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Abstract

Development of The Fundamental Components of A Superconducting Qubit Quantum

Computer

by

Radoslaw (Radek) Cezary Bialczak

Superconducting qubits have emerged as a promising architecture for building a

scalable quantum computer. In this thesis we use a particular type of superconducting

qubit architecture, the flux-biased phase qubit, to build and characterize the fundamen-

tal components of a quantum computer: universal quantum gates and a scalable qubit

coupling architecture.

A universal quantum gate allows for the construction of any arbitrary quantum com-

puting operations, and is the analog of classical universal logic gates like the NAND

gate. We build this gate using a pair of coupled flux-biased phase qubits where the

coupling magnitude is fixed. We characterize this coupled qubit system and show how

to construct the gate from the Hamiltonian of this two-qubit system. The universal

quantum gate must also be characterized to verify that it has been constructed properly.

However, to completely characterize a quantum gate, its output must be mapped out for

any arbitrary input. Due to the infinite Hilbert space of qubits, such a characterization

xiii



is more involved than simply obtaining a truth table, as would be done for classical

computational logic. To achieve a complete characterization of a quantum gate we use

a technique called quantum process tomography (QPT). We perform QPT on our uni-

versal gate, the “square-root of i-swap” gate, and for the first time in any solid state

qubit architecture we completely characterize a universal quantum gate. As a result

of this gate characterization, we discover that our gate performance is limited by qubit

dephasing times. We are also able to measure noise correlations in the coupled qubit

system using QPT. We find that by increasing the coupling strength between the qubits,

we can build faster gates. This lets us get around the limits imposed by dephasing times

by increasing the speed at which we can execute our universal gate. However, increas-

ing the coupling strength of our fixed coupling scheme leads to increased errors during

single qubit operations and measurement. In addition, we also discuss the difficulties

in scaling up fixed coupling schemes to many qubits.

To address these issues, we design a tunable coupling architecture that allows us to

operate at higher coupling strengths during the gate operation and near zero coupling

during single-qubit operations and measurement. This minimizes single-qubit errors

and measurement crosstalk while allowing for a much faster universal gate. We experi-

mentally show that using this coupler the measurement crosstalk can be minimized and

the inter-qubit coupling strength can be tuned arbitrarily, over nanosecond time scales,

within a sequence of operations that mimics actual use in an algorithm. Unlike pre-

xiv



viously demonstrated tunable couplers, this novel tunable coupling circuit is designed

to be modular and physically separate from the qubits. It also allows superconducting

qubits to be coupled over long distances. This allows the coupler to be used as a module

to connect a variety of elements such as qubits, resonators, amplifiers, and readout cir-

cuitry over distances much larger than nearest-neighbor. Such design flexibility is likely

to be useful for scaling up a quantum computer and allows for the construction of new

superconducting microwave circuits with tunable interactions between elements.
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Chapter 1

Foreword

1.1 A guide for the reader

The subsequent chapters will proceed as follows. Chapter 2 contains a brief overview

of qubit physics, how quantum computers differ from classical computers, and why

quantum computation is important. Chapter 3 contains a brief overview of supercon-

ducting qubits and introduces the different superconducting qubit types. Chapter 4

introduces the flux-biased phase qubit that will be used throughout this thesis and pro-

vides a detailed discussion of experiments needed to calibrate and characterize a single

flux-biased phase qubit. Chapter 5 introduces the fixed coupling architecture used to

implement our universal gate, the “square-root of i-swap” gate. It also discusses in

detail how the coupling architecture can be characterized. We also show that we can

1



precisely control two qubits by preparing the full set of two-qubit basis states with high

fidelity. In Chapter 6, we move on to implementing the universal gate and character-

izing it using quantum process tomography. We analyze the quantum process tomog-

raphy and use it to determine that our gate performance is limited by decoherence.

We propose a tunable coupling scheme which allows us to perform gate operations on

much faster timescales, thereby lowering the errors from decoherence. In Chapter 7,

we introduce the tunable coupling scheme and characterize it in detail.

In the appendices, we include more technical, but nevertheless important and useful

details. Appendix A contains a discussion of the microfabrication steps used to fab-

ricate the qubit devices used in this thesis. Appendix B contains an overview of the

low temperature and room temperature electronics and filtering used in the experiment.

Appendix C contains the calculation of the Hamiltonian for two capacitively coupled

qubits. Appendix D contains technical points of the quantum process tomography anal-

ysis, including computer code used to analyze the quantum process tomography data.

Through out the thesis, important terms and non-standard definitions are in bold

and important concepts are italicized.
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Chapter 2

Introduction to Quantum Computing

2.1 Why is quantum computing important? A historical

perspective.

Classical programmable computing has been the driving force behind the information

age that has so extensively transformed our lives. What we think of as a classical

programmable computer, such as a PC or a supercomputer like the IBM Deep Blue,

is based on a theoretical model of computation called the Turing machine, developed

by Alan Turing in 1937 [81]. Shortly after, Turing’s work was combined with the prior

work of Alonzo Church to show that [20] a Turing machine is capable of simulating any

algorithmic process efficiently, i.e. in a time that scales no slower than a polynomial

of the size of the problem. However, in the 1970’s, work on probabilistic computing
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showed that other computational schemes could produce efficient solutions to problems

which did not have efficient solutions on a Turing Machine and its variants [71]. This

work motivated the work of David Deutsch in the 1980’s which showed [23] that a

computer based on quantum mechanics could efficiently solve certain problems that

had no efficient solution on a classical computer. Deutsch’s work was followed in

the 1990’s by that of Shor and Grover [69, 30]. Shor showed that the problem of

factoring prime numbers, which had no efficient solutions on classical computers, could

be solved more efficiently using a quantum computer. Grover showed that the quantum

version of the algorithm used to search an unsorted list of n entries had a
√

n speed

up compared to the classical version. Both of these problems have important practical

applications. The search problem is important in searching databases like those used by

many Internet websites and search engines, and the factoring problem is important in

encryption. However, there is another very important area of application for quantum

computers.

In 1982, Richard Feynman showed that a Turing machine could not simulate quan-

tum effects in physical systems efficiently and proposed that a quantum computer could

be used to do so [28]. These simulations are at the heart of theoretical chemistry and, as

such, are the basis for modeling a variety of physical systems, from single molecules to

large biological macromolecules like proteins. Classical computer simulations of these

molecular systems, although computationally inefficient, have advanced greatly since
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the 1980’s due to the miniaturization of transistor logic, which has increased classical

computing power exponentially. However, Moore’s law, which describes the exponen-

tial advances in the miniaturization of computer logic, predicts that this miniaturization

will reach its limits by 2015-2020. Therefore, new models of computation such as

quantum computing must be explored.

Hence, although quantum computing is presently applicable only to the small sub-

set of problems consisting of search, factoring, and quantum simulation, it is important

because these problems are at the heart of many fields of science and engineering to-

day. Furthermore, research into quantum information has inspired the development of

other new technologies such as quantum encryption, which have found very important

potential applications in areas like secure communication.

The above answers “why quantum computing?” Now let us answer the question

“what is a quantum computer?” In the simplest sense, a quantum computer is a collec-

tion of quantum bits, or qubits, that can interact to perform logic operations. Therefore,

to understand what a quantum computer is and how it differs from classical computers,

we must first understand the physics of single qubits.

2.2 Qubit physics in a nutshell

The basics of qubit physics will only be covered briefly in this thesis, only to high-

light concepts that will be used in the chapters that follow. If the reader is interested in
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more detail, then there are many excellent texts where more information can be found.

For general quantum mechanics, texts by Sakurai [66], Gottfried [29], and Cohen-

Tannoudji [21] are good starting points. As explained below, a qubit is a quantum

two-level system, therefore the quantum theory of two-level systems forms the theo-

retical foundation of quantum computing. Much of the initial work on the physics of

quantum two-level systems was done on systems of photons interacting with atoms.

Therefore texts on atom-photon interactions are very useful in gaining a better under-

standing of the theory behind single-qubit experiments like the Rabi, Ramsey, T1, and

spin echo experiments that will be discussed in this thesis. Notable texts on atom-

photon interactions are those by Allen/Eberly [1] and Weissbluth [84]. For texts specif-

ically focused on quantum computing, the most popular would probably be by Nielsen

and Chuang [58]. It reviews both the physics theory and the computer science behind

quantum information. However, it is a bit dated so newer texts on quantum information

are also helpful [38, 14].

2.2.1 Qubit basics and the Bloch sphere

A single qubit is a two-level quantum system. The simplest example is the spin of an

electron where the up and down spin states represent the two quantum states |1〉 and

|0〉. Excitations at a frequency ω01/2π = (E|1〉−E|0〉)/~ are used to drive transitions

between the energy levels of the qubit states, |1〉 and |0〉. Hence, like the 0 and 1 states
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of classical bits, qubits can be in their two states, |0〉 and |1〉. However, unlike classical

bits, they can also be in both the |0〉 and |1〉 states simultaneously. Such states are called

superposition states and are written as α |0〉+ β |1〉, where α and β can be complex

numbers. In an actual experiment we measure the qubit to be either in the |0〉 or the |1〉

state with probability given by the square of the amplitude of α or β, respectively. This

must satisfy |α|2 + |β|2 = 1 to conserve probability.

A visually intuitive picture of a qubit can be constructed by rewriting a single-qubit

superposition state in its most general mathematical representation

|ψ〉= eiγ
(

cos
θ

2
|1〉+ eiφ sin

θ

2
|0〉
)

(2.1)

where |ψ〉 is the label given to a general single qubit state. Since only probabilities

| 〈0|ψ〉 |2 and | 〈1|ψ〉 |2 are measured, the phase factor γ has no observable effect and can

be set to zero. The variables θ and φ are real numbers that together define a point on

the surface of a unit sphere, as shown in Figure 2.1. This sphere is known as the Bloch

sphere and it allows for a convenient visual representation of single qubit states and

operations on those states. As given by (2.1), the point on the the Bloch sphere surface

defined by θ and φ represents a pure quantum state. The vector~r, also called the Bloch

vector or state vector, is defined below and can represent a pure or mixed state.
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Figure 2.1: The Bloch sphere. This solid unit sphere is a convenient way to visually represent
a general single-qubit quantum state and operations on it. The angles θ and φ correspond to
those given in the equation for a general quantum state in (2.1). The vector,~r, is given by the
mapping in (2.6) and can represent a pure quantum state if it falls on the surface of the Bloch
sphere or a mixed quantum state if it falls inside the sphere. The qubit states {|0〉 , |1〉 ,(|0〉+
i |1〉)/

√
2,(|0〉+ |1〉)/

√
2} can be found at the intersections of the unit sphere with the x, y,

and z axes, where the factor of
√

2 has been left off for visual clarity. Qubit operations can be
represented as linear combinations of rotations about the x, y, and z Bloch sphere axes.

2.2.2 The density operator formalism and multiple qubits

Qubit physics can also be formulated using the mathematics of density matrices, also

known as density operators. This formalism can be used to model pure states like

those that can be represented using the state-based formalism shown in (2.1), but unlike

the state-based formalism, it can also model statistical mixtures of quantum states. It

also can be easily generalized to quantum systems composed of multiple parts, such

as multiple qubits. It also facilitates the modeling of operations on such multipartite

systems and the effects of decoherence. This formalism will be used extensively in this

thesis, especially in the chapters dealing with the characterization of universal quantum
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gates. The basics of density matrices can be found in [84, 21, 66].

The density operator can be defined as follows. If a quantum system is in one of a

number of states |ψi〉 with probability pi, then the density operator, ρ, for that system

is defined as [58]

ρ≡∑
i

pi |ψi〉〈ψi| (2.2)

Any arbitrary density matrix must satisfy a few important properties. First, any

density matrix must have unit trace, tr(ρ) = 1, because

tr(ρ) = ∑
i

pitr(|ψi〉〈ψi|)

= ∑
i

pi = 1
(2.3)

Also, any density matrix is positive semidefinite because

〈γ|ρ |γ〉= ∑
i

pi 〈γ| |ψi〉〈ψi| |γ〉

= ∑
i

pi| 〈γ|ψi〉 |2

≥ 0

(2.4)

where |γ〉 is any arbitrary state. Finally, tr(ρ2)≤ 1, because
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tr(ρ2) = tr∑
i
(pi |ψi〉〈ψi|)(pi |ψi〉〈ψi|)

= ∑
i

p2
i tr(|ψi〉〈ψi| |ψi〉〈ψi|)

= ∑
i

p2
i tr(|ψi〉〈ψi|)

= ∑
i

p2
i ≤ 1

(2.5)

If the state described by ρ is a pure state then tr(ρ2) = 1, otherwise tr(ρ2)< 1. The

density matrix formalism can also be mapped to the Bloch sphere picture by writing a

density operator as

ρ =
I +~r ·~σ

2
(2.6)

where~σ = σxx̂+σyŷ+σzẑ and {σx,σy,σz} are Pauli matrices [66] and~r is a real,

three-dimensional vector with ‖~r‖ ≤ 1. Pure states have ‖~r‖= 1 and mixed states have

‖~r‖< 1.

Another important class of quantum states are entangled states. Entangled states

are a special class of multi-qubit states which cannot be written as a Kronecker product

of individual single qubit states [38]. For example, a given entangled state, |Ψe〉, for

qubits A and B is entangled if there are no α0,1 or β0,1 such that |Ψe〉 = (α0 |0〉A +

α1 |1〉A)(β0 |0〉B + β1 |1〉B). This non-separable nature of entangled states has impor-

tant consequences. It implies that for an entangled set of qubits, the measurement
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of one qubit in the set affects the measurement of the other qubits. This can be un-

derstood using a simple example of the two-qubit entangled state |Φe〉 = (|0〉A |0〉B +

|1〉A |1〉B)/
√

2. If we measure qubit A and get 0 (1) then qubit B must necessarily be 0

(1) as well. Thus the measurement results are correlated or entangled. This correlation

will exist even when the qubits are separated in space or time or if the axis of mea-

surement is changed. Our example state above is know as a Bell state and, along with

other multi-qubit entangled states, it exhibits measurement correlations that do not ex-

ist in classical systems [7]. Entanglement can give rise to quantum interference effects

which can be exploited for quantum computing [58]. Entangled states can also be used

to demonstrate more exotic physical phenomena such as the teleportation of quantum

states [8].

As mentioned at the beginning of this section, an important strength of the density

matrix formalism is that it can easily describe systems of multiple qubits. A multi-

qubit state that is not an entangled state can be described by the Kronecker product

of the density matrices of the states of the individual qubits. That is, for a system

of n qubits, the density matrix of the multi-qubit system, ρsystem, is given by ρsystem =

ρ1⊗ρ2⊗·· ·⊗ρn. The ρi are the density matrices of the individual qubit states, with i=

1,2, ...,n. Additionally, density matrices can be used to address individual components

of composite quantum systems by tracing out the subsystems that are not of interest.

For example, if we are interested only in the density operator for qubit A, but have
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available only the density matrix for a composite system of two qubits, A and B, we can

trace out qubit B by using the partial trace over B: ρA ≡ trB(ρ
AB). As discussed in [58],

the partial trace trB is defined by trB(|a1〉〈a2|⊗|b1〉〈b2|)≡ |a1〉〈a2| tr(|b1〉〈b2|) where

|a1〉 and |a2〉 are any two vectors in the state space of A and |b1〉 and |b2〉 are any vectors

in the state space of B and tr(|b1〉〈b2|) = 〈b1|b2〉.

2.2.3 Quantum operations

Operations on quantum states and interactions of a qubit with its environment can be

represented as linear combinations of the identity operator, I, and rotations about the

X , Y , and Z axes of the Bloch sphere. Operations are usually symbolized using the

symbol U because all quantum operations are unitary and linear [58, 66]. So a rotation

about the X axis by an angle θ would be written as U = Xθ. With the density matrix

formalism, it is easy to mathematically describe a system of qubits interacting with an

external environment.

One merely abstracts away everything but the system of qubits into a separate en-

vironmental density matrix, ρenv. Then a partial trace over this environment density

matrix is performed in order to isolate just the system of qubits

ε(ρ) = trenv[U(ρ⊗ρenv)U†] (2.7)
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where ε(ρ) represents the result of the operation, U , on the system of qubits ρ.

Quantum operations, like density operators, can be represented as matrices. Analo-

gously operations on multiple qubits can be tensored together just like density matrices

of multi-qubit systems. For example, given a system of 4 qubits we can represent a Xπ

rotation on qubit 1, a Yπ/2 rotation on qubit 2, a Zπ rotation on qubit 3 and an Xπ rotation

on qubit 4 as: Xπ⊗Yπ/2⊗Zπ⊗Xπ. Certain combinations of single qubit and two-qubit

operations can be used to carry out any logical quantum operation. This special com-

bination of operations is known as a universal quantum gate and will be discussed in

Chapter 6 of this thesis.

2.2.4 Qubit-environment interactions: decoherence and visibility

Energy relaxation and dephasing are two main deleterious pathways through which

qubits interact with their environment in a way that causes them to lose quantum co-

herence over time. Together, these two interactions are typically called decoherence

effects [58]. As with much of qubit physics, the terminology and physical mechanisms

behind decoherence have their origins in the field of NMR and atom-photon interac-

tions [84, 1]. Visual representations of energy relaxation and dephasing in the energy

level and Bloch sphere frameworks are shown in Figure 2.2. Energy relaxation is the

process by which a qubit in the excited state (|1〉) decays to the ground state (|0〉) by

dissipating energy into its environment, much like in spontaneous emission in atomic
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physics. Dephasing causes the qubit energy level spacing, and hence the ω01 transition

frequency, to randomly fluctuate due to interactions with the environment. This causes

the loss of phase coherence, φ, of the quantum state as given in (2.1).
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0

1

0
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Figure 2.2: Decoherence. Energy relaxation and dephasing are the two types of qubit de-
coherence mechanisms by which a qubit can lose quantum coherence by interacting with its
environment. Here, these two processes are illustrated using the energy level and Bloch sphere
representations. a) In energy relaxation, a qubit in the excited state will decay to the ground
state via energy relaxation. b) Dephasing causes the energy level spacing between the qubit
states to jitter leading to a loss of phase coherence in the qubit state as discussed in the text.

