swap operation:

Aentangled = e−iπ( 90◦
360◦ (I⊗C)) Aπ =

| 001 〉+ eiφ| 010 〉√
2

(11.11)
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Figure 11.6: Resonator Coupled Sample Specifications: Measurement of T1 (blue)
and T2 (red) of the different components in the resonator coupled sample. – a)
Qubit A. b) Qubit B. c) Resonator.

The entanglement is then swapped from the resonator to the first qubit:

Aswap = e−iπ( 180◦
360◦ (C⊗ I)) Aentangled =

| 001 〉+ eiφ| 100 〉√
2

(11.12)

Finally, the qubits are subjected to the required Bell rotations:

Aab = e−iπ(− 135◦
360◦ (σx⊗ I⊗ I)+ 0◦

360◦ (I⊗ I⊗σx)) Aswap (11.13)

Aa′b = e−iπ( 135◦
360◦ (σx⊗ I⊗ I)+ 0◦

360◦ (I⊗ I⊗σx)) Aswap (11.14)

Aab′ = e−iπ(− 135◦
360◦ (σx⊗ I⊗ I)− 90◦

360◦ (I⊗ I⊗σx)) Aswap (11.15)

Aa′b′ = e−iπ( 135◦
360◦ (σx⊗ I⊗ I)− 90◦

360◦ (I⊗ I⊗σx)) Aswap (11.16)
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Table 11.13: Qubit Sample Parameters – Resonator Coupling Implementation

Parameter Value Source

Qubit A:
T1 296 ns Figure 11.6a
T2 135 ns Figure 11.6a
Tϕ 175 ns T1 and T2

F| 0 〉 97.04% Figure 11.7a
F| 1 〉 96.32% Figure 11.7a

Qubit B:
T1 392 ns Figure 11.6b
T2 146 ns Figure 11.6b
Tϕ 179 ns T1 and T2

F| 0 〉 96.18% Figure 11.7b
F| 1 〉 98.42% Figure 11.7b

Resonator:
T1 2, 552 ns Figure 11.6c
T2 5, 266 ns Figure 11.6c
Tϕ ∞ T1 and T2

Coupling:
Qubit A ↔ resonator 36.2 MHz Figure 9.8b
Qubit B ↔ resonator 26.1 MHz Figure 9.9b

Measurement Crosstalk:
Qubit A → qubit B 0.31% Figure 11.5b
Qubit B → qubit A 0.59% Figure 11.5d
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From the resulting states, the 16 probabilities Pab(| 00 〉), Pab(| 01 〉), . . . are

extracted and combined to yield S. If the simulation is run as described, i.e.

without including imperfections, it yields the expected value of S = 2.828. Using

the Kraus operators K1a and K1b as described in Section 3.4.5, energy decay can

be added to the simulation using the values for T1 from Table 11.13 and the

pulse lengths from Table 11.11. This lowers the resulting S-value to S = 2.443.

If dephasing is added as well, using Kϕa and Kϕb, the value further decreases

to S = 2.247. The final error mechanism to include are the errors caused by

non-ideal measurement fidelities, which yields S = 1.984.

Since this simulation corresponds to an experiment where the Bell rotations

and measurement happen simultaneously on both qubits, this S-Value needs to

be compared to the one shown in Figure 11.4b at t = −1 ns: S = 1.986. The

agreement is remarkably good.

If the simulation is modified to move the Bell rotations and measurement on

the second qubit forward as done in the actual experiment, it yields S = 2.064.