The strength of each decoherence mechanism can be experimentally quantified by

measuring the time it takes for a qubit to lose coherence by a certain factor. As will

be discussed later in Chapter 4, decoherence caused by energy relaxation can be math-

ematically described using an exponential function that decays in time. Therefore, to

quantify the amount of energy relaxation, we can measure the time it takes qubit co-

herence to decay by a factor of 1/e. However, the 1/e time is also used to quantify

the coherence due to dephasing where the mathematical time dependence has a Gaus-

sian component. These 1/e times are commonly assigned the labels T1, for energy
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relaxation, and Tφ, for dephasing. Since energy relaxation also causes loss of phase co-

herence, the two times are often expressed as one characteristic decoherence timescale,

T2, where 1/T2 = 1/(2T1)+1/Tφ. Using the quantum master equation approach it can

also be shown that T2 ≤ 2T1 as derived in [84].

Another class of qubit errors that is important are those that lead to a decrease

in visibility [83], a quantity related to measurement. Visibility can be understood as

discussed below and as shown in Figures 2.3a and b. Ideally, we should be able to

prepare the |0〉 and |1〉 states with unit probability. However, due to interactions of the

qubit with its environment, or because of imperfections in qubit control, readout, or

measurement this probability is often less than unity. For example, if we expect the

probability of the qubit being in the |0〉 state, P0 to be 1.0, but we instead measure .95

and if we expect the probability of the qubit being in the |1〉 state, P1 to be 1.0, but we

measure .90, then the visibility is .90− (1.0− .95) = .85.

2.3 Classical v.s. quantum computation

Now that we have a better understanding of what a qubit is, we can compare quantum

computers to classical computers. A quantum computer is fundamentally different from

a classical computer, both in the way it is physically implemented and in how it encodes

and manipulates information. The most significant difference between classical and

quantum computers is that quantum computers are not limited to the binary subspace
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Figure 2.3: Visibility. We expect to be able to prepare the |0〉 and |1〉 states with unit prob-
ability. (b) Due to visibility errors however, this is not always possible. Here we illustrate the
preparation of the |0〉 state with 95% probability and the |1〉 state with 90% probability. Hence
the visibility is 85%.

of just a 0 or a 1 as is the case for a classical boolean bit. Instead, quantum computers

operate on the much larger qubit space which is a 2 dimensional complex vector space

where the phase and amplitude of a qubit state can take on an infinite number of values.

Quantum computers are also capable of being prepared in superposition. This ability

endows a quantum computer with an inherent parallelism not available to classical com-

puters. This parallelism can be demonstrated with a simple example. Let us compare

the information that can be encoded and processed using a given number of classical

and quantum bits. Using a given sequence of 6 classical bits we can encode one number

at a time, say 101010 or 42. However, because quantum states can be in superpositions,

6 quantum bits can be used to encode and process 26 values simultaneously using the

superposition state α0 |000000〉+α1 |000001〉+ ...+α44 |101100〉+ ...+α63 |111111〉.

Where it is the set of 64 complex values, {α0,α1, ...α63}, that contains this informa-
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tion. However, there is a hidden cost to this “free” parallelism because the quantum

coherence of the states must be preserved during operation and for many qubits. This

is difficult to implement experimentally. Not all is lost however, because a class of

techniques called quantum error correction has been developed to correct for certain

errors due to decoherence effects [58].

One might also wonder if there is a precise set of criteria that define a quantum

computer. Such a set was developed during the 30 or so years since the idea for a

quantum computer was first put forward. These criteria are known as The DiVincenzo

Criteria [27] and state that, at the least, a quantum computer must:

1. Be a scalable physical system with well-defined qubits.

2. Be initializable to a simple fiducial state such as |000...〉.

3. Have long decoherence times.

4. Have a universal set of quantum gates.

5. Permit high quantum efficiency, qubit-specific measurements.

Many experimentally realizable quantum systems have, in theory, been shown to

satisfy the DiVincenzo criteria.
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NMR
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Quantum Dots
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Figure 2.4: A sample of various qubit architectures. The tradeoffs among different qubit
architectures are more apparent when they are grouped by physical size. Architectures with
qubits of small physical size, such as ion traps, have less channels via which they can interact
with their environment. As a result they have longer coherence times, but are harder to couple
to each other. On the other hand, large qubits, like superconducting qubits, have more modes
through which they interact with their environment. As a result, they are easier to couple, but
have shorter coherence times. However, superconducting qubits have fast operation times, so
compared to their smaller counterparts they are able to perform a similar number of quantum
operations before they lose coherence.

A select few of these have been implemented experimentally and have been used to

successfully carry out some very basic quantum computing experiments. Some of these

are mentioned in Figure 2.4 and include photons, trapped ions, spins in semiconductors,

NV centers in diamond, superconducting qubits, and even more exotic systems like

electrons on liquid helium. The particular quantum computing architecture discussed

in this thesis is based on superconducting qubits.
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Chapter 3

Superconducting Qubits

The idea of using superconducting circuits for quantum information processing was

inspired by experimental investigations of macroscopic quantum tunneling in super-

conducting tunnel junctions in the 1980’s [48] and work on cooper pair box transistors

in the 1990’s [13]. It was discovered that superconductors act as macroscopic quantum

systems and that the energy level spectrum of superconducting tunnel junctions could

be used to construct a quantum bit. The first superconducting qubits were demonstrated

in the late 1990’s using Cooper pair box devices [13, 56]. Over the past two decades,

many proof-of-concept experiments have been carried out using superconducting qubits

that show them to be a promising quantum computing architecture [85, 49, 42, 44]. This

section provides a very brief overview of superconducting qubits. Many good reviews

of the field of superconducting qubits already exist and we refer the reader to them for
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more details [44, 26, 85, 25].

3.1 Superconducting qubits compared to other archi-

tectures

Superconducting qubits have distinct advantages and challenges compared to the other

quantum computing architectures mentioned at the end of the previous chapter. These

are more apparent when the various quantum computing architectures are compared by

physical size, as shown in Figure 2.4. Superconducting qubits are the largest of the dif-

ferent architectures. Hence they have the advantage of being easily constructed using

standard microfabrication techniques. Also, the impedances and operating frequencies

of superconducting qubits can be designed to be close to those of standard RF and

microwave electronic components, which have impedances of ∼ 50Ω and operate in

MHz and GHz frequencies [26]. Therefore, well understood linear electronic compo-

nents such as capacitors, inductors, and transmission lines can be used to easily couple

superconducting qubits to readout and control circuitry and to each other. However,

in order to provide electrical conductivity while preserving quantum coherence, these

components must be made out of superconducting metals, which unlike normal metals

are non-dissipative.

Although superconducting qubits and their associated superconducting circuitry are
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non-dissipative, they are larger in size and as a result there are more channels through

which superconducting qubits can lose coherence by interacting with their environment.

Thus, coherence times are shorter for superconducting qubits as compared with other

qubit implementations. However, coherence times alone do not determine performance

because the important metric is the number of operations that can be carried out be-

fore a qubit loses coherence. For superconducting qubits, the coherence times are on

the order of a half to a few microseconds while operation times are 5−20 nanoseconds,

allowing superconducting qubits to perform a number of operations that is comparable

to the number performed by other qubit implementations. However, in order to scale

superconducting quantum computers to many qubits and to be able to perform quantum

error correction, longer coherence times are needed. Hence, there is much work under-

way to uncover and eliminate all major pathways of decoherence in superconducting

qubits.

3.2 The Josephson junction: the key element of super-

conducting qubits

The superconducting tunnel junction, called the Josephson junction [6], is the key el-

ement from which superconducting qubits are constructed. Therefore, it is important

to thoroughly understand its operation. As shown in Figure 3.1a, it is composed of
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an insulator sandwiched between two superconducting metal electrodes. In the exper-

iments presented in this thesis, the electrode metal used is aluminum and the insulator

is aluminum oxide.
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Figure 3.1: The Joesphson Junction and the importance of non-linearity. a) A Josephson
junction is composed of two superconducting electrodes sandwiching an insulator. In this thesis
the electrodes are made of aluminum and the insulator is aluminum oxide. b) When a linear
circuit such as an LC resonator is cooled to mK temperatures, it behaves like a simple harmonic
oscillator with equally spaced energy levels. This prevents any individual transition from being
selectively addressed. As a result a two-level system needed for a qubit cannot be formed from
a linear circuit. c) A non-linear circuit, such as a Josephson junction (represented by the X sym-
bol), has unequally spaced energy levels and as a result the lowest two levels can be excited with
only minimal excitation of the other levels. This non-linearity allows the Josephson junction to
be used as a qubit. d) A scanning electron micrograph of an actual Josephson junction used in
this thesis. The insulator is highlighted in blue and the top and bottom electrodes are labeled
with the phases φ1 and φ2 of the superconducting wavefunction in each of the electrodes.

Josephson junctions are unique because they are the only known circuit elements

that exhibit a strong non-linearity and that can operate at low temperatures without

dissipation.

To understand the need for non-linearity, a comparison with linear circuit elements

is helpful. As shown in Figure 3.1b, when linear circuits, such as LC oscillators, are
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cooled to mK temperatures, they behave like quantum harmonic oscillators, i.e. their

energy levels are equally spaced [24]. A qubit cannot be formed from a system with

equally spaced levels because an excitation that is resonant with one pair of adjacent

levels will be resonant with all other pairs of adjacent levels. Therefore it is impossible

to excite just one pair of levels and use that pair as the two-level system for the qubit.

If the level spacing is non-linear, as is the case with Josephson junctions (Figure 3.1c),

each pair of levels has a different transition frequency. As a result, a transition between

the two lowest levels can be excited with minimal excitation of other levels. Thus

the ground and excited states of the non-linear system create the two-level subspace

that constitutes a qubit. However, because there are energy levels present above the

excited state, the maximum number of single qubit operations that can be performed

coherently scales, to first order, as the quality factor of the qubit transition times the

nonlinearity [25]

#qubitops = Q01
| ω01−ω12 |

ω01
(3.1)

where the ωmn are the transition frequencies between states |m〉 and |n〉 and Q01

is the quality factor of the qubit transition given by Q01 = ω01/∆ω01, where ∆ω01 is

the full width at half maximum of the qubit resonance at frequency ω01/2π [76]. The
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quality factor is also related to the energy relaxation time, T1 via

T1 =
Q01

ω01
(3.2)

Low temperature operation is required because the superconducting transition tem-

perature, Tc, of superconducting metals that can be used to build complex microelec-

tronic devices falls in the range of a fraction to a few Kelvin. We use aluminum with a

superconducting transition temperature of Tc = 1.2 K. However, Tc is not what defines

the upper limit on the operating temperature of superconducting qubits. The reason

why milli-Kelvin temperatures are necessary is because we want to control supercon-

ducting qubits using inexpensive electronics. By constructing qubits with level spacing

ω01/2π≈ 5−20 GHz, we can use standard off-the-shelf microwave electronics, which

are widely and cheaply available thanks to the cell phone industry. Therefore, what sets

the upper limit on operating temperature is that thermal excitations can create unwanted

excitations from the qubit ground to the excited state, preventing proper qubit initial-

ization if ~ω01� kT is not maintained. This limits operating temperatures to tens of

milli-Kelvin.

In electrical circuits, Josephson junctions can be represented by the cross circuit

symbol as shown in Figure 3.2a. In the classical description of a Josephson junction,
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Figure 3.2: Josephson junction physics. a) A circuit of a current-biased Josephson junction.
As discussed in the text, a capacitance, CJ , is included to take into account the capacitance
between the electrodes of the physical junction and a resistance, RN is added to model the
dissipation in the system. When the current through the junction, IJ , exceeds the critical current,
I0, the junction makes a hysteretic jump (dashed arrow) from the superconducting to the normal
state. b) The current through the junction, IJ , as a function of the voltage, V, across it. The
superconducting state is on the blue vertical line at V = 0 and the normal state is along the rest
of the curve, as indicated in red. c) A Josephson junction in the superconducting state can also
be represented as a particle with mass CJ(~/2e) oscillating in a washboard potential given by
U . In the normal state, the wells become shallow and the particle “rolls” down the potential.

the current and voltage through and across the junction are given by

IJ = I0 sinδ (3.3)

V =
Φ0

2π

dδ

dt
(3.4)

where Φ0 = h/2e is the superconducting flux quantum, δ = φ1−φ2 is the difference

in the superconducting phase across the junction. The capacitance CJ is due to the

parallel plate geometry of the junction electrodes. If the current, IJ , flowing through

the junction exceeds the junction critical current, I0, the junction will switch from the
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superconducting to the normal state at which point it will have a normal state resistance

RN . The dependence of I0 on RN and temperature is given by the Ambegaokar-Baratoff

relation [6]

I0 =
π

2
∆sc(T )

eRN
tanh(∆sc/2kT ) (3.5)

where ∆sc is the superconducting gap energy, T is the temperature of the junction,

k is the Boltzmann constant, and e the magnitude of the charge of an electron. For

aluminum ∆sc ≈ 190µeV . We operate the qubits at ∼ 25 mK so therefore I0 is given by

the value at T = 0.

It is important to note that the superconducting phase difference across the junction,

δ, corresponds to the electromagnetic flux in units of Φ0, so that δ = 2πΦ/Φ0. Also it

should be noted that using equations (3.3) and (3.4) in the conventional definition, V =

LJ(dIJ/dt), the Josephson junction can be thought of classically as a tunable inductor

LJ =
Φ0

2πI0 cosδ
(3.6)

When a Josephson junction is biased with a current, and the voltage across it is

measured, a trace like the one shown in Figure 3.2b can be obtained, where I0, ∆sc,

and RN as indicated in the figure. The junction displays hysteretic behavior between

the superconducting and normal states of operation. In the superconducting state, the
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junction operates on the vertical current branch at V = 0. When I0 is exceeded, it makes

a hysteretic jump to the normal state branch at 2∆sc/e, returning to the superconducting

state via the normal state branch.

The quantum behavior of a Josephson junction can be understood by first writing

down the classical Hamiltonian for a single junction using Kirchoff’s equations. From

Figure 3.2a this gives CJ(dV/dt) +V/RN + IJ = Ibias. For qubits, the junction will

not be operated in the normal state therefore the dissipative term containing RN can

be ignored. We can then proceed to substitute in (3.3) for IJ , and (3.4) for V yielding

(~/2e)CJ δ̈+ I0 sinδ = Ibias. This can be rewritten in a form more easily recognizable

as the Euler-Lagrange equation [79], d/dt(∂L/∂δ̇)−∂L/∂δ = 0

d
dt

(
~
2e

)2
∂

∂δ̇

CJ δ̇2

2
− ∂

∂δ

~
2e

[I0(1− cosδ)− Ibiasδ] = 0 (3.7)

Therefore, the Lagrangian is

L =

[(
~
2e

)2 CJ δ̇2

2

]
−
[
~
2e

I0(1− cosδ)− ~
2e

Ibiasδ

]
(3.8)

Since L = K(δ̇)−U(δ), the kinetic energy can be directly read off (3.8)

K(δ̇) =

(
~
2e

)2 CJ δ̇2

2
=

[
Q2

2CJ

]
(3.9)
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Where the charge on the capacitor, Q =CJV =CJ(~/2e)δ̇, has been substituted to

show that the kinetic energy is just the charging energy of this capacitor. Similarly, the

potential energy can be read off (3.8)

U(δ) =
~
2e

I0(1− cosδ)− ~
2e

Ibiasδ (3.10)

and consists of the energy of the bias current and the magnetic energy of the Joseph-

son current. The Hamiltonian, H, can then be constructed from the Lagrangian using

H(p,δ) = pδ̇−L where p is the canonical momentum

p =
∂

∂δ̇
=

(
~
2e

)2

CJ δ̇ =

(
~
2e

)
Q = ~n (3.11)

where n = Q/2e is the number of Cooper pairs on the junction capacitor. Hence, the

Hamiltonian is
H = ECn2−EJ cosδ− ~

2e
Ibiasδ (3.12)

where EC = (2e)2/2CJ is the junction charging energy and EJ = (~/2e)I0 is termed

the Josephson energy. As illustrated in Figure 3.2c, this is just the Hamiltonian of

a particle with momentum Q(~/2e), mass CJ(~/2e), and position δ oscillating in a

“washboard” potential given by (3.10) and depicted in Figure 3.2c. When the junction

switches into the normal state (also called the voltage state), the particle escapes from

the well and runs down the washboard potential.
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To construct the quantum mechanical version of (3.12), it must be noted that Q and

δ do not commute and hence must be quantum mechanical operators described by a

wave function so that

Q → Q̂
δ → δ̂[

Q̂, δ̂
]

= 2ei
(3.13)

and the quantum mechanical version of (3.12) is obtained by replacing n and δ by

their quantum mechanical operator analogs

H = ECn̂2−EJ cos δ̂− ~
2e

Ibiasδ̂ (3.14)

This Hamiltonian of a single junction is the basis for the Hamiltonians that describe

the different implementations of superconducting qubits [85].

3.3 Types of superconducting qubits

There are 3 main types of superconducting qubits upon which all other superconducting

qubits are based: the charge, the flux, and the phase qubit [26, 25, 85]. The Hamiltonian

of each type is a variant of (3.14). The circuit, potential, and quantum mechanical

variable for each type is shown in Figure 3.3. How they differ can be best understood

by comparing the relative strengths of the energy scales EJ and EC.
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b)

QM states of δδδδ

c)

Bloch states in δδδδ

Vg

Qa)

Cg L Ibias CJ

∆U

Figure 3.3: Types of superconducting qubits. The three main types of superconducting
qubits, as described in the text: a) charge b) flux c) phase. The work in this thesis was performed
using a variant of the phase qubit. The variable used for the qubit states is listed below the
circuit.

The ”Cooper pair box”, or charge qubit [13, 56, 85], shown in Figure 3.3a is

constructed from two Josephson junctions in close proximity. The island between the

junctions is so small that its charging energy is large enough for the island to exhibit

Coulomb blockade behavior, i.e. EC � EJ . This allows Cooper pairs to tunnel on

and off the island, one at a time. The eigenstates of the charge qubit are given by

EC(n̂− ng)
2 |n〉 = En |n〉, where ng = −CgVg/2e is the charge on the gate capacitor in

units of Cooper pairs and is tuned using the gate electrode Vg. The number of Cooper

pairs on the island is represented by the number operator, n̂. For values of ng such as

ng = 1/2, a degeneracy exists for |0〉 and |1〉. However, if a small Josephson coupling,

EJ , is turned on, it acts like the Zeeman field in a NMR experiment and lifts the de-

generacy, forming the two levels of the qubit. The charging energy, EC, acts like the

transverse magnetic field in a NMR experiment. Also, it is very sensitive to noise in the

offset charge due to Vg when the qubit is biased away from the degeneracy point.

30



The flux qubit [55, 85, 25] is shown in Figure 3.3b and consists of a junction

shunted with an inductor L . LJ(0). The flux qubit parameters are such that EC� EJ ,

minimizing the charge noise that is present in charge qubits. It is operated with the

external flux, Φext/(2πΦ0) = δ = π. The external flux plays a role similar to the gate

electrode in the charge qubit. Therefore, analogous to the charge qubit degeneracy point

ng = 1/2, this creates a potential with symmetric wells with pairs of degenerate levels

separated by a barrier of height 3(LJ/L− 1)2EJ . The symmetric wells correspond to

the counterclockwise and clockwise persistent currents circulating in the loop formed

by L. Macroscopic quantum tunneling between the wells lifts the degeneracy, with

the lowest resulting pair of levels forming the qubit states. The advantage of the flux

qubit is its large nonlinearity which can be more than 100%, compared to the 10%

nonlinearity of the charge qubit. This comes at a cost because the high nonlinearity

exposes the flux qubit to critical current and flux noise. These have minimal effect at

the symmetric bias point, but away from this “sweet spot” these noise sources severely

limit performance [85].

The final superconducting qubit type, and the one on which the work in this thesis

is based, is called the phase qubit [25, 52], as shown in Figure 3.3c. It is just a current-

biased Josephson junction, as described by (3.14). Like the flux qubit, the phase qubit is

operated with parameters such that EC�EJ . However, it is biased so that Ibias≈ I0, giv-

ing δ ≤ π/2. With the bias near the critical current, the potential can be approximated
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by the cubic potential U(δ) = Φ0/2π(I0− Ibias)(δ−π/2)− (I0Φ0/12π)(δ−π/2)3, as

shown in Figure 3.3c. The barrier that traps the qubit states in the potential well has a

height

∆U =
2
√

2I0Φ0

6π

(
1− I

I0

)3/2

(3.15)

The lowest two levels in the well form the qubit states. The classical oscillation fre-

quency at the bottom of the well, ωp, is called the plasma frequency and corresponds

roughly to the qubit transition frequency, ω01 ' 0.95ωp,

ωp =
1√

LJ(I)CJ
=

1√
LJ(0)CJ

[
1− (I/I0)

2]1/4
(3.16)

Typically the phase qubit is operated with about ∆U/~ωp≈ 4−10 levels in the well

and a nonlinearity of ≈ 5%. It must be biased using a high impedance current bias and

it has a built-in measurement scheme which exploits the large difference in tunneling

rates of the two qubit states, which will be discussed in the next chapter. The phase

qubit is different from the other two qubit types because it does not need to be biased

at a “sweet spot” in order to be insensitive to charge noise.
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Chapter 4

Single Phase Qubit Design and

Operation

4.1 The flux-biased phase qubit

The qubit used for the experiments in this thesis has come to be called the flux-biased

phase qubit [75, 37, 49]. From the electrical circuit for this qubit (Figure 4.1a), it

can be seen that it is just a phase qubit where the high impedance current bias has

been constructed from a loop of inductance L through which an external flux, Φ, is

applied. The Thevenin equivalent of the flux bias can be written as a current source

with magnitude Ibias = Φ/L as shown in Figure 4.1b. From now on this will be called

the flux bias of the qubit. This circuit is very similar to that of a flux qubit, but unlike
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the flux qubit, here L & 2LJ(0), and the operating bias is like that of a phase qubit with

IJ . I0.

Figure 4.1: The flux-biased phase qubit. a) The circuit for flux-biased phase qubit. The
small physical size of the qubit junction gives it a small capacitance and as a result it needs
to be shunted by a large capacitance, C, in order to maintain the qubit frequency near 6 GHz.
The qubit is biased using an external flux, Φ, which leads to the Thevenin equivalent circuit
shown in b). This flux bias modifies the washboard potential of the junction, adding a parabolic
term as shown in (4.1). c) The potential energy as a function of the phase, δ, across the qubit
junction, as given by (4.1). d) An optical micrograph of a finished microfabricated flux-biased
phase qubit. The different elements are: 1. qubit shunt capacitor C, 2. qubit Josephson junction,
3. qubit inductor L, 4. readout SQUID, 5. flux bias coil
.

In the particular designs used in this thesis, the qubit junction area is small (≈

1− 2µm2). This is because the qubit can couple to so called two-level states (TLS’s)

in the junction oxide and exchange energy with them [50, 70]. Two-level states can

also be found in the dielectric materials used in the qubit shunt capacitor and in the

dielectric separating overlapping on-chip leads. Recent work [50, 70] suggests that a

TLS is formed from the two conformational states of a dangling bond of a defect in

a dielectric material. For certain qubit biases, an unoccupied energy level of a TLS

can align on-resonance with an occupied qubit level. When this happens, the two will
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exchange energy. Reducing the junction size decreases the number of TLS’s in the

junction tunnel barrier, but it also reduces the qubit capacitance, CJ . Therefore, in order

to maintain the qubit frequency in the 6 GHz range, the junction must be shunted by

a large external capacitor, C, as shown in Figure 4.1 [75]. As with the standard phase

qubit, the potential of the flux-biased phase qubit can be written down using Kirchoff’s

laws and consists of the phase qubit washboard potential terms that are cosine and

linear in δ, but also with an additional parabolic bias term due to the energy of the

current flowing in L

U(δ) =−I0Φ0

2π
cosδ+

1
2L

[Φ−δΦ0/2π]2 (4.1)

Unless stated otherwise, the qubit devices used to take the data in this thesis were

designed with

L' 750pH
I0 ' 1.6µA
C ' 1pF
CJ ' 50 f F

(4.2)

The parameter values listed in (4.1) allow the qubit potential to have only two min-

ima when biased near the critical current, as shown in Figure 4.1c. The left and right

wells have ≈ 4−10 and & 300 levels, respectively and the lowest two levels in the left

well form the qubit states. Having two wells simplifies qubit initialization and opera-
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tion, as will be discussed later. However, parameters can deviate from the ideal values

above due to fabrication errors or other problems so the qubits must be carefully cal-

ibrated and tested in order to verify the actual parameter values. An actual fabricated

device is shown in Figure 4.1d, with some of the components identified in the caption.

It must be noted that the qubit inductor loop, L, is gradiometrically constructed and

positioned so that it will be insensitive to all external flux aside from that of the flux

bias coil. Unless stated otherwise, the top and bottom wiring is made from aluminum.

The dielectric material used for the capacitor, C, and to separate overlapping wires for

crossovers is amorphous silicon (a-Si:H). The insulator used for the Josephson junc-

tions is amorphous aluminum oxide (AlOx). A ground plane surrounds the qubit to

isolate it from unwanted microwave modes. Square, ∼ 10µm×10µm, holes are etched

into the ground plane to prevent the trapping of magnetic flux as the qubit chip is cooled

below the superconducting transition temperature of aluminum. It is necessary to avoid

trapped flux because mobile flux vortices can cause dissipation [6]. Further details of

the microfabrication of the qubits used for this thesis are discussed in Appendix A.
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4.2 Single Qubit Biasing, Measurement, Readout and

Logic Operations

A single qubit is manipulated and measured using four different subsystems, which are

shown schematically in Figure 4.2. These subsystems bias the qubit, operate on qubit

states using microwave pulses, measure the result of these operations, and read out the

measurement results. A brief overview of each subsystem follows, and examples of

how each subsystem is characterized experimentally will be presented in section 4.3.

However, these subsystems have been described in depth elsewhere [3, 57] and the

reader interested in more details can refer to those sources. The circuit of the cryogenic

wiring of these subsystems and a brief overview of the room temperature electronics

that control these subsystems can be found in Appendix B.

4.2.1 Flux Bias and Measurement

As discussed above, biasing of the qubit is accomplished by applying a flux, Φ, through

the qubit inductor L, as shown in Figure 4.2. However, why not just directly inject the

bias current into the qubit circuit instead of coupling the bias into the qubit circuit using

the mutual inductance M between the qubit and flux bias loops? This is because energy

from the qubit can dissipate out into the environment through the flux bias line. The

mutual inductance coupling serves to transform [57] the flux bias line characteristic
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ΦΦΦΦ

δ

V
µw

Figure 4.2: Qubit bias, measurement, readout, and control subsystems. Circuit of flux-
biased phase qubit with different subsystems color-coded. (Red) The superconducting quantum
interference device (SQUID) used for reading out the qubit state is to the left of the qubit circuit
(Black) and is composed of 3 Josephson junctions. The VSQ (V readout

SQ ) line is used to bias
(measure) the SQUID. (Brown) The Vbias line provides the flux-bias used to bias the qubit.
It controls the Φ term in (4.1). (Orange) The VZ line applies the measurement pulses used
to measure the qubit and the z-pulses used to generate z-axis rotations on the Bloch sphere.
The z-pulses are also used for fine adjustments to the qubit bias that need to be executed on
nanosecond timescales because the Vbias line operates on much slower, microsecond timescales.
(Violet) The Vµw line is capacitively coupled to the qubit circuit and is pulsed with microwave
pulses that control rotations about the x and y axes of the Bloch sphere. The reason for coupling
the flux bias signal into the qubit through an inductive transformer and for coupling the the
microwave signal through a coupling capacitor is discussed in the text and is done to limit qubit
dissipation through the Vbias and Vµw lines.

impedance of 50Ω up by a factor of (L/M)2 = (750pH/8pH)2 ' 104 so that the the

qubit sees a large impedance out into the environment via the flux bias line. This large

effective impedance limits the dissipation through the flux bias line.

The flux bias controls the Φ term in (4.1) and therefore it tilts the potential well.

A few representative snapshots of the qubit potential are illustrated in Figure 4.3 for

different flux bias values, Vbias. The flux bias serves as a coarse and slow adjustment

knob for the qubit potential. Flux bias signals are typically a few microseconds long
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and have amplitudes of hundreds of millivolts to a couple volts, and as shown in Ap-

pendix B, are applied across a 1kΩ series resistor to generate a current bias. However,

qubit logic operations need to be generated on nanosecond timescales in order to max-

imize the number of operations before coherence is lost. This requires a fine and fast

control knob for the qubit potential. As shown in Figure 4.2, this is accomplished by

pulsing the same flux bias line, via VZ , with pulses a few nanoseconds in length. As dia-

grammed in Appendix B, the 1kΩ Vbias line must be impedance matched to the 50Ω VZ

line using a custom made tee circuit to prevent the VZ signals from being reflected at

the point where the two lines merge into one. Coincidentally, the VZ pulses can also

be used to measure the qubit state, as will be discussed shortly. When these pulses are

used to control the qubit bias, they will be called z-pulses, but when they are used to

measure the qubit, they will be called measurement pulses. They differ in their pulse

shape, with the z-pulse being a flat-top Gaussian usually 10’s to 100’s of nanoseconds

in length, and the measurement pulse having a linear roll-off with a fixed width of tens

of nanoseconds, as will be described shortly.

The measurement scheme currently used for flux-biased phase qubits is based on

the tunneling rate of the qubit |1〉 state, Γ1, being much larger than the tunneling rate of

the qubit ground state, Γ0, which for a well defined well that has a barrier ∆U , is given

by [52]

Γ0 ' 52(ωp/2π)
√

∆U/~ωpe−7.2∆U/~ωp (4.3)
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δδδδ
U 

Vbias

Figure 4.3: Effect of flux bias on qubit potential The potential as given by (4.1), for 7 values
of applied flux, Φ. Each snapshot shows the potential of the potential energy, U , as given by
(4.1) as a function of the superconducting phase difference across the qubit junction, δ. The
second snapshot from the left corresponds to the case of biasing the qubit near the critical
current as shown in Figure 4.1c. Increasing the flux bias (Vbias) changes the well depths in a
periodic fashion, with a period of approximately one flux quantum, Φ0.

where ωp is the plasma frequency given by (3.16) and ∆U is the qubit well potential

barrier height given by (3.15). The ratio of the tunneling rates between adjacent levels

n and n+1 in the qubit well is approximately

Γn+1

Γn
' 300 (4.4)

As depicted in Figures 4.4a and b, we can use the above difference in rates to mea-

sure the qubit. A measurement pulse can be applied that has been calibrated to lower

the tunneling barrier, ∆U , by just enough so that only the |1〉 or higher states will tunnel

or escape into the deep right well. The state will then relax to the bottom of the right

well at a rate approximately given by nr/T1, where nr is the number of levels in the

right well [88]. Usually nr ∼ 300 and T1 ∼ 500ns. On the other hand, if the qubit is
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in the |0〉 state (Figure 4.4b), no tunneling occurs because Γ0 ≪ Γ1. Therefore, the

presence (absence) of tunneling into the deep right well allows us to measure if the

qubit is in the |1〉 (|0〉) state. This measurement scheme is powerful because for mul-

tiple qubits it allows us to measure all the qubits at the same time. Hence it is called

a single-shot measurement scheme. However, the qubit state is destroyed as it tun-

nels into the right well. Therefore, this measurement is called a quantum demolition

measurement. Qubits can also be measured without destroying the qubit state by using

a quantum non-demolition (QND) measurement. QND measurement schemes are

useful in implementing particular types of quantum error correction protocols.

Now that the qubit state has either tunneled into the large well on the right (qubit

= |1〉) or has remained in the qubit well (qubit = |0〉), the difference between these two

events must be read out by the external circuit.

4.2.2 Readout

The result of the measurement is read out by first adjusting the flux bias, Vbias, so that

the qubit potential is nearly symmetric, as shown in Figure 4.5b and c. This leaves the

result of the measurement in a deep potential well. If the result was left in a shallow

well, it could be easily excited out of that well by other signals, causing errors in mea-

surement. Therefore, by remaining in a deep well, the measurement result is protected

against errors. Also, at this symmetric point the two wells are maximally separated
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nr/T1
Γ1 >> Γ0

Figure 4.4: Qubit measurement scheme. The tunneling rate of the |1〉 state, Γ1, is much
greater than that of the |0〉 state, Γ0, allowing us to use the presence (absence) of a |1〉 state
tunneling event to measure if the qubit is in the |1〉 (|0〉) state. a) A pulse on the VZ line
decreases the height of the potential barrier by a calibrated amount that only allows the |1〉 or
higher states to tunnel out. What follows after this depends on whether the qubit is in the |0〉
or |1〉 state b) If the qubit is in the |1〉 state, it will tunnel out to the right well and decay to
the lowest right well state at a rate ∼ nr/T1, where T1 ' 500ns is the energy relaxation time
and nr ' 300 is the number of levels in the large well to the right of the qubit well. b) If the
qubit is in the |0〉 state then no tunneling occurs and the state remains in the qubit well when
the measurement pulse is applied. These two cases can be distinguished later using the readout
mechanism that will discussed shortly. If a higher state outside the {|0〉,|1〉} qubit manifold is
occupied, then the qubit will be measured as being in the |1〉 state.

in flux by about one flux quantum, Φ0. This flux difference is easily read out using a

superconducting quantum interference device (SQUID), as shown in Figures 4.5d and

e and discussed below [6, 57].

Only the relevant points about the SQUID used here and shown in Figure 4.2 will

be discussed. More details about the design and operation of the readout SQUID can

be found elsewhere [57, 3]. The key point is that the SQUID as a whole has a critical

current, ISQUID
0 , that depends on the flux threading the SQUID loop. The flux generated

by the qubit loop L couples into the SQUID loop thereby allowing us to read out the

flux state of the qubit by measuring ISQUID
0 (see Figure 4.5a) [6]. As mentioned above,
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the flux in the qubit loop depends on whether the qubit state was in the |0〉 or |1〉 state,

with the two flux states differing by approximately one flux quantum, Φ0. As shown

in Figure 4.1d, the SQUID loop is gradiometrically constructed and is symmetrically

placed with respect to the flux bias coil in order to be sensitive only to the flux in

the qubit loop and not the flux applied by the flux bias coil or any other external flux

sources. The mutual inductance coupling the SQUID loop to the qubit loop is∼ 70pH.

The sequence of signals on the VSQ and V readout
SQ lines during the readout is described

in Figure 4.5d and e. To perform the readout, the SQUID bias voltage, VSQ, is ramped

up until the SQUID switches to the voltage state. This switching voltage is read out

by a gain of 1000 pre-amplifier. A clock is started at the beginning of the VSQ ramp

and the time at which the switch occurs, tswitch is recorded. This switching time is

approximately Gaussian distributed about one of two values, t|0〉 or t|1〉, depending on

the qubit flux state.

Care must be taking when operating the SQUID in order to prevent qubit dissipation

from quasiparticles [43]. If the voltage across the SQUID exceeds twice the supercon-

ducting gap, 2∆sc/e ' 400µV, quasiparticles will be rapidly generated. To prevent the

generation of quasiparticles when the SQUID switches, the SQUID with critical cur-

rent of ISQUID
0 ' 2µA, is shunted to ground using a resistance Rshunt ' 30Ω. This forces

the switching voltage across it to be ISQUID
0 Rshunt = 60µV∼ (1/3)2∆sc/e. More of the

experimental details behind calibrating the readout will be discussed in Section 4.3.
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Figure 4.5: Readout scheme. a) The qubit is read out using a superconducting quantum inter-
ference device (SQUID), shown in red. The critical current of the 3-junction SQUID depends
on the flux, Φqb, in the qubit loop. The SQUID bias is ramped using VSQ while the voltage
across the SQUID is measured using V readout

SQ . b) and c) Depending on the state the qubit is in,
Φqb will differ by approximately one flux quantum, Φ0, between the two states, |0〉 and |1〉. d)
and e) This flux difference is detected by ramping VSQ and monitoring V readout

SQ . The SQUID
will switch to the voltage sometime during the ramp. The ramp voltage at which it switches
depends on the SQUID critical current, which itself depends on the state of the qubit. A timer
is started at the beginning of the SQUID ramp and stopped when a voltage across the SQUID is
detected using V readout

SQ . The time elapsed since the beginning of the ramp, tswitch is recorded as
the switching time. Hence tswitch is approximately Gaussian distributed about the values t|0〉 or
t|1〉 and tells us if the qubit was in the |0〉 or |1〉 state.

4.2.3 Logic Operations

As mentioned in Chapter 2, qubit logic operations consist of rotations around Bloch

sphere axes [58]. Rotations about the x, y, and z axes by an angle θ will be labeled

Xθ, Yθ, and Zθ, respectively. Arbitrary rotations can be constructed from linear com-

binations of the rotations about the x, y, and z axes. The amplitude of the microwave

pulse determines the Bloch sphere angle θ and the phase of the pulse determines the

Bloch sphere angle φ. However, the definition of φ = 0, i.e. the x-axis, is a subtle,

but important point. The microwave source used to output the microwave pulses con-
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tains a phase locked loop (PLL) circuit that is set to an arbitrary phase [64]. We define

φ = 0 to be this arbitrary phase and this defines the phase of the Xθ pulse. The pulse

with a +π/2 phase shift relative to this arbitrary phase is defined to be the Yθ pulse.