The corresponding error budget is shown in Table 11.14. The observation that

the experimental result is even slightly better than the prediction by simulation

is most likely rooted in that fact that the theoretical rotation angles (α = −135◦,

α′ = 135◦, β = 0◦, and β′ = −90◦) used in the simulation are not actually

optimal in the presence of decoherence and imperfect measurement. Also, the
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Figure 11.7: Visibility Analysis – Resonator Coupled Sample: Composite of sev-
eral datasets. Blue dots represent data, red lines are fits through the data, and
green lines are fits through the extrema of the red lines. The upper parabolas
correspond to Rabi oscillations driven with pulses at fixed length and increas-
ing amplitude (Power Rabis) around the point where they yield a π-pulse. The
bottom parabolas are Power Rabis driven around the point where they yield a
2π pulse. The horizontal dataset at the bottom corresponds to no drive on
the qubit. The green fits through the parabolas’ extrema (optimal π or 2π
pulses) give the measurement visibility when extrapolated to t = 0, i.e. to an
optimal, instantaneous pulse. The horizontal line checks the method by pro-
viding a direct measurement of the | 0 〉 state visibility. Since the measure-
ments obtained agree to high precision, the method can be trusted to extract
a | 1 〉 state fidelity for which no direct measurement is available. – a) Qubit
A: F| 0 〉, Rabis = 96.86%, F| 0 〉, Direct = 97.04%, F| 1 〉 = 96.32%. b) Qubit B:
F| 0 〉, Rabis = 96.06%, F| 0 〉, Direct = 96.18%, F| 1 〉 = 98.42%.
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Table 11.14: Error Budget – Resonator Coupling Implementation

Error Contribution New S

Theoretical 2.828

Ideal simulation 0.000 2.828
Energy decay (T1) 0.328 2.500
Dephasing (Tϕ) 0.163 2.337
Measurement Fidelities 0.273 2.064

Experimental result 2.073

simulation models dephasing via an exponential decay, while in the experiment

the decay follows a Gaussian profile, which, at short timescales, causes smaller

errors. Nevertheless, the agreement is remarkable and is a strong indication that

the experiment and all supporting datasets are reasonable.

11.5.5 Measurement Correction

Since the non-ideal measurement fidelities are caused by classically probabilis-

tic events that occur independently on the two qubits, it is possible to correct the

measurement mathematically to extract an estimate of the S-value that would

have been achieved with perfect measurement. This corrected S-value then pro-

vides an idea of how well the quantum operations were performed on the qubit
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pair, independent of the measurement. As explained in Section 3.4.1, non-ideal

measurement fidelities can be understood simply as a probability to misidentify

the qubit state. This can be written in the form of a matrix equation that ex-

presses the measured probabilities PM = (PM (| 0 〉), PM (| 1 〉)) as a function of

the actual probabilities PA = (PA (| 0 〉), PA (| 1 〉)) and the fidelities F| 0 〉 and F| 1 〉:

PM =

[
F| 0 〉 1− F| 1 〉

1− F| 0 〉 F| 1 〉

]
PA (11.17)

This equation can be inverted to obtain the actual probabilities:

PA =

[
F| 0 〉 1− F| 1 〉

1− F| 0 〉 F| 1 〉

]−1

PM (11.18)

For a coupled qubit system, this can be expanded to estimate the actual prob-

abilities Pc
A = (P c

A (| 00 〉), P c
A (| 01 〉), P c

A (| 10 〉), P c
A (| 11 〉)) from the measured

probabilities Pc
M = (P c

M (| 00 〉), P c
M (| 01 〉), P c

M (| 10 〉), P c
M (| 11 〉)) given the fi-

delities on the two qubits:

Pc
A =

[
FA
| 0 〉 1− FA

| 1 〉
1− FA

| 0 〉 FA
| 1 〉

]−1

⊗
[

FB
| 0 〉 1− FB

| 1 〉
1− FB

| 0 〉 FB
| 1 〉

]−1

Pc
M (11.19)

Applying this correction to the measurements shown in Table 11.10 using the

measurement fidelities from Table 11.13 yields an estimated S-value of S = 2.3552

(Table 11.15) in good agreement with the simulated value of S = 2.337.
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Table 11.15: Bell Violation Results Corrected – Resonator Coupling