Therefore, when we talk about the rotating frame of reference, we mean that this is

the reference frame where φ = 0 is defined to be the arbitrary phase that the PLL cir-

cuit of the microwave source is set to. The full-width at half max of the microwave

pulses is typically ∼ 8−10 nanoseconds. As shown in Figure 4.2, the microwave line

is capacitively coupled into the qubit circuit. This prevents any DC signals from reach-

ing the qubit and also ensures that the 50Ω characteristic impedance of the microwave

line is transformed up to a much larger effective impedance, limiting the dissipation

through the microwave line in a similar way to what was discussed earlier for the flux

bias line, Vbias. Rotations about the Z axis are achieved by pulsing the measurement

line (VZ) with Gaussian flat-top pulses whose area determines the amount of rotation,

φ. These “z-pulses” effectively detune the qubit from the rotating frame defined by

the microwave source and as a result create an effective rotation about the Z axis of

the Bloch sphere. More details behind the electronics that generate and control these

pulses can be found in Appendix B.
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4.3 Experimental Characterization of A Single Qubit

In order to use a qubit, the various subsystems mentioned above must be tested, charac-

terized and calibrated. Testing is necessary to discover errors and variations introduced

during fabrication, faulty connections in the electronics, and other issues that might

prevent proper operation. We also need to calibrate the parameters needed to reset the

qubit into the ground state and to bias, measure, read out and perform operations of the

qubit. Many of these experiments can be understood in terms of pulse sequences on the

bias, microwave, and readout lines. An example of such a pulse sequence is shown in

Figure 4.6. The horizontal axis is the time axis and the vertical axis is the amplitude

of each signal. The various lines correspond to the various subsystems such as the flux

bias, SQUID readout/bias, measurement/z-pulse, and microwave lines.

a)

VSQVbias VZVSQ
readout

b)

V
µw

VSQ
readout

VSQ

Vbias

Vz

Vµw

t

~30   sµ~20   sµ

~90   sµ

~50   sµ

~50   sn

~10   sn

z-pulse meas. pulse
variable

Figure 4.6: Example pulse sequence. a) Flux-biased phase qubit circuit with lines that will
be pulsed to control the flux bias (Vbias), measurement (VZ), readout (VSQ and V readout

SQ ) and
microwave control (Vµw). b) A typical qubit pulse sequence with voltages on each of the qubit
lines depicted in time. Pulse amplitudes and widths are not drawn to scale, but approximate
timescales are labeled where appropriate.
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This representation is schematic, and the amplitude and duration of the various

signals will not be drawn to scale, unless stated otherwise. However, the bias and

readout pulses take place on timescales of a tens to hundreds of microseconds. The

microwave, measurement, and z pulses are each usually a few to a hundred nanoseconds

long with nanosecond rise/fall times for the latter two and GHz frequency oscillations

for the microwave pulses. Hence the bias and readout lines will be sometimes referred

to as DC lines since they change slowly compared to the nanosecond timescales of the

measurement/z-pulse and microwave lines.

4.3.1 Calibrating the readout, qubit reset, and bias points

Without a working readout, further debugging is impossible; therefore the first sub-

system that needs to be tested and calibrated is the readout SQUID. Pinholes in the

Josephson junctions that make up the SQUID or other fabrication or wiring errors can

make the SQUID inoperable. A test that verifies basic operation of the SQUID is a

measurement of the voltage across the SQUID as a function of the current injected into

the SQUID, a current-voltage or IV measurement. It is a very simple measurement

that can be quickly done with an analog oscilloscope and voltage source, and is a good

way to refresh those old-school oscilloscope skills that every grad student should be fa-

miliar with! The two lines used to bias and measure the voltage across the SQUID are

used to take the IV. As shown in Appendix B, a current bias for the SQUID is created
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by applying a voltage, VSQ across a 10kΩ series resistor. The voltage across the SQUID

is measured using the V readout
SQ line via a gain of 1000 pre-amplifier, symbolized by the

triangle in Figures 4.2 and 4.6. An oscilloscope is used in x-y mode to plot the current

versus voltage trace, and a typical IV trace is shown in Figure 4.7a.
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Figure 4.7: SQUID IV measurement. a) This is the most basic measurement used to ensure
the readout SQUID is working. It involves measuring the voltage across the squid (x-axis) as a
function of the current biasing the SQUID (y-axis). Using this measurement, the critical current
of the SQUID, ISQUID

0 , and the superconducting gap for aluminum, ∆sc, should be measured
and checked against the design values, here ∼ 2µA and 190µeV , respectively. The switching
voltage should correspond to the product of the critical current times the shunt resistance (here
Rshunt ' 30Ω) and should be much less than the superconducting gap voltage ∆sc/e in order to
minimize generation of quasiparticles which will cause dissipation. b) A schematic example
of one possible failure mode for the readout SQUID where there is a superconducting short to
ground bypassing the SQUID. c) Another possible failure mode of the readout SQUID. When
the SQUID is open, the connection to ground will be completed via a finite resistance and will
be indicated by a sloped line on the SQUID IV measurement. In the case pictured here, the
connection to ground is via the shunt resistance, as indicated by the slope of the line.

A few common errors worth mentioning can be encounter in this measurement. The

most common ones result from shorts between on-chip electrodes, which are supercon-

ducting, or from shorts somewhere in the normal-metal wiring leading down to the

device (see Appendix B for wiring diagram). A superconducting short is usually due
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to a fabrication error that causes shorts between aluminum electrodes that make up the

on-chip SQUID circuit, and will appear as a vertical line trace on an IV measurement

as demonstrated schematically in Figure 4.7b. A short to ground via a finite resistance

will look like a sloped line as in Figure 4.7c. This normal metal short can be due to

a on-chip trace being open or a connection to ground in the dilution refrigerator via a

normal metal resistor. The SQUID critical current and the superconducting gap, ∆sc,

for aluminum should also be recorded from the IV of the SQUID, as shown in Figure

4.7a. These should compared to the expected design values of ∼ 2µA and ∼ 190µeV,

respectively.

Now that the readout SQUID has been shown to function at a basic level, a measure-

ment is performed to check if the SQUID and qubit respond properly to the flux bias.

This measurement also yields the values necessary for setting various qubit bias points

needed to initialize, operate on, and read out the qubit. In our lab we have named this

experiment the SQUID steps measurement because of the step-like appearance of the

data (Figures 4.8b and c). The sequence of pulses used to carry out this experiment is

shown in Figure 4.8a. The flux bias, Φ, in (4.1) is slowly varied, and for each flux bias

point the SQUID is ramped, forcing it to switch into the voltage state. As mentioned in

the previous section, the SQUID critical current, and hence the voltage that it switches

to is dependent on the flux through the SQUID loop which itself depends on the qubit

state.
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As mentioned in the previous section, by measuring the time from the start of the

SQUID ramp, we can distinguish between the switching events that correspond to the

qubit being in the |0〉 or |1〉 state. This allows us to map out how the depths of the wells

of the flux-biased phase qubit potential change as a function of flux bias. If the actual

qubit parameters correspond to the design values given in (4.2), the SQUID step data

will look like Figure 4.8b. Each of the two overlapping sloped lines, which we have

termed branches, corresponds to a qubit potential minimum. If there would be no flux

bias dependence to the data, it would indicate a problem with either the on-chip flux

bias trace or the lines in the dilution refrigerator leading down to the on-chip flux bias

line. Therefore, the Vbias line should be checked for continuity or shorts by verifying

that its series resistance is 1kΩ (see Appendix B). Once this SQUID step dataset is

obtained, the bias values needed to initialize, operate and read out the qubit can be read

off directly from the SQUID step data.

First, we need to calibrate the flux bias values needed to initialize the qubit into one

particular minimum of the qubit potential. This is the initialization procedure called for

in the second DiVincenzo criterion and the need for it can be understood as follows.

Cooling the device to ∼ 25mK relaxes the qubit state at random into one of the wells

in the qubit potential. After we operate on the qubit and measure the state, the state

might end up in a different well. Therefore, if we want to perform further experiments

on the qubit, we will need a way to “reset” the qubit back to the well that we originally
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defined to represent the qubit well. As shown in Figure 4.8b, for the case of two over-

lapping branches, i.e. two minima, the initialization is accomplished by first biasing

the qubit to a point where only one branch is present. This “reset bias” is labeled as r

in Figures 4.8b and c. However, if the qubit critical current, I0, was larger or the qubit

inductance, L, was smaller than the ideal values listed (4.2), there would be more than

two overlapping branches at any given flux bias. An example of 3 overlaps (3 simul-

taneous qubit potential wells) is shown in Figure 4.8c. As a result, the initialization

protocol is more complex and involves cycling the qubit bias multiple times between

two bias points, r1 and r2. These two points are chosen as the reset biases because at

these points there is a minimal number of overlapping branches. As discussed in more

detail in [3], a minimum of 3 resets is needed to ensure that the probability of the qubit

being initialized into one of the other wells is < 10−4. The pulse sequence for this reset

will be shown below.

Once the qubit is initialized to a given branch, appropriate bias points on that branch

need to be calibrated. The first will be the bias at which the qubit will be operated on

and measured. This will be called the operating bias. At this stage, the selection of

an operating bias is coarse and all that is needed is the value of a flux bias point near

the edge of the branch into which the qubit has been initialized. This flux bias point is

labeled as o in Figures 4.8b and c. At this edge, one of the wells will be shallow enough

to be used as the well for the qubit states. In the next calibration experiment, the step
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Figure 4.8: SQUID steps measurement. The SQUID steps measurement is an important
experiment that allows us to obtain calibration values needed to initialize, measure and bias the
qubit. a) The pulse sequence of the SQUID steps experiment. The flux bias is first set to its
maximum positive amplitude of +2.5V. Then it is immediately set to the flux bias value that
is being scanned in the SQUID steps measurement. At this point, the SQUID is ramped and
the switching time is recorded. This same pulse sequence is repeated with the same flux bias
value, but with the initial flux bias set to its maximum negative amplitude of −2.5V. Due to the
hysteresis in the SQUID step branches, initially setting the flux bias to its maximum positive and
negative values is necessary in order to fully map out the regions where there are overlapping
branches. This can be understood by noting that the red (blue) points in b) and c) are where the
flux bias was initially set to +2.5V (−2.5V). b) A dataset of a typical SQUID step experiment.
The significance of each of the calibration values marked as tco (cutoff time), r (reset bias), o
(operating bias), ro (readout bias) is explained in the text. The qubit state is read out at the
readout bias. If the switching time tswitch at the readout bias falls at or above the cutoff, tco, then
the qubit is read out as being in the |0〉 state, otherwise the qubit is read out as being in the |1〉
state. c) A SQUID step experiment where the qubit critical current and inductance are such that
there are more wells in the qubit potential or equivalently more overlaps in the SQUID steps.
This requires an additional reset bias point as indicated by r1 and r2.

edge experiment, the operating bias will be chosen more precisely.

Finally, after the qubit is measured it will need to be biased to a readout bias where

the two wells of the potential will be approximately symmetric and separated by about

one flux quantum. At this readout bias, we also need to find the value of the SQUID

switching time, tswitch, that maximally separates the switching times corresponding to

the |0〉 state from those corresponding to the |1〉 state. We have called this value the

cutoff time and have labeled it as tco in Figures 4.8b and c.

52



4.3.2 Step Edge: fine calibration of the bias point

The step edge experiment allows us to verify that the reset biases found in the SQUID

steps measurement properly initialize the qubit into the |0〉 state. It also allows us to

calibrate the operating bias on a finer scale so that the current through the qubit is as

close to the critical current as possible, but without making the qubit well so shallow

that the |0〉 state tunnels out. Biasing near the critical current gives the qubit a larger

non-linearity. To see this we can let ω01'ωp in the expression for the number of single-

qubit operations possible given a particular non-linearity, (3.1). From (3.16), we can

see that the plasma frequency decreases as the operating bias approaches a value where

the current through the qubit junction is close to the junction critical current. Therefore,

as given by (3.1), the non-linearity and the number of single qubit operations that can be

performed will increase. To measure the depth of the qubit well for each operating bias,

we can use equation (3.15) for the barrier height ∆U and equation (3.16) for the plasma

frequency. We can then calculate an approximate value for the qubit level spacing ~ωp

and this will allow us to obtain the approximate number of levels in the qubit well,

∆U/~ωp, which gives us an indication of how deep the qubit well is. We can typically

get so close to the critical current that only ∆U/~ωp ∼ 4− 10 levels are in the qubit

well.

In the step edge experiment, we monitor the barrier height as a function of qubit

operating bias by measuring the probability of tunneling of the |0〉 state. The data is
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step-like in appearance because of the exponential dependence of the |0〉 state tunneling

rate, Γ0, on the height of the tunneling barrier of qubit well, ∆U , as given earlier in (4.3).

As the operating bias is increased and the edge of a branch is approached, ∆U decreases

to zero and the zero state escapes. The pulse sequence for this experiment is shown in

Figure 4.9a, and is illustrated for a device that has 3 overlapping branches in order to

demonstrate the more complex reset sequence. As shown in Figure 4.9a, the flux bias

pulse sequence is divided into 3 regions: reset, operating bias, and readout bias. The

reset and readout biases have already been calibrated in the SQUID steps experiment.

Here, we will verify these calibrations and we will also calibrate the operating bias.

The step edge data for a typical qubit is shown in Figure 4.9b. The probability of

the |0〉 state tunneling out of the qubit well is plotted as a function of the qubit operating

bias. Although a purely exponential dependence of the |0〉 state tunneling probability

on the operating bias is expected, as given by (4.3), periodic sharp features are often

superimposed on the rising step edge. These features are due to an enhancement in

the tunneling probability for tunneling between the states in the qubit well and the

deep right well, an effect known as resonant tunneling. Resonant tunneling takes

place when the operating bias is scanned tilting the potential as previously shown in

Figure 4.3. During the tilting, the levels in the qubit well and the deep right well align

and a resonant tunneling event occurs. Aside from the resonant tunneling features, the

|0〉 tunneling probability has an exponential dependence on operating bias as expected,
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Figure 4.9: The step edge experiment. The purpose of the step edge experiment is two-fold.
First, we want to verify that the reset and readout biases as well as the cutoff times calibrated in
the SQUID steps experiment allow us to properly initialize and read out the qubit. We also want
to find the value of the qubit operating bias that is as close as possible to the qubit critical current,
but not so close that the qubit |0〉 state starts tunneling out of the qubit well. As discussed in
the text, biasing near the critical current gives a larger non-linearity and as a result allows us
to perform more single qubit operations as given by (3.1). a) Pulse sequence for a step edge
experiment for a qubit with SQUID steps like those in Figure 4.8c. To ensure that the qubit is
reset only to one branch, the reset is repeated 3 times using the “r1” and “r2” values calibrated
in the SQUID steps experiment. Three reset cycles ensure that the probability of the qubit being
initialized into one of the other branches is < 10−4. Then the flux bias is set to the operating
bias value (“o”) for ∼ 30µs. Finally, the flux bias is set to the readout bias value (“ro”) for
∼ 90µs and its state is read out using the SQUID. This sequence is repeated for a range of
values of the operating bias. For each operating bias value, the pulse sequence is repeated 1200
times and the probability of tunneling of the |0〉 state is given by (number of repetitions where
tswitch > tco)/1200. b) A typical step edge data set. As the operating bias is increased, the qubit
well gets shallower and the tunneling of the |0〉 state increases exponentially, as discussed in
the text. The resonant features on top of the exponential curve correspond to resonant tunneling
events and are explained in the text. The value of the operating bias that gives the largest
non-linearity while giving the smallest |0〉 state tunneling probability is indicated on the step
edge data by the dotted line and usually corresponds to the qubit well having approximately
U/~ωp ∼ 4−10 levels.

indicating that the qubit has been properly initialized and that the calibrations in the

SQUID steps experiment have been performed correctly.

Now that we have verified proper initialization and readout and know that the

SQUID steps calibrations are correct, we can calibrate the operating bias using the

step edge data. We do this by choosing a value that gives a number of levels, ∆U/~ωp,
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as close to 4 as possible, giving the highest possible non-linearity. The operating bias

value at which this takes place is indicated by the dotted vertical line in Figure 4.9b and

this will value is the calibrated qubit operating bias. Typically a formal calculation of

the number of levels in the qubit well is not necessary in order to calibrate the qubit

operating bias. It can be calibrated visually from the step edge data by choosing the

operating bias closest to the rising step where the probability of |0〉 state tunneling is

still zero.

4.3.3 S-curve: measurement pulse amplitude calibration

The next step is to calibrate the amplitude of the measurement pulse needed to reduce

the qubit well tunneling barrier height, ∆U , by an amount that will ensure that the |1〉

state fully tunnels out into the deep right well while the |0〉 state population remains in

the qubit well. This is done using a measurement we have named the s-curve due to

the “s” shape of the data trace. However, because we have no way to prepare the qubit

in the |1〉 state yet, we have to find the appropriate measurement pulse amplitude by

measuring the tunneling probability of the |0〉 state as a function of the amplitude of

the qubit measurement pulse. As stated earlier in (4.4), we know that approximately

Γ1/Γ0 ' 300 [52]. Therefore, if we set the amplitude of the measurement pulse to

give a 5% |0〉 state tunneling probability, we will guarantee that the |1〉 state will fully

tunnel out of the qubit well. This “5% method” for obtaining the measurement pulse
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amplitude can be shown to be correct by using a more complex experiment where the

qubit is excited into the |1〉 state and an s-curve measurement for the |1〉 state is obtained

and compared to the |0〉 state s-curve. This measurement will not be discussed here and

is described in reference [3].

The pulse sequence for the s-curve experiment is shown in Figure 4.10a, where

now a new row has been added to the pulse sequence to represent the voltage, VZ , on the

measurement pulse line. As shown earlier in Figure 4.2 and as discussed in Appendix B,

the measurement pulse signal is applied through a separate RF line (labeled VZ) with

50Ω characteristic impedance which is tee’d into the DC flux bias line (labeled Vbias)

using a bias tee. More details on the electronics that generate the measurement pulse

can also be found in Appendix B.

It is important to understand the dynamics of how the shape of the measurement

pulse alters the qubit potential as a function of time. The exact measurement pulse

shape is shown in the inset to Figure 4.10a. The rising edge of the pulse tilts the

potential, lowering the tunneling barrier, ∆U . The pulse is held at the measurement

pulse amplitude value for ∼ 10ns. Then, as the pulse gradually falls to zero over a time

of∼ 40ns, the potential is tilted back to the same point as before the measurement pulse

was applied. The hold time allows the occupied state to tunnel out and decay in the deep

well to the right of the qubit well at the nr/T1 rate mentioned previously. Bypassing

this hold time and tilting the potential back right away would have resulted in some
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Figure 4.10: S-curve experiment. This experiment is used to find the measurement pulse
amplitude needed to selectively tunnel out only the |1〉 state in order to measure the qubit as
previously described in Figure 4.4. a) The pulse sequence for the s-curve experiment. The bias
and readout are operated in the same way as in the step-edge experiment. On the pulse sequence
diagram, a new line for the measurement/z-pulse (VZ) is added and shows that we measure the
qubit during the time that it is biased at the operating bias. Although the measurement pulse will
be represented on pulse sequences as having a Gaussian envelope, the measurement pulse shape
used in the experiments is shown in the inset. Increasing the measurement pulse amplitude tilts
the potential in a slower, more controlled fashion compared to increasing the operating bias
in the step edge experiment. The measurement amplitude will be calibrated in the s-curve
experiment and is indicated by the double-tipped dashed arrows. We choose this pulse shape to
reduce visibility errors, as explained in the text. b) Typical data for an s-curve experiment. The
tunneling probability of the |0〉 state is plotted as a function of measurement pulse amplitude.
As the measurement pulse amplitude is increased, the potential is tilted reducing the barrier,
∆U , between the two wells until eventually the |0〉 state fully tunnels out of the qubit well.
As discussed in the text, the calibrated measurement pulse amplitude is set to the value that
corresponds to a 5% |0〉 state tunneling probability because this guarantees that the |1〉 state
will fully tunnel out of the qubit well.

of the state tunneling back from the deep right well, reducing the qubit visibility. A

theoretical analysis of this error mechanism can be found in [88].

The data for a typical s-curve experiment is shown in Figure 4.10b. The probability

of the |0〉 state tunneling out of the qubit well is plotted as a function of measurement

pulse amplitude. Again, the sharp peaks that are superimposed on the s-curve data

indicate that resonant tunneling is taking place. The measurement pulse amplitude that
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corresponds to a 5% tunneling probability of the |0〉 state is indicated by the dotted line.

It is instructive to review some common errors in the set-up of the s-curve measure-

ment. One common error is that the tunneling probability remains at zero, or does not

fully reach 1 even for large values of the measurement pulse amplitude. This is most

likely caused by the operating bias being calibrated to a qubit well depth that was too

deep in the step-edge experiment. To fix this, the operating bias can be re-calibrated to

a value closer to the step edge. Another error is due to setting the hold time discussed

above to a value that is shorter than the time it takes for the state to relax in the deep

right well. If this is the case, then when the qubit is in the |1〉 state, the state will tunnel

to the right deep well, but will not have enough time to relax in that well. As a result, it

will tunnel back into the qubit well and the |0〉 state tunneling probability will not rise

fully to 1 in the s-curve data. If on-chip heating is present or if the operating bias is set

to a qubit well that is too shallow, the s-curve data will begin from a non-zero |0〉 state

tunneling probability. The qubit then needs to be re-biased to a deeper well. If heating

is the problem, then the cryogenic wiring described in Appendix B must be checked for

proper thermal sinking and attenuation.

4.3.4 Spectroscopy

Calibrating the operating bias to a specific value fixes the energy level structure of the

qubit. If the energy levels of the qubit are fixed, the frequencies of the transitions
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between these levels can now be measured. This is done by initializing the qubit into

the |0〉 state and subsequently driving the qubit into the |1〉 state with a microwave

pulse whose frequency is scanned, but whose duration is fixed at a value much longer

than the qubit energy relaxation time, T1. For each frequency point, the probability

of the qubit being read out in the |1〉 state is measured. It is important to note that,

if the qubit is in a higher state that the |1〉 state, it will also be read out as tunneled.

The pulse sequence for a typical spectroscopy experiment is shown in Figure 4.11a. To

reduce visual clutter, the readout lines (VSQ and V readout
SQ ) have been left off the pulse

sequence diagram in Figure 4.11a. These lines will not be shown in pulse sequences

in subsequent experiments with the understanding that the readout sequence is still

executed in the same manner as in the step edge experiment in Figure 4.9a.

Let us briefly go over the important transitions that we can measure using a spec-

troscopy experiment. The most important transition is the 0→ 1 transition between

the qubit |0〉 and |1〉 states. Its frequency should correspond to the expected design

value given by ω01/2π = 1/(2π
√

LC)' 1/(2π
√

(750×10−12)(1×10−12))' 6 GHz.

The 0→ 2 transition has a frequency slightly below 12GHz. However, it can be ex-

cited at half this frequency through a two-photon process that virtually occupies the |1〉

state [84]. Thus the two-photon 0→ 2 transition frequency will be slightly below the

qubit frequency, at approximately the 1→ 2 transition frequency. At this point in the

qubit calibration, we cannot generate a π pulse therefore we cannot excite the 1→ 2
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Figure 4.11: Spectroscopy experiment. This experiment allows us to measure the frequency
response of: any of the transitions between the energy levels in the qubit well, any resonant
microwave modes in on-chip wiring or within the qubit sample box, or any resonant excitations
of two-level defect states (TLS’s). The most important transition frequencies are the qubit tran-
sition ω01/2π frequency and the frequency of the two-photon 0→ 2 transition, ω

2γ

02/2π. The
origin of the two-photon 0→ 2 transition and how it can be used to measure the non-linearity
of the qubit are discussed in the text. The two-photon 0→ 2 transition and some microwave
and TLS modes can only be excited at high microwave power. a) Pulse sequence for the spec-
troscopy experiment. The flux bias and readout pulse sequences are the same as in the step edge
and s-curve experiments. The readout lines have been left off the spectroscopy experiment pulse
sequence diagram in order to reduce visual clutter. However, the qubit readout is still performed
in the same manner as shown earlier in the step-edge and s-curve pulse sequences. To perform
spectroscopy, the qubit is first initialized into the |0〉 state and a long microwave pulse of a given
frequency is applied to the qubit. The qubit is then measured using the calibrated measurement
pulse amplitude value found in the s-curve experiment. The experiment is repeated for a range
of microwave pulse frequencies and for each frequency we record the probability that the qubit
was measured to be in the |1〉 state, P1. To avoid decay from decoherence during the microwave
excitation, the microwave pulse length must be much longer than the energy relaxation time, T1,
of the qubit which will later be measured to be ∼ 500ns. Here, we use 2µs for the length of the
microwave pulse. Spectroscopy experiments can be done at various microwave drive powers. b)
At low microwave power, the spectroscopy data only shows the qubit transition being excited.
c) The scan over the same frequency as in b), but at higher microwave drive power shows both
the qubit 0→ 1 as well as the two-photon 0→ 2 transitions being excited.

transition directly. Therefore, measuring the the two-photon 0→ 2 transition frequency

and the qubit 0→ 1 frequency allows us to approximately measure the non-linearity of

the qubit, as given by (3.1). Since it requires two photons, the two-photon 0→ 2 transi-
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tion is only excited at high microwave power. In addition to mapping out the spectrum

due to the Josephson junction, the spectroscopy experiment is also useful because it

reveals any unwanted microwave resonant modes and TLS transitions. The microwave

modes can be box modes from the aluminum box enclosing the qubit chip or microwave

resonances from on-chip wires or wirebonds. If these microwave and TLS modes are

sufficiently close in frequency to the qubit ω01/2π frequency and if the qubit is driven

at high enough power to excite them, they will act as pathways for energy leakage from

the qubit.

The data for the spectroscopy experiment is shown in Figures 4.11b and c. Using

low microwave power in the pulse sequence shown in Figure 4.11a, we obtain the data

shown in Figure 4.11b. The probability of the qubit being read out as being in the

|1〉 state, P1, is plotted as a function of the frequency of the microwave source. The

same data, at high microwave power, is shown in Figure 4.11c, where now the two-

photon 0→ 2 transition is being excited due to the higher power of the microwave

drive. The qubit transition frequency and the two-photon 0→ 2 frequency are labeled

as ω01/2π and ω
2γ

02/2π, respectively. Using equation (3.2), we can estimate the qubit

energy relaxation time from the quality factor, Q01, of the 0→ 1 resonant response.

However, at high microwave power the resonant responses are broadened preventing

us from obtaining an accurate value of the quality factor, Q01. Again, Q01 is given by

ω01/∆ω01 where ∆ω01 is the full-width at half-max of the 0→ 1 response. The low
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microwave power data gives a qubit response that is not artificially power-broadened

allowing us to get a rough measurement of the coherence time. Shortly, we will describe

an experiment specifically tailored for the measurement of the energy relaxation and

dephasing times T1 and T2, respectively.

Spectroscopy data can also be taken in another way which makes the locations of

TLS and resonance modes in the frequency spectrum visually clear. We call this ver-

sion of the spectroscopy experiment fine spectroscopy [70]. An example of fine spec-

troscopy data is shown in Figure 4.12. Fine spectroscopy uses the same pulse sequence

as shown in Figure 4.11a for regular spectroscopy, but each scan of drive frequency

is repeated for a range of values of the qubit operating bias. Figure 4.12 shows fine

spectroscopy data. For each operating bias (horizontal axis), the drive frequency (verti-

cal axis) is scanned over a small frequency range around the qubit transition frequency

ω01/2π. At each frequency and operating bias data point, the probability, P1 for being

in the |1〉 state is measured and plotted in grayscale. For each operating bias point, the

measurement pulse amplitude needs to be re-calibrated because the qubit well depth

changes, as indicated by the insets of the qubit potential in Figures 4.12a and b.

The data for the low microwave power fine spectroscopy scan is plotted in Fig-

ure 4.12a and shows just the qubit transition frequency, ω01/2π, as a function of operat-

ing bias. A high microwave power scan for a different device is shown in Figure 4.12b.

In addition to the qubit transition frequency, the high power scan also shows the two-
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photon 0→ 2 transition frequency, just below the qubit transition frequency. The insets

depicting the qubit potential at two different operating biases are meant to emphasize

that as the qubit well becomes shallower, the non-linearity increases, as shown by the

increasing separation between the ω01/2π and the ω
2γ

02/2π frequencies in Figure 4.12b.

Based on previous work [70, 50], we know that the splittings in Figure 4.12, labeled

with the vertical arrows, correspond to the qubit levels coupling either to a two-level

state defect or to a microwave resonance mode. In order to distinguish coupling to a

TLS from coupling to a microwave mode, the temperature of the qubit sample can be

cycled up to a couple Kelvin, and if the splittings do not move in frequency in response

to the temperature cycling, then they are most likely microwave resonance modes.

Aside from locating TLS and microwave modes near the qubit frequency, the fine

spectroscopy scan is also very useful because it can be used to extract the actual values

of qubit parameters C, I0, and L. These can deviate from the design values given in 4.2

due to variations and errors in fabrication. We can extract the actual fabricated param-

eter values by realizing that ω01 ' .95ωp and fitting equation (3.16) to the low power

fine spectroscopy data. This completes the spectroscopy calibrations.

4.3.5 Rabi Oscillations

Now that we have identified the qubit 0→ 1 transition frequency, we can drive transi-

tions between the |0〉 and |1〉 states by pulsing the qubit with microwave pulses of fixed
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a) b)

Operating Bias [V] Operating Bias [V]

P1 P1

Figure 4.12: Fine Spectroscopy This experiment is much like the previous spectroscopy ex-
periment, except that here the qubit operating bias is also varied. Therefore these scans plot the
probability of the qubit being read out as in the one state, P1 (grayscale), as a function of the
frequency of the microwave pulse (vertical axis) and the qubit operating bias (horizontal axis).
In order to complete these scans in a reasonable time, data is taken only in a small frequency
range around the qubit transition frequency, ω01/2π. These scans are particularly useful for re-
vealing TLS and microwave modes in the spectrum, which are labeled with the vertical arrows
in the data. a) A fine spectroscopy scan taken at low microwave power only shows the qubit
frequency, ω01/2π. b) Fine spectroscopy data taken at high microwave power shows how both
ω01/2π (top, darker curved line) and ω

2γ

02/2π (bottom, lighter curved line) depend on the qubit
operating bias.

frequency, ω01/2π. This is demonstrated on the Bloch sphere in Figure 4.13a. The total

area under the microwave pulse envelope determines the amount of rotation, θ, on the

Bloch sphere, as shown in Figure 2.1. The microwave power of the pulse determines

the frequency of this rotation. Therefore, by varying the length or amplitude of these

fixed-frequency microwave pulses, we can calibrate what pulse lengths or amplitudes

are required to generate pulses with θ = π and θ = π/2 which will be used to construct

single-qubit X and Y pulses. This experiment is commonly called a Rabi oscillation
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experiment [21, 1, 84], but we will call it a Rabi for convenience. The Rabi will also be

very useful in studying measurement crosstalk between two qubits, as will be discussed

later in Chapter 7.

As mentioned above, in a Rabi experiment both the microwave pulse length or

amplitude can be varied. We will discuss only the method where the pulse length is

varied. The pulse sequence for this type of Rabi is shown in Figure 4.13b. To simplify

pulse sequence diagrams further, we have now left off the flux bias line (Vbias) and

combined the measurement/z-pulse line (VZ) and the microwave line (Vµw). This is done

only to reduce visual clutter and in the experiment the flux bias, readout, microwave,

and measurement/z-pulse signals are all still executed on separate physical wires, as

shown originally in Figure 4.6.

Typical Rabi data is shown in Figure 4.13c, where the probability of the qubit being

measured in the |1〉 state is plotted as a function of the Rabi pulse length, trabi. The mi-

crowave pulse length needed for a rotation by θ = π is given by the value of trabi at the

first maximum of the Rabi oscillation, as indicated by the dotted line in Figure 4.13c.

The Rabi pulse length or amplitude needed for a π/2 pulse is half the value needed for

a π pulse. The decay in the oscillations is due to energy relaxation and dephasing. The

main purpose of the Rabi experiment is to obtain the microwave pulse lengths needed

for π and π/2 pulses. Therefore, the exact mathematical formula for the decay of the

Rabi envelope is not important, but it can be found in reference [1]. The oscillation fre-
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Figure 4.13: Rabi experiment. In the Rabi experiment, we drive the qubit with microwave
pulses at the ω01/2π qubit transition frequency. a) The Bloch vector will oscillate between the
|0〉 and |1〉 states on the Bloch sphere. The frequency of this oscillation is determined by the
power of the microwave drive and the amount of rotation on the Bloch sphere, θ, is determined
by the area under the microwave pulse. b) The pulse sequence for the Rabi experiment. The
flux bias and readout lines have been left off the diagram to reduce visual clutter. However, the
readout and bias are still executed in the same manner as in the spectroscopy and s-curve ex-
periments. The measurement/z-pulse (VZ) and microwave (Vµw) lines have also been combined
into a single line to save space, but in the actual experiment these signals are applied on separate
physical wires as previously described in Figure 4.2. Pulses on the microwave line (Vµw) are
color-coded in violet and those on the measurement/z-pulse line (VZ) are color-coded in orange.
The Rabi experiment begins by initializing the qubit into the |0〉 state and then applying a mi-
crowave pulse with frequency ω01/2π. The probability of the qubit being read out as being in
the |1〉 state, P1, is measured. This is repeated for a range of Rabi pulse lengths, trabi. c) This is
the Rabi experiment data and shows oscillations in P1 as a function of Rabi pulse length. The
decaying envelope is due to decoherence. The pulse length corresponding to a θ = π rotation is
labeled with the vertical dashed line. The value needed for a π/2 rotation is just half of the π

value. This calibrates the microwave pulse lengths needed for the π and π/2 pulses that form
the basic single-qubit logic operations. d) A Rabi done at higher microwave drive power as
compared to c). As a result, the frequency of Rabi oscillations increased from 19 MHz to 50
MHz. As discussed in the text, faster pulses allow us to perform more single-qubit operations
before the qubit loses coherence.

quency of the Rabi data in Figure 4.13c is∼ 19MHz. A Rabi scan at higher microwave

drive power is shown in Figure 4.13d, where the oscillation frequency has increased
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to ∼ 50MHz. A higher Rabi oscillation frequency allows for faster single-qubit pulses

and the faster the single-qubit pulses, and thus more single-qubit logic operations can

be performed before the qubit state loses coherence via energy relaxation (T1) and/or

dephasing (T2).

Figure 4.14: Rabi data where the beating behavior is due to either the qubit being biased too
close to a microwave mode or TLS or the Rabi oscillation frequency being near or larger than
(ω01−ω

2γ

02)/2π and hence driving the two-photon 0→ 2 transition.

Before moving on to the next section, it is instructive to highlight two error modes

that can be encountered in a Rabi experiment. One type of error produces Rabi oscilla-

tions that surprisingly do not seem to decay, as if the decoherence times T1 and T2 are

nearly infinite. This is caused by incorrectly setting the delay of the measurement pulse

so that the qubit is measured while the Rabi microwave pulse is still interacting with the

qubit. This can be fixed by delaying the measurement pulse so that the measurement

takes place well after the Rabi pulse. However, it cannot be so far after the Rabi pulse

that the probability of being in the |1〉 state decays significantly due to decoherence.
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Another common error is when the Rabi oscillation envelope exhibits a beating pattern

as shown in Figure 4.14. This is usually due to the Rabi oscillation frequency being

near or greater than (ω01−ω
2γ

02)/2π and hence the nearby two-photon 0→ 2 transition

also ends up being driven by the Rabi microwave pulse. The beating behavior can also

be due to the excitation frequency of a TLS or microwave mode being near the qubit

ω01/2π frequency. For both cases, decreasing the microwave drive power will help. In

the case of excitation of the two-photon 0→ 2 transition, the operating bias can also be

set to a shallower well so that the non-linearity increases. In the case of a nearby mi-

crowave mode or TLS, the qubit operating bias will need to be re-calibrated to a value

where the qubit ω01/2π frequency is far from the frequencies of these modes or TLS’s.