Parameter ab a′b ab′ a′b′

P| 00 〉 0.4406 0.4213 0.0900 0.3813
P| 01 〉 0.1343 0.1539 0.3790 0.0880
P| 10 〉 0.0726 0.0599 0.4166 0.1092
P| 11 〉 0.3525 0.3649 0.1145 0.4215

E 0.5862 0.5724 -0.5911 0.6055

S 2.3552
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Chapter 12

Conclusion

12.1 Claim of Violation of Bell’s Inequality

Based on the experimental results and verifications detailed above, we claim

the observation of a violation of the CHSH Bell inequality by over 200σ in our

resonator-coupled superconducting Josephson phase qubit circuit. To our knowl-

edge, this is the first violation observed in a macroscopic solid state system.

If our dataset is limited to a size where statistical sampling noise (rather than

experimental drift) dominates the errors in the obtained S-value (1.55 million

samples over 20 minutes), we find S = 2.08055± 0.00135 (in the best case), cor-

responding to a violation of the bound S ≤ 2.0 by 59.5σ. If the entire dataset

(34.1 million samples over 8 hours) is used, we find S = 2.07320± 0.00030, corre-

283



sponding to a violation by 244.0σ. In the latter case, the standard error on S is

estimated using a combined-probability argument.

The analysis of measurement crosstalk in the experiment shows asymmetric

crosstalk magnitudes of 0.31% from qubit A to qubit B and 0.59% from qubit B

to qubit A. This leads to a correction in the positive bound on S achievable by

a hidden variable theory to S ≤ 2.0056 instead of S ≤ 2.0, reducing the above

mentioned violations from 59.5σ to 55.5σ and from 244.0σ to 225.3σ

Correcting for non-ideal fidelities during the tunneling measurement, we esti-

mate that the entangled pair of qubits before the tunneling measurement shows

an S-value of S = 2.337.

All obtained results can be explained to very good agreement with quantum

simulations including energy decay (T1), dephasing (Tϕ), and non-ideal measure-

ment fidelities as the only imperfections.

12.2 S-Value as Qubit Pair Benchmark

Given the sensitivity of the measured S-value to every single control and per-

formance parameter of a coupled qubit pair, we suggest that it could be used as

a powerful single-number performance benchmark usable as the basis of direct

comparison of different qubit architectures. For this, the value of S itself provides
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information about the quality of the operations performed on the qubit pair, while

its standard error gives information about the stability of the implementing ar-

chitecture.

Furthermore, being able to demonstrate a violation of a Bell inequality is a

strong indication that the implementing system can support quantum entangle-

ment that goes beyond classically achievable correlations. Since entanglement is

the basis for the exponential performance scaling of quantum computers, this is

an important demonstration to verify the validity of the proposed architecture.

12.3 Josephson Phase Qubit Performance

The successful implementation of this experiment required exquisite control

over our coupled qubit pair, with gate fidelities in the upper 90% range. Simu-

lations suggest that the reduction in the measured S-value as compared to the

theoretical optimum of Smax = 2.828 is the result of primarily single qubit per-

formance characteristics. The capacitive resonator coupling scheme used in the

experiment does not seem to introduce an additional source of imperfections.

Thus, we believe that this experiment demonstrates that our expectations about

the good scalability of our system to many qubits are warranted. Efforts to im-

prove qubit performance should therefore be targetted at the single-qubit level to
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reduce energy decay and dephasing and to increase measurement fidelities.

12.4 Future Direction

By improving single qubit performance, it should be possible to significantly

increase the measured value of S to eventually bring it close to the theoretically

achievable maximum of Smax = 2.828. In the meantime, the qubits’ performance

is sufficient to allow for the implementation of many other interesting experiments,

like the generation of GHZ or Werner states, etc.

Since scalability does not seem to be a problem for the system, it makes sense

to explore experiments with more than two qubits in parallel with efforts to

improve single qubit performance. Care must be taken in the design of qubit

coupling circuits to minimize measurement crosstalk as this error mechanism sig-

nificantly complicates the analysis and therefore implementation of demanding

experiments.
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