4.3.6 Measuring energy relaxation

Now that we have calibrated the ability to control the Bloch sphere angle θ (see Fig-

ure 2.1), we can apply a π microwave pulse (θ = π) to excite the qubit into the |1〉 state

and then let it relax over time back to the |0〉 state. This allows for a measurement of

the energy relaxation time, T1. A detailed theoretical treatment of the measurement of

the energy relaxation time, T1, can be found in references [1, 84]. The pulse sequence

for this experiment, which we call the T1 experiment, is shown in Figure 4.15a. The

qubit is pulsed with a π pulse and after a delay, tmeas, the probability, P1, of the qubit

being in the |1〉 state is measured. This sequence is repeated for increasing values of
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tmeas. Typical T1 data is shown in Figure 4.15b. The decay envelope is exponential

P(tmeas) = P0T +Ve−tmeas/T1 (4.5)

and the T1 time is defined as the time at which the probability of the qubit being

in the |1〉 state has decayed by 1/e from its maximum value. A fit of the data in Fig-

ure 4.15b to (4.5) yields an energy relaxation time, T1 ' 503ns, where P0T ∼ 0.05 is the

stray |0〉 state tunneling probability calibrated in the s-curve measurement and V ∼ 0.85

to 0.93 is the qubit visibility, discussed previously in Chapter 2.

a) b)
X

tmeas

I1I0
π

π fidelity

Figure 4.15: Measuring the energy relaxation time, T1 a) The pulse sequence for the T1
experiment. A π pulse is applied to a qubit initialized to the |0〉 state, exciting it into the |1〉 state.
A measurement pulse is applied at a time tmeas after the π pulse and measures the probability of
the qubit being in the |1〉 state. b) The data for the T1 experiment. The probability of the qubit
being measured in the |1〉 state, P1, is plotted as a function of the measurement time, tmeas and
decays from maximum in an exponential fashion. The T1 time is defined as the time at which
P1 has decreased by a factor of 1/e from its maximum value and can be obtained by fitting the
data to exponential function given in (4.5). For the data shown here, we obtain T1 ' 503ns from
the fit. Using the T1 data we can measure the fidelity of our π pulses, as indicated by on the
figure and discussed in the text. A pulse with unit fidelity would excite the qubit fully into the
|1〉 state so that at tmeas = 0, P1 = 1.0. In practice, due to visibility errors and energy relaxation
during the actual π pulse the π pulse fidelity is typically around ∼ 0.92.

However, what happens if the π pulse length was not calibrated properly in the Rabi
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experiment? For example, if the qubit operating bias has drifted since the spectroscopy

calibrations this would cause the Rabi pulse to drift off-resonance. One easy way to

check for this error is by using the T1 experiment. We can fix the tmeas time at the value

corresponding to maximum P1 in the T1 experiment data. At this value of tmeas, we

can measure P1 at different operating bias values around which the Rabi was originally

done. The P1 will peak at some value of the operating bias when the microwaves are

on-resonance with the qubit. Then we can re-bias the qubit to this value and repeat the

T1 scan, which will now be guaranteed to be on-resonance. From this on-resonance

T1 data, we measure the π pulse fidelity. We do this by taking the difference between

the maximum and minimum P1 values of the properly calibrated T1 scan. It must be

noted that this off-resonance error does not affect the measurement of actual value of

T1 because detuning would only lower the maximum value of P1 in the T1 data, i.e. it

would only affect the visibility term, V , in (4.5), but would not alter the T1 term. The

data in Figure 4.15b has been already re-calibrated in this fashion to ensure a properly

calibrated on-resonance π pulse. In Figure 4.15b, the π pulse fidelity is labeled using

the dashed lines and is ∼ 0.92.

Another error is similar to the Rabi beating error that was discussed in the previous

section. The T1 data will not have a smooth decay envelope, but will have noticeable,

periodic oscillations superimposed on the exponential decay. As with the Rabi, this

error is due to either the qubit being biased near a microwave mode or a TLS, or the
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microwave power being so high and the non-linearity so low that the two-photon 0→ 2

transition is excited. As with the Rabi, it can be fixed by re-biasing the qubit to a

shallower well or away from microwave modes and TLS’s.

4.3.7 Measuring dephasing

To complete the characterization and calibration of a single qubit, we only need to mea-

sure the dephasing time. The simplest way to measure dephasing is using a Ramsey

experiment [82, 51, 1, 84] which can be visualized on the Bloch sphere as shown in

Figure 4.16a, with the corresponding pulse sequence shown in Figure 4.16b. A π/2

pulse is first applied to a qubit initialized to the ground state. The π/2 pulse rotates

the Bloch vector onto the equator. We then wait for a time tramsey, for dephasing to act

on the state. During the tramsey wait time, a z-pulse is applied to the qubit to detune it

from the rotating frame defined by the microwave source. The reason for this detuning

will be explained shortly. Finally, another π/2 pulse is applied to the qubit to rotate the

state back onto the z axis and then the probability of the qubit being in the |1〉 state is

measured. The data for a ramsey with 80 MHz detuning is shown in Figure 4.16c. The

oscillation frequency of the Ramsey corresponds to the amount of detuning. The math-

ematical form of the decay envelope is not important because we still take the value of

tramsey at which the oscillation amplitude has decayed by a factor of 1/e from maximum

as the measure of dephasing. However, it should be noted that the mathematical form
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of the Ramsey decay envelope does have both exponential components due to energy

relaxation and Gaussian components due to dephasing. Details on this can be found in

references [82, 51, 1, 84].
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Figure 4.16: Ramsey measurement. The Ramsey experiment allows us to quantify the de-
phasing acting on a single qubit. a) and b) The pulse sequence for the Ramsey experiment can
be understood using the Bloch sphere formalism. The qubit is initialized into the |0〉 state and
a π/2 pulse is applied about the x-axis. This puts the state vector in the x-y plane and allows
dephasing to act on the state. During the time that the state vector is in the x-y plane, the qubit
is also pulsed with a z-pulse that detunes the qubit from the rotating frame of the microwave
source. This allows for a more accurate measurement of dephasing, as explained in the text.
The state vector is left in the x-y plane for a time tramsey and then another π/2 pulse is applied to
rotate the state vector onto the z-axis. The probability of the qubit being in the |1〉 state is then
measured and the whole sequence is repeated for increasingly longer tramsey times. As a result
of the detuning produced by the z-pulse, the Bloch vector is spinning around its z-axis with
respect to the rotating frame of the microwaves. Therefore, the final π/2 pulse can catch the
dephased state vector at various angles φ in the x-y plane. This leads to oscillations in the final
length of the state vector along the z-axis, as indicated by the double tipped dashed arrow in
a). c) The Ramsey data showing P1 measured as a function of tramsey. The oscillation frequency
is determined by the amount of detuning which in this case is ∼ 80MHz. The decay is due to
dephasing and the time, T ramsey

2 , at which the oscillations have decayed by 1/e from maximum
is T ramsey

2 ' 120ns.

It is important to understand the need for the detuning z-pulse during the tramsey

time. Looking at the Bloch sphere sequence in Figure 4.16a, the two π/2 pulses in
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a Ramsey can together be though of as one π rotation. Therefore, when the z-pulse

is off, the experiment can be thought of as a π pulse interrupted by a time, tramsey,

during which dephasing can act on the state. The problem with doing this experiment

without the z-pulse is that if the qubit bias happened to drift off-resonance from the

microwave drive, it would cause the data to artificially appear to decay in time because

this small detuning would produce a slow oscillation. For example, if the qubit bias

drifted so that the qubit was 2MHz off-resonance from the microwave drive it would

lead to oscillations with a period of 500ns. Therefore, by detuning the qubit from

the microwave source by a known large amount, we set the timescale at which the

oscillations take place and hence ensure that the decay from the oscillations will not be

confused with the decay due to dephasing. As mentioned above, the T ramsey
2 time that

quantifies the dephasing as measured by the Ramsey experiment is given by the tramsey

value at which the oscillation amplitude decays by 1/e from its maximum. For the data

in Figure 4.16c, we find T ramsey
2 ' 120ns.

The noise source that causes dephasing in superconducting qubits is known to be

flux noise, which has a 1/ f spectrum [12, 51]. This means that the qubit phase (φ in

Figure 2.1) exhibits a low frequency drift that is correlated in time. As a result of thus

correlation, the drift can be canceled out by letting the phase drift for a given time and

then reversing the drift direction and waiting for the same amount of time for the phase

to drift back in the reverse direction. In order to implement this reversal, we merely add
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a π pulse at a time exactly midway between the two Ramsey π/2 pulses. This “modified

Ramsey” is more commonly known as a spin echo experiment [1, 84, 82].

The pulse sequence and corresponding Bloch sphere operations for a spin echo

experiment are shown in Figures 4.17a and b. The time between π/2 pulses is still

the variable that is scanned, but now it is split into two equal length segments tse/2.

As the Bloch sphere sequence shows, the π pulse reverses the dephasing direction by

exchanging the |0〉 and |1〉 states. Just like in the Ramsey experiment, we detune the

qubit from the microwave drive during the tse/2 times and thereby induce oscillations in

the spin echo data. Typical spin echo data is shown in Figure 4.17c. The probability, P1,

of the qubit being measured in the |1〉 state is plotted as a function of the total wait time

tse. As with the Ramsey experiment, the echoed dephasing time, T echo
2 , is given by the

value of tse at which the oscillation amplitude has decayed by 1/e from its maximum.

Here T echo
2 ' 300ns.

Now we have fully calibrated and characterized a single qubit. We can use these

calibrations in the characterization and calibration of a sample with two coupled qubits,

as will be discussed in the chapters that follow.
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Figure 4.17: Spin echo experiment. The spin echo is similar to the Ramsey experiment, but
now a π pulse is inserted midway in time between the two π/2 pulses in order to reverse the
direction of the dephasing. a) and b) As with the Ramsey, the qubit starts in the |0〉 state and
a π/2 pulse is applied that rotates the state vector around the x-axis into the x-y plane. At this
point the qubit is detuned using a z-pulse, for reasons discussed in the text. It is then left to
dephase for a time tse/2. A π pulse is then applied about the y-axis that reverses the dephasing
direction. Then the qubit is again left detuned for a time tse/2 during which the dephasing
produced during the first waiting period is “echoed” away. A final π/2 pulse returns the state
vector to the z-axis and the probability of the qubit being in the |1〉 state, P1, is measured.
The dashed vertical arrow in the final Bloch sphere snapshot emphasizes that P1 oscillates in
time due to the detuning. c) Spin echo data. The data is much like the Ramsey data with the
oscillations due to the detuning from the z-pulse. The 1/e time here is roughly 300ns.
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Chapter 5

Connecting Phase Qubits Using Fixed

Coupling

5.1 Fixed Capacitive Coupling

The large size of superconducting phase qubits and the ability to connect them using

standard electrical components, like capacitors and inductors, makes them much easier

to couple together compared to other quantum computing architectures [85, 49, 36].

The simplest way to couple two superconducting phase qubits is by using an interdig-

itated capacitor, as shown in the circuit in Figure 5.1. Each qubit still has its own set

of wiring as depicted earlier in Figure 4.2. Therefore, the parameters of each qubit can

be adjusted separately and each or both can be measured, read out and operated on to-
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gether or separately [54, 74]. Using capacitive coupling allows us to couple the qubits

at microwave frequencies while effectively isolating them at lower frequencies so that

flux bias signals on one qubit do not affect the other qubit.
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Figure 5.1: Capacitively-coupled qubits. a) An interdigitated capacitor Cc ' 2 fF couples the
qubits, yielding an interaction strength g/2π = 11 MHz. To turn off the interaction we can pulse
the VZ lines to detune the qubits. b) Energy-level diagram with coupling interaction turned on.
When qubits are on-resonance (∆ = 0), their interaction swaps the populations of the |01〉 and
|10〉 states at a frequency given by the coupling strength g/2π. The Bloch sphere representation
of the |10〉 and |01〉 subspace shows state rotation (dashed line) about the x-axis due to the
interaction g. c) When off-resonance |∆| � g, qubit swapping (dashed line) is effectively turned
off.

5.1.1 Two-qubit circuit Hamiltonian and the swap operation

The Hamiltonian for the circuit in Figure 5.1a can be easily derived using the same tech-

nique of combining Kirchoff’s equations with the Lagrangian formalism and converting

classical variables to quantum operators, as was used to derive the Hamiltonian for a

single qubit in (3.14). An example derivation is included in Appendix C. The only rele-
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vant term in the full two-qubit Hamiltonian is the interaction term [36, 85, 49], Hint , that

contains cross terms involving the superconducting phases of both qubits. As shown

in the calculations in Appendix C, for the case of capacitively coupled qubits that are

biased on resonance (ωA
01 ' ωB

01) this interaction term, in the rotating frame, reduces to

Hint =
g
2
(σXAσXB +σYAσYB) (5.1)

The {σXA,B ,σYA,B} are the Pauli operators for qubits A and B. The constant, g, is the

coupling strength and is given by

g =
Cc

(C+Cc)
ω

A,B
01 (5.2)

where C and Cc are the fixed values of the qubit and coupling capacitors, respec-

tively. For the capacitive coupling experiments in this thesis the parameters in (5.2) are

C ' 1pF , Cc ' 2 f F and ω
A,B
01 /2π' 5−6GHz, so that g/2π' 11MHz. Although this

coupling strength cannot change because the value of the capacitor, Cc, is fixed, the

interaction between the qubits can be minimized by biasing the qubits off resonance by

an amount that is much greater than the coupling strength, i.e. |ωA
01−ωB

01|≫ g.

Pauli operators provide a compact way of writing the interaction Hamiltonian, as in

(5.1). However, they provide little immediate visual intuition. Therefore, it is instruc-

tive to write the interaction Hamiltonian in a way that visually shows the effect of Hint
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on the two-qubit states

Hint = (g/2)(|01〉〈10|+ |10〉〈01|) (5.3)

By writing Hint in this way, we see that the coupling interaction swaps the popula-

tions of the |01〉 and |10〉 states. Since only the |01〉 and |10〉 states interact, the coupled

qubit system can be represented using a reduced state space defined by |01〉 and |10〉.

As shown in Figure 5.1, this reduced state space can be mapped to the Bloch sphere

picture by choosing the |01〉 and |10〉 states as the poles of the Bloch sphere. When the

qubits are placed on-resonance so that ∆ ≡ ωA
01−ωB

01 = 0 (see Figure 5.1b), then Hint

can be visualized as causing the populations of the |01〉 and |10〉 states to swap with

a frequency g/2π. When the qubits are biased far off-resonance so that |∆|≫ g, as

shown in Figure 5.1c, the swapping is minimized, effectively “turning off” the interac-

tion.

We would like to write the interaction Hamiltonian in matrix form so that we can

use it as a quantum operation in the density matrix formalism that was discussed in

Chapter 2. To do this, we can look at the {|01〉 , |10〉} Bloch sphere representation

in Figure 5.1b and see that when the qubits are on-resonance (∆ = 0), Hint can be

represented as a rotation around the x-axis by an angle θ = gtswap, where tswap is the

time that the qubits remain on resonance. For a single qubit, a rotation about the x-axis
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by an angle θ can be written as the quantum operation [58]

Xθ =

[
cos(θ/2) −isin(θ/2)
−isin(θ/2) cos(θ/2)

]
(5.4)

Therefore, the operator representation of Hint is given by the unitary two-qubit ma-

trix, Uint , that describes a Xθ=gtswap rotation between the |01〉 and |10〉 states in the

{|00〉 , |01〉 , |10〉 , |11〉} basis.

Uint =


1 0 0 0
0 cos(gtswap/2) −isin(gtswap/2) 0
0 −isin(gtswap/2) cos(gtswap/2) 0
0 0 0 1

 (5.5)

We can now treat the coupling interaction as a quantum gate that can act on den-

sity matrices that represent two-qubit states. For an interaction time gtswap = π, the

state amplitudes are swapped so that |01〉→−i |10〉 and |10〉→−i |01〉. This operation

can be used to create a universal quantum gate as will be discussed in the next chapter.

However, before we move on to universal quantum gates, we must characterize the cou-

pling scheme and discuss important limitations of fixed coupling, such as measurement

crosstalk and limited scalability.
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5.1.2 Measuring coupled qubits: single-shot measurement and mea-

surement crosstalk

Since each qubit has its own measurement line, the state of both qubits can be measured

simultaneously in a single measurement. This is commonly referred to as a single shot

measurement. There is one major issue with measuring qubits coupled using a fixed

coupling scheme: measurement crosstalk [54, 40]. Measurement crosstalk can be

understood using the example shown in Figure 5.2. If we prepare the two-qubit system,

|AB〉, in the |10〉 state and measure qubit A then qubit A’s occupied |1〉 state will tunnel

out into the deep right well. After it tunnels, the state will decay in the deep right well

and as it does so it will radiate microwaves out into the coupled qubit circuit at a range

of frequencies corresponding to the transitions between the various levels in the deep

right well. These microwaves will excite qubit B into the |1〉 state and therefore a |10〉

state will end up being erroneously measured as a |11〉 state due to the measurement

crosstalk. The measurement crosstalk can be minimized by calibrating the timing of

each qubit’s measurement pulse so that both pulses arrive at each qubit at the same

time [54]. After the measurement is completed and the data is recorded, the set of

two-qubit probabilities, {P01,P10,P11,P00}, can be mathematically corrected in order to

calibrate out the measurement crosstalk. This is discussed in the next chapter and in

Appendix D.
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Figure 5.2: Measurement crosstalk mechanism. To demonstrate the mechanism of measure-
ment crosstalk for capacitively coupled qubits, we show an example case of qubits prepared in
the |10〉 state. When the first qubit is measured (top/red), it will tunnel out into the right well
and decay at the rate nr/T1 discussed in the previous chapter. However, as it decays it will emit
microwaves at broadband frequencies which will excite the second qubit (bottom/blue) into the
|1〉 state causing the system to be erroneously measured as being in the |11〉 state. Measure-
ment crosstalk can be minimized during measurement by ensuring that both measurement pulses
reach both qubits simultaneously. Measurement crosstalk can also be mathematically calibrated
out of the data post-measurement as discussed in the next chapter and in Appendix D.

5.1.3 Detuning and errors due to fixed coupling

As mentioned at the beginning of this chapter, although the coupling strength is fixed

in this capacitive coupling architecture, the coupling interaction can be minimized by

detuning the qubits as shown in Figure 5.1c. From (5.5), when the detuning, ∆ ≡

ωA
01−ωB

01, is set to a value, ∆o f f , such that ∆o f f ≫ g, the off-diagonal elements in Uint

will be small and have average amplitude g/∆o f f , effectively turning off the coupling

interaction. The error due to a finite ∆o f f is given by [31]

εg = g2/(∆2
o f f +g2) (5.6)
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Here, ∆o f f /2π' 200 MHz was used to turn off a coupling interaction with g/2π =

11MHz, yielding εg = g2/(∆2
o f f + g2) ' 0.055. Hence the on/off ratio of a coupler

becomes a very important figure of merit for coupling architectures [10, 11] because

the coupling must be minimized to prevent errors during single-qubit operations and

measurement. Ideally we would define the on/off ratio as gon/go f f , but for a fixed

coupling scheme g is fixed so we have to use a different definition and we have to

measure the on/off ratio differently. After we show how to calibrate coupled qubits

in the next section, we will present one way to measure the on/off ratio for this fixed

coupling architecture.

This discussion also brings to attention a fundamental flaw of fixed coupling schemes.

They are not scalable architectures because for many qubits one will run out of fre-

quency bandwidth if every qubit needs to be detuned from all others. In addition, the

qubits must also be detuned from transition frequencies between levels outside the qubit

manifold (such as the two-photon 0→ 2 transition) and from resonance frequencies of

microwave modes and two-level state defects. This issue has come to be known as the

frequency crowding problem [10] and can be overcome by using tunable coupling,

which will be discussed in Chapter 7.
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5.2 Experimental bring-up and characterization of ca-

pacitively coupled phase qubits

In order to correctly operate both qubits simultaneously, calibrations must be performed

that adjust the relative qubit frequencies, ensure that pulses reach qubits simultaneously,

and calibrate other two-qubit parameters. The coupled-qubit calibration experiments

build upon the single-qubit calibrations so all the single-qubit calibrations must be com-

pleted before starting two-qubit calibrations. The same formalism of pulse sequences

will be used here, but for two-qubit pulse sequence diagrams the measurement/z-pulse

line (VZ) and the microwave line (Vµw) will be combined into one row even though the

two signals are applied to separate physical wires, as discussed in Appendix B. The

flux bias (Vbias) and readout SQUID signals (VSQ and V readout
SQ ) will be left off pulse

diagrams for visual clarity, although both are sill being executed. The two-qubit cali-

brations differ from single-qubit ones because both qubits are measured simultaneously

giving a set of two-qubit probabilities {P00,P01,P10,P11}.

5.2.1 Calibrating qubit operating biases for turning on and for min-

imizing the coupling interaction

First, we find the qubit operating biases needed to minimize the coupling interaction.

We do this by detuning the qubits off resonance by an amount ∆, where the magnitude
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of ∆ must be much larger than the coupling strength g in order to minimize the coupled-

qubit interaction given by (5.5). As briefly mentioned at the beginning of this chapter,

the capacitively coupled samples in this thesis have g/2π ' 11 MHz, therefore we

typically calibrate the qubits to have an off-resonance detuning of at least ∆o f f /2π '

200 MHz. We do this by setting the operating biases of the qubits so that they are

at least 200 MHz off resonance, as measured by a two-qubit spectroscopy experiment

whose pulse sequence is shown in Figure 5.3a. The operating bias is adjusted on one

or both qubits until the spectroscopy data shows that the resonant responses of the two

qubits are at least 200MHz apart. Any time the operating bias of a qubit is changed,

the calibrations of the measurement pulse amplitude for that qubit must be repeated.

Figure 5.3b shows this data, where the two-qubit probabilities {P10,P01,P11} of the

qubits being in the {|10〉 , |01〉 , |11〉} states, respectively, are plotted as a function of

the microwave pulse frequency. The P00 probability can be calculated from the others

using P00 = 1−P10−P01−P11.

Once we find the appropriate operating biases that give ∆o f f /2π ' 200 MHz, we

proceed to the calibration for biasing the qubits on-resonance (∆' 0) and thereby turn-

ing on the coupling interaction. The qubits are brought on resonance by pulsing qubit B

with a z-pulse of an appropriate amplitude. The z-pulse can also be applied to qubit A,

but with opposite polarity, to bring it on resonance with qubit B, but we’ll discuss just

the former case here. We need to calibrate the qubit B z-pulse amplitude that will bias

86



c)

a)

QBB

QBA

∆

I0

I0

QBB

QBA
I0

I0

∆off

P
10

, P
01

, P
11

b)

P
10

, P
01

, P
11

d) ∆/2π = 0

∆/2π = ∆off / 2π ~ 200 MHz

Min. splitting size

= g/2π ~ 11 MHz

Figure 5.3: Calibrating on and off resonance biases using two-qubit spectroscopy. The
coupling interaction, Hint , is turned off (on) by biasing the qubits off (on) resonance. On res-
onance, ∆ ≡ ωA

01−ωB
01 ' 0, while off-resonance ∆ = ∆o f f . Here, the coupling strength is ap-

proximately g/2π' 11 MHz. Therefore, we use ∆o f f /2π' 200 MHz to minimize the coupling
interaction during single-qubit operations and measurement, which minimizes the error given
in (5.6) by setting ∆o f f ≫ g. (a) Pulse sequence for the two-qubit spectroscopy experiment
used to calibrate the qubit operating biases to obtain ∆o f f /2π ' 200 MHz. This experiment is
just single qubit spectroscopy, but performed on both qubits simultaneously. The qubits are ini-
tialized into their ground states, are simultaneously pulsed with ∼ 2µs long microwave pulses
of fixed frequency, and finally the two-qubit probabilities {P10,P01,P11} are measured. This
sequence is repeated for a pulse frequency range large enough to capture the resonance peaks
of both qubits. As shown by the brown dotted arrow, the qubit operating biases are adjusted
until the spectroscopy data in that frequency range shows that the resonance frequencies of the
qubits, ω

A,B
01 , are mo less than 200 MHz apart. (b) Two-qubit spectroscopy data that shows the

two-qubit probabilities {P10,P01,P11} as a function of the microwave pulse frequency for qubit
operating biases where ∆o f f /2π ' 200 MHz. The peak in P10 (P01) corresponds to an excita-
tion of qubit A’s (qubit B’s) 0→ 1 transition c) To calibrate the parameters needed to bring the
qubits on resonance, the qubits are first biased to the ∆' ∆o f f value found above. Then, to turn
the coupling interaction on, a z-pulse is applied to qubit B and its amplitude is adjusted until
the detuning, ∆' 0. d) When the qubits are biased on resonance, the coupling interaction will
make their overlapping 0→ 1 resonance peaks split, with the minimum splitting size equal to
the coupling strength g/2π' 11 MHz. The z-pulse that gives the minimum splitting defines the
on-resonance point. Here we show the spectroscopy data for the z-pulse amplitude where ∆' 0
showing an ∼ 11MHz wide splitting.
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qubit B on resonance with qubit A. To do this, two-qubit spectroscopy is performed for

various values of the z-pulse amplitude on qubit B, as shown in the pulse sequence in

Figure 5.3c. When the resonance peaks overlap and split due to the coupling interac-

tion as shown in Figure 5.3d, we know that we are close to the on-resonance point. The

z-pulse amplitude that corresponds to the minimum splitting size is the on-resonance

point. Figure 5.3d shows the data where the z-pulse amplitude on qubit B gives the

minimum splitting size. The minimum splitting size is approximately equal to the cou-

pling strength, g/2π ' 11 MHz, as expected. If there is no splitting in the two-qubit

spectroscopy data, then this indicates some error is present that is preventing the qubits

from coupling. After this calibration, we can now minimize the coupling interaction by

biasing the qubits off-resonance, thereby also minimizing the error (5.6) during single

qubit operations and measurement and we can also put the qubits on-resonance in order

to turn on the coupling interaction.

5.2.2 The swap experiment

Now we can use the results of the calibrations of the previous section to experimen-

tally show how the two-qubit probabilities {P00,P10,P01,P11} evolve in time under the

capacitive coupling interaction given by (5.5). To accomplish this we use the pulse

sequence shown in Figure 5.4a. We call this pulse sequence the swap experiment. We

first bias the qubits, in their ground states, to the off-resonance value of ∆o f f /2π' 200

88



MHz, as calibrated in the last section. This allows us to then apply a π pulse to qubit

A with minimal error, as given by (5.6). Then we apply the z-pulse to qubit B, biasing

the qubits an amount ∆ within resonance, and letting them evolve under the coupling

interaction (5.5) for a time tswap. Then we measure both qubits and obtain the set of

two-qubit probabilities {P10,P01,P11}. We repeat the sequence for a range of z-pulse

amplitudes and times tswap. As mentioned previously, we obtain P00 from the remain-

ing probabilities using P00 = 1−P10−P01−P11. The π pulse can be applied to qubit B

instead, but again only one case will be discussed for simplicity.

The data obtained from a correctly calibrated swap experiment is shown in Fig-

ure 5.4b for the case of ∆ ' 0, i.e. with the qubits on-resonance. The two-qubit prob-

abilities are plotted as a function of the interaction time tswap during which the qubits

were held on-resonance, allowing the interaction (5.5) to act on the two-qubit state. As

expected, the populations of the |10〉 and |01〉 states swap at a frequency g/2π ' 11

MHz. The P11 signal (dark green) should be zero and a non-zero P11 value indicates

the presence of errors due to measurement crosstalk which were discussed earlier. The

maximum amplitude of P11 in the swap experiment gives us a quantitative measure of

the amount of measurement crosstalk.

If ∆ is varied by scanning the z-pulse amplitude on qubit B, we obtain the data

shown in Figure 5.4c, where the color scale gives the values of the probabilities P01

and P10. Varying ∆ helps us precisely locate the z-pulse amplitude value needed to bias
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Figure 5.4: The swap experiment. a) Pulse sequence for the swap experiment. A π pulse is
applied to qubit A, putting the system into the |10〉 state. A z-pulse is applied that biases qubit
B an amount ∆ within resonance of qubit A. The system is then left to evolve for a time tswap

after which the two-qubit probabilities {P01,P10,P11} are measured. b) The swap data for the
on resonance case where ∆ = 0. The swapping frequency gives us a measure of the coupling
strength, here ' 11MHz. The time marked by the dashed line corresponds to gtswap = π/2,
and is important because at this point in time a square root of i-swap operation is created.
This operation can be used to make a universal quantum gate, as will be described in the next
chapter. c) Swap data where both tswap and ∆ are varied. With the expected chevron pattern as
the oscillation amplitude decreases off resonance.

qubit B exactly on-resonance with qubit A, and this point is labeled as ∆/2π = 0 in

Figure 5.4c.

At times, we will obtain swap data that looks like the data shown in Figure 5.5b.

A correctly calibrated swap experiment should have the P11 signal decaying almost

smoothly with minimal oscillation. Here however, the crosstalk, P11, is quite high and

exhibits oscillations that seem to be in-phase with either the P10 or P01 probabilities.

These oscillations are due to the qubits not being measured simultaneously, as shown
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in the pulse sequence in Figure 5.5a. Non-simultaneous measurement also leads to

higher measurement crosstalk, as discussed in Section 5.1.2 and in [54]. Differences

in measurement pulse propagation times down the two separate qubit measurement

lines (V A,B
Z ) can be due to differences in cable lengths or errors in the settings in the

qubit control software. This can be fixed by delaying the measurement pulse on the

qubit that is being measured first so that the two qubits will end up being measured

simultaneously [54].
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Figure 5.5: Synchronizing measurement pulses for two-qubit experiments. A common
calibration error in the swap experiment is when the measurement pulses do not reach both
qubits simultaneously. Ideally, we would like both qubits to be measured simultaneously, but
due to differences in wiring length or software errors measurement pulses do not reach the
qubits simultaneously. a) A pulse sequence for the swap experiment where qubit B is measured
first. b) As discussed in the text, non-simultaneous measurement leads to higher measurement
crosstalk error as manifested by an oscillating P11 signal in the swap data. The swap data shown
here demonstrates this and corresponds to the pulse sequence in a) where qubit B was measured
first. If the measurement is not simultaneous, the P11 trace will oscillate in phase with either
P01 or P10. The trace it is in phase with determines the qubit that is measured first. In the data
above, P11 oscillates in phase with P01, hence qubit B is measured first. To synchronize the
measurement pulses a time delay can be added to the VZ line of the qubit that is being measured
first either by adding a delay in the qubit control software or by physically making the wire
longer.
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Figure 5.5b shows the data corresponding to the pulse sequence in Figure 5.5a.

The P11 oscillations are in phase with the P01 oscillations. From the discussion on the

mechanism of measurement crosstalk earlier in this chapter, this indicates that qubit B

is being measured before qubit A. Figure 5.4b shows data after a delay was added to

qubit B so that there is only minimal oscillation in the P11 amplitude. Now that the

measurement pulses have been calibrated to reach both qubits simultaneously, the same

time axis can be used when talking about measurement/z-pulse sequences on the two

individual qubits. This is important because any unwanted time offsets between the VZ

lines can lead to phase accumulation between the qubits which will cause errors when

trying to execute two-qubit pulses or specific quantum gates.

Once nice swap data like that shown in Figure 5.4 is obtained and the expected

coupling strength is confirmed by measurements of the swap frequency at ∆ = 0, the

relative phases of the microwave pulses on qubits A and B can be calibrated. However,

before moving on to the phase calibration, we can use the swap experiment to measure

the on/off ratio of this fixed capacitive coupling architecture.

5.2.3 Measuring on/off ratio of capacitively coupled qubits

We measure the on/off ratio using the swap experiment depicted in Figure 5.4. As Fig-

ure 5.4c shows, the amplitude of the swapping oscillations decreases with detuning as

expected [10]. In Figure 5.6, we plot the change in the peak-to-peak swap amplitude
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as a function of detuning ∆ and compare it to the theoretical prediction given by (5.6).

Apart from a small reduction in the amplitude arising from visibility, the data is in good

agreement with theory. At detunings |∆|/2π > 50 MHz, the swap amplitude is small

and cannot be distinguished from the noise floor. From the maximum detuning bias of

∆/2π = 200MHz and from the coupling strength g/2π = 11MHz obtained from spec-

troscopy measurements and the data in Figure 5.4b, we compute the swap amplitude

ratio .6/(1.8× 10−3) ' 300 as the measure of the on/off ratio. The swap amplitude

data in Figure 5.6 agrees with the theory in (5.6) so we can now safely assume that the

on/off ratio can simply be taken to be (∆/g)2 = (200/11)2 ' 300.
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Figure 5.6: Measuring on/off ratio using the swap experiment Peak-to-peak swapping am-
plitude versus detuning ∆, plotted with the predicted dependence g2/(g2 + ∆2) in red. The
vertical scale of the latter is adjusted to match the on-resonance amplitude at ∆ = 0. Determina-
tion of the swapping probability is limited to > 6×10−2 by measurement noise. The calculated
on/off ratio is indicated by the vertical arrow and is ' 300.

93



5.2.4 Phase calibration for two-qubit microwave pulses

So far, only one qubit has been pulsed at a time, so keeping track of the relative phases

of pulses on different qubits has not been important. The phase, φ, of a single-qubit

pulse was important, but only relative to one qubit’s Bloch sphere axes. Also, phases

are only important for π/2 pulses, as pulsing from θ = 0 to π ideally rotates the Bloch

vector to the same point irregardless of the phase, φ, of the π pulse. For generating

simultaneous microwave pulses on two coupled qubits, the situation is more compli-

cated. This is because the Bloch spheres of the individual qubits can have a relative

phase offset as shown by φo f f set in Figure 5.7. Therefore, in order to properly pulse

one qubit with say, an Xπ/2 pulse, and the other with say, a Yπ/2 pulse, it is necessary

to define a zero phase as a reference and to measure the phase offset, φo f f set , between

the Bloch spheres of the individual qubits as shown in Figure 5.7. The X axis of qubit

A will be defined to be the 0◦ phase reference and we’ll label it φA = 0. All phases

discussed will be relative to this definition of zero phase.
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Figure 5.7: Bloch sphere depiction of two-qubit phase offset. The x and y axes of the Bloch
spheres of qubits A (red) and B (blue) have a random offset, φo f f set , that needs to be taken into
account in order to properly perform simultaneous rotations on both qubits.
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Figure 5.8: Synchronizing microwave pulses for two-qubit experiments. The path lengths
taken by the microwave pulses on separate qubits might differ, therefore the microwave pulses
on separate qubits must be synchronized in time so that they reach both qubits simultaneously.
a) First, the time offset between the two microwave lines must be measured and compensated
for. This is done by pulsing both qubits, initially in the |00〉 state and biased at least 200 MHz
off-resonance, with identical pulses (here Xπ/2). Then, after a wait time tmeas, the two-qubit
probabilities {P01,P10,P11} are measured. The pulse sequence is repeated for increasing values
of tmeas. b) The data for the pulse sequence in a) where P10 rises approximately 18 ns earlier than
P01 indicating that a time delay of 18 ns needs to be added before qubit A’s microwave pulses
in order to make microwave pulses reach both qubits simultaneously. c) and d) Pulse sequence
and data with the 18 ns delay on qubit A added. Now, both P01 and P10 rise simultaneously
indicating that the microwave lines on the two qubits are synchronized in time.

However, as with the measurement/z-pulse lines, to guarantee proper calibration

of relative phases, a calibration must first be made to ensure that identical microwave

pulses generated at the same time on separate qubits will reach both qubits simultane-

ously. Differences in microwave pulse propagation times between the two qubits can

arise from differences in cable lengths or errors in the settings in the qubit control soft-

ware. These differences will cause phase offsets and must be eliminated. To check for

simultaneity of microwave pulses, both qubits are pulsed concurrently with π or π/2
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pulses, and the time between the microwave and measurement pulses, tmeas, is scanned

while the set of two qubit probabilities is measured, as shown in Figure 5.8. The pulses

will be simultaneous if it is observed that both the P10 and P01 probabilities rise simulta-

neously. If they do not, a delay can be added in software to the qubit whose probability

of being in the |1〉 state rises first. An example of the pulse sequence and data where

π/2 pulses were generated simultaneously, but reach qubit A first, is shown in Fig-

ures 5.8a and b. The pulse sequence and data where a delay has been added to qubit A

to make the pulses reach A and B simultaneously is shown in Figures 5.8c and d. Now

that the microwave pulses have been calibrated to reach both qubits simultaneously, we

can proceed to calibrate the microwave pulse phase offset, φo f f set .

The phase calibration consists of two experiments. The pulse sequence for the first

experiment is shown in Figure 5.9a. The qubits are initialized into the |00〉 state, biased

off-resonance (∆o f f /2π' 200 MHz) and qubit A is pulsed with an Xπ/2 pulse (so that

φA = 0) while qubit B is pulsed with a Yπ/2 pulse (so that φB = π/2). The qubits are

then biased on-resonance for an interaction time, tswap, and the two-qubit probabilities

are measured. The time tswap is varied giving the data shown in Figure 5.9b where a

time t
′′
swap, is selected at which the P10 and P01 probabilities are most out of phase, as

marked by the dashed line.

In the second part of the phase calibration experiment, tswap is fixed so that tswap =

t
′′
swap. Qubit A is pulsed with an Xπ/2 pulse (so that φA = 0) and qubit B is simultane-
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ously pulsed with an π/2 pulse, but now the phase of that pulse, φB, is scanned. The

pulse sequence and data for this experiment are shown in Figure 5.9c and Figure 5.9d,

respectively. The value of φo f f set can be read off this data and occurs at the value of

φB where P01 is increasing and first crosses P10, as labeled in Figure 5.9d by the dashed

line. This is because at this value of φB, the two signals are in-phase.
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Figure 5.9: Calibration of relative phases for microwave pulses. This calibration consists
of two experiments. a) The pulse sequence for the first experiment. The qubits are initialized
into the |00〉 state, biased off-resonance (∆o f f /2π' 200 MHz), and then qubit A is pulsed with
an Xπ/2 pulse (so that φA = 0) while qubit B is pulsed with a Yπ/2 pulse (so that φB = π/2).
After a time tmeas the two-qubit probabilities {P01,P10,P11} are measured and the whole pulse
sequence is repeated for increasing values of tmeas. b) The data of the two-qubit probabilities
measured as a function of tmeas for the sequence in a). The tswap value at which P10 and P01 are
most out of phase is recorded as t

′′
swap. It is indicated using the dashed line and will be used

for the second part of the phase calibration. c) and d) The second part of the phase calibration
experiment. Again, both qubits are pulsed with π/2 pulses, but now the phase of qubit B, φB, is
scanned while the phase of qubit A is fixed at φA = 0. The interaction time is also fixed at t

′′
swap.

The data now shows out of phase oscillations between P10 and P01 as a function of the phase on
qubit B, φB. The phase corresponding to the offset discussed in Figure 5.7, φo f f set , is indicated
using the dashed line and occurs at the point where the P01 signal is increasing and first crosses
the P10 signal.

This completes the calibration of single and coupled qubits. Now we can gener-
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ate the appropriate π and π/2 pulses needed to prepare the single qubit basis states

{|0〉 , |1〉 ,(|0〉+ |1〉)/
√

2,(|0〉+ i |1〉)/
√

2} that were previously shown in Figure 2.1.

From these basis states, any arbitrary single-qubit state can be built up. However,

to check both the single and two-qubit calibrations, we must be able to prepare the

full basis set of two-qubit states correctly. The full two-qubit basis set is given by

the Kronecker product of the single-qubit basis states: {|0〉 , |1〉 ,(|0〉+ |1〉)/
√

2,(|0〉+

i |1〉)/
√

2}⊗{|0〉 , |1〉 ,(|0〉+ |1〉)/
√

2,(|0〉+ i |1〉)/
√

2}. As a check of the accuracy of

the calibrations, we can use appropriate combinations of calibrated π and π/2 pulses to

prepare the 16 two-qubit basis states and compare our prepared states to what would be

theoretically expected.

5.2.5 State tomography of the 16 two-qubit basis states

Before proceeding, we define a shorthand notation for single qubit basis states that will

make writing out complex two-qubit states clearer and more compact. As shown in the

first column of the table in Figure 5.10a, we define the single-letter labels {H,V,D,R}

to represent the single-qubit states which are listed in the second column and displayed

on the Bloch sphere in Figure 5.10b. In the third column, the table also lists the single-

qubit pulses needed to prepare each state from a qubit initialized to the |0〉 state. This

shorthand notation is based on the similar convention commonly used in optics [35].

It is important to verify that we are able to prepare the full set of 16 two-qubit basis
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Label State Pulse
H |0〉 I
V |1〉 Xπ

D (|0〉+ |1〉)/
√

2 Yπ/2
R (|0〉+ i |1〉)/

√
2 X−π/2

Figure 5.10: Shorthand labels for single qubit states and the single qubit operations
needed to prepare these states. Using this shorthand, complex two-qubit states like
(|0〉+ i |1〉)/

√
2⊗ (|0〉+ |1〉)/

√
2 can be written compactly as RD.

states accurately because they are needed to fully characterize the universal quantum

gate that we demonstrate in the experiments in the next chapter. To verify the accuracy

of the preparation of these states we use state tomography to measure the density

matrix of each prepared state and compare the results against theoretically expected

density matrices.

State tomography is a technique for measuring the density matrix of a quantum

state. Just as one could map out the physical “state” of a classical object by scan-

ning across x,y, and z axes in space, we can map out quantum states by projecting each

qubit’s state onto the x, y, and z axes of its Bloch sphere. From such projective measure-

ments, we can mathematically reconstruct the two-qubit density matrix for that state.

There are many good references on state tomography [77, 45, 35, 22, 61, 58] so the the-

ory of tomography will not be explained further here. The important point is that using

state tomography we can reconstruct the density matrix of any experimentally prepared

single or multi-qubit state. The MATLAB and Mathematica source code used to obtain
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the density matrix from the state tomography data can be found in Appendix D, along

with comments that explain each step.

QBB

QBA

Tomo MeasureState
Prep.Init. 9 experiments

I I, X I,  Y I 
IX, XX, YX
IY, XY, YY

3 probs
P00
P01
P10

27 Numbers

Extract output
density matrix (ρ)

I0

I0

Figure 5.11: Pulse sequence for state tomography. The qubits are initialized into their
ground states and appropriate pulses are applied to generate one of the 16 two-qubit basis
states from the set {|0〉 , |1〉 ,(|0〉+ |1〉)/

√
2,(|0〉+ i |1〉)/

√
2}⊗{|0〉 , |1〉 ,(|0〉+ |1〉)/

√
2,(|0〉+

i |1〉)/
√

2}. Immediately after the state preparation pulses, tomography pulses are applied to
project the state onto the x, y and z axes of each qubit’s Bloch sphere. A projection of the
state along the x-axis of the Bloch sphere is given by a Yπ/2 tomography pulse. A projection
of the state along the y-axis of the Bloch sphere is given by a X−π/2 tomography pulse. A
projection of the state along the z-axis of the Bloch sphere does not require a pulse and is
equivalent to the identity operation because the qubit measurment already provides a projec-
tion along the z-axis of the qubit Bloch sphere. We define the shorthand labels, X ≡ Yπ/2 and
Y ≡ X−π/2, for these pulses so the set of 3 tomography pulses is written as {I,X ,Y}. The set
of two-qubit probabilities is then measured. For each state, this is repeated 9 times for the 9
different possible two-qubit axes projections. From this data, a density matrix that fully de-
scribes the state can be reconstructed for each of the 16 states, as described in Appendix D and
in references [77, 45, 35, 22, 61, 58].

The pulse sequence for the state tomography of a two-qubit state is diagrammed in

Figure 5.11. The qubits are kept off-resonance throughout the sequence because here

we are performing state tomography only on the basis states and not on more complex

states that require the coupling interaction for their preparation. First, the qubits are
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initialized into the |00〉 state and a basis state is prepared by pulsing both qubits with

the appropriate pair of microwave pulses needed to prepare that state, as given in the

table in Figure 5.10a. The state tomography pulses follow immediately after the state

preparation pulses. A set of 3 different tomography pulses is applied to each qubit.

Each set of 3 pulses corresponds to a projection of the state along the 3 axes of the

Bloch sphere. A projection of the state along the x-axis of the Bloch sphere is given

by a Yπ/2 tomography pulse. A projection of the state along the y-axis of the Bloch

sphere is given by a X−π/2 tomography pulse. A projection of the state along the z-axis

of the Bloch sphere does not require a pulse and is equivalent to the identity opera-

tion because the qubit measurment already provides a projection along the z-axis of

the qubit Bloch sphere. We define the shorthand labels, X ≡ Yπ/2 and Y ≡ X−π/2, for

these pulses so that set of 3 tomography pulses is written as {I,X ,Y}. Since there are

3 axes per qubit, for two qubits the set of 9 possible tomography pulses is given by

{I,X ,Y}⊗{I,X ,Y}. Immediately after the tomography pulses, the two-qubit probabil-

ities, {P00,P10,P01,P11}, are measured. Only 3 of the 4 probabilities are independent

because P00 +P10 +P01 +P11 = 1 must hold. As a result, state tomography measures

3 independent numbers in 9 experiments, for a total of 27 numbers per tomography

experiment of which 15 are independent. These 27 numbers are used to mathemati-

cally reconstruct the density matrix of the experimentally prepared state as described in

Appendix D and in references [77, 45, 35, 22, 61, 58]. This procedure is repeated for
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each of the 16 two-qubit basis states. How well the states have been prepared can be

quantified by calculating the state fidelity [74] which is given by

Fstate = Tr
√

ρ1/2ρexpρ1/2 (5.7)

where ρexp and ρ are, respectively, the experimentally obtained and theoretically

expected density matrices. Using this formula directly on the density matrices ob-

tained from the tomography experiment yields lower fidelities. This is because errors

from measurement crosstalk and single qubit pulse fidelities drastically affect the data.

However, the effects of these two error sources are predictable, and were measured in

the single and two-qubit calibrations described earlier. Therefore, these errors can be

calibrated out from this data, as described in Appendix D. The density matrices for the

full set of 16 two-qubit basis states with the measurement crosstalk and visibility errors

calibrated out are shown in Figure 5.12, and those without the calibrations are listed

in Appendix D. The state fidelities of the calibrated input states were calculated to be,

on average, ∼ 98%. Without calibration they were ∼ 75%. The 2% loss is understood

and is due to the T1 decay that takes place during the time of a microwave pulse [47].

The 98% state fidelity shows that the qubits and the π and π/2 microwave pulses on

each qubit are properly calibrated. Now that we have confirmed that everything is well

calibrated, we can proceed to a more complex experiment where we demonstrate and
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Re(ρHR) Im(ρHR)

Re(ρ), Im(ρ)
-1      -0.5       0        0.5      1

Re(ρHH) Im(ρHH)

Re(ρVD) Im(ρVD)

Re(ρDV) Im(ρDV)

Re(ρRH) Im(ρRH)

Re(ρHV) Im(ρHV)

Re(ρVH) Im(ρVH)

Re(ρVR) Im(ρVR)

Re(ρDD) Im(ρDD)

Re(ρRV) Im(ρRV) Re(ρRD) Im(ρRD)

Re(ρDR) Im(ρDR)

Re(ρDH) Im(ρDH)

Re(ρVV) Im(ρVV)

Re(ρHD) Im(ρHD)

Re(ρRR) Im(ρRR)

Figure 5.12: The full set of density matrices for the 16 two-qubit basis states as obtained via
state tomography. Measurement crosstalk and visibility errors have been calibrated out from
this data set, as described in the text. The real and imaginary parts of each density matrix are
shown separately. The solid color bars are the experimental data and the transparent bars are
the theory. The states are labeled according to the {H,V,D,R} shorthand notation explained in
the text and summarized in the table in Figure 5.10a.

benchmark a universal quantum gate.
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Chapter 6

Demonstration and Characterization of

A Universal Quantum Gate

6.1 What is a universal quantum gate?

A universal gate, in both classical and quantum computing, is the most basic computa-

tional element that can be used to construct any arbitrary logic operation. In classical

computing there are a few different ways to construct a universal gate and one exam-

ple, the NAND gate [80], is shown in Figure 6.1a. A table that gives the output of the

NAND gate for all possible inputs is shown in Figure 6.1b. In Figure 6.1c, we show

a flip-flop circuit, which acts as a simple memory element and is just one example of

the arbitrary computational operations that can be performed using only NAND gates.
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The output, Q, can be maintained at the same value or modified based on the inputs R

and S, as given by the table in Figure 6.1c. In quantum computing, universal quantum

gates [58, 38] consist of a multi-qubit device that can perform entangling operations

along with single qubit operations. Using a universal quantum gate any arbitrary

quantum computation can be performed [17]. In the previous section we showed that

we could perform the full basis set of single-qubit operations with high fidelity by using

single-qubit operations to prepare the 16 two-qubit basis states with 98% state fidelity.

Now, we must show that alongside the single qubit operations, we can also create an

entangling gate using the same system.

There are a few different ways to create an entangling gate. The entangling gate

that has received the most attention thus far in the field of quantum computation has

been the CNOT gate [58, 38, 63, 87]. Its quantum logic circuit is shown in Figure 6.2,

where the two qubits are represented by the horizontal lines, with the gate input on the

left and the output on the right. The actual symbol for the CNOT is the vertical line

with the encircled cross.

It turns out that in our qubit architecture another entangling gate is simpler to con-

struct than a CNOT because it arises directly from the time evolution of the Hamiltonian

for two coupled flux-biased phase qubits [67]. This gate is called the “square root of

i-swap gate” or SQiSW [78]. In our system, the CNOT is more complex because it

needs to be constructed from two SQiSW gates and single qubit operations. Hence,
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A

B
YNAND

a) b) c)
A     B    Y
0    0    1
0    1    1
1    0    1
1    1    0

S

R Q

Q

_

S     R    Action
0    0    Restricted

0    1    Q = 1

1    0    Q = 0

1    1    No Change

_ _

_

_

Figure 6.1: Example of a universal gate in classical computing. One example of a classical
logic gate that can be used to perform any arbitrary classical computation is the NAND gate.
a) Circuit symbol for a NAND universal classical gate b) Truth table for NAND gate showing
inputs (A,B) and output (Y). c) The flip-flop memory element is an example of a simple logic
element that can be built using NAND gates. The output of Q is controlled by the signals on R
and S, as given in the table to the right of the flip-flop circuit.

the SQiSW gate also has a shorter pulse sequence and a short gate pulse sequence is

important because we want to perform as many gate operations as possible before co-

herence is lost, as given by the T1 and T2 times that were measured in Chapter 4. The

double-cross quantum circuit symbol that represents a SQiSW gate is shown in Fig-

ure 6.2, along with a quantum circuit that shows how to build a CNOT from SQiSW

gates.

To make the SQiSW gate, we let two coupled qubits evolve under the interaction

Hamiltonian in (5.1) for half the time required for a swap operation, i.e. tswap = π/(2g),

so that the matrix for the coupling interaction, (5.5), reduces to

SQiSW ≡Uint(tswap = π/(2g)) =


1 0 0 0
0 1/

√
2 −i/

√
2 0

0 −i/
√

2 1/
√

2 0
0 0 0 1

 (6.1)
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X
π/2

X
π/2

Y
π/2X

π
Y-π/2

=CNOT  = √ i-swap =i-swap =

time 

Figure 6.2: Universal quantum gates. In quantum computing literature, the universal quan-
tum gate that is most often discussed is the CNOT gate. It is represented by the dot and en-
circled cross connecting the two horizontal lines that represent the two qubits. If the control
qubit (marked by the dot) is in the excited state, then the the state of the qubit marked with the
encircled cross is inverted. If the control qubit is in the ground state the state of the other qubit
is left unchanged. In our system, the CNOT is not the most fundamental gate. It can be built
from single qubit rotations and a universal gate called a square root of i-swap gate (SQiSW ), as
shown in the quantum circuit in the middle panel. The quantum circuit symbol for the SQiSW
is the double cross, as shown on the far right.

This is the matrix for the SQiSW gate. To understand the SQiSW gate in a visual

way, we can look back at the swap data in Figure 5.4b. The time at which the SQiSW

gate occurs in the swap experiment is indicated by the vertical dotted line on the swap

experiment data shown in Figure 5.4b. This time is half the time required for the qubits

to fully swap, hence the “square-root” in square-root of i-swap.

In order to demonstrate that we have correctly constructed a SQiSW gate, we must

map the output of the SQiSW gate for all possible input states. This is analogous to what

was done to obtain a classical truth table like the one shown in Figure 6.1b. However,

in classical computing, this is an easy task because the computational space is binary

and hence small. For example, for the NAND gate there were four possible inputs

{00,01,10,11}. In quantum computing, the qubit Hilbert space is infinite because the

phase and amplitude of a state can take on an infinite number of values. Therefore this
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task is much more complex than just obtaining a truth table. Initially, it might seem

impossible to map out the output states for a computational space of input states that is

infinite, but it is possible to predict the output of a quantum gate for any arbitrary input

by using a technique called quantum process tomography (QPT) as we discuss in the

next section.

6.2 Experimental characterization of a universal quan-

tum gate using quantum process tomography (QPT)

6.2.1 Motivation

Quantum process tomography [19] has its origins in system identification techniques

from the field of control engineering [46]. In system identification, the task is to predict

the behavior of a system that is modeled as an unknown black box by feeding it known

inputs and observing and analyzing the outputs. Similarly, in QPT a specially selected

set of quantum states is input into the quantum gate to be characterized, and the output

quantum states of the gate are measured and analyzed. QPT is a characterization tool

that is independent of the particular quantum computing architecture. This makes it

a very useful tool for comparing quantum gate performance across different quantum

computing architectures. It is a cross-platform benchmarking tool. In state tomography,

the density matrix is the mathematical object which that fully describes the quantum
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state. In QPT, the analogous mathematical object that fully describes the quantum

gate’s action on any arbitrary input state is called the χ matrix. Once the χ matrix is

obtained, the output of the quantum gate can be predicted for any input state. The χ

matrix is the quantum analog of the classical truth table.

There are many great resources that describe the theoretical foundations and the

experimental implementations of QPT [19, 86, 65, 34, 18, 60]. However, the theory

describing QPT can be mathematically convoluted and, as a result, it can be difficult to

extract the fairly simple conceptual points that are key to understanding QPT:

1. Just as there is a basis set of states for qubits, there is also a basis set of opera-

tions. For a single qubit that set can be taken to be the Pauli basis {I,X ,Y,Z} [39,

58]. For two qubits, the set is

Ê ≡ {I,X ,Y,Z}⊗{I,X ,Y,Z}
= {II, IX , IY, IZ,XI,XX ,XY,XZ,Y I,Y X ,YY,Y Z,ZI,ZX ,ZY,ZZ}

(6.2)

2. Quantum operations are linear transformations. As such, they can be written as

linear combinations of the basis set of operations in (6.2).

3. The above two concepts can be used to mathematically model any quantum op-
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eration, such as a quantum gate, using the equation

ε(ρ) = ∑
mn

χmnÊmρÊ†
n (6.3)

where for two qubits m,n = 1,2, ..,16 and Êm is one of the two-qubit basis op-

erations, and ρ and ε(ρ) are the gate’s input state and the resulting output state,

respectively. The term χmn is the (m,n)th element of the χ matrix, a 16×16 matrix

for two qubits. Now we can give a more mathematical definition of the χ matrix:

the elements of the χ matrix, χmn, are the coefficients in the linear expansion (6.3)

of the gate operation in terms of the basis operations, Êm.

4. Once we obtain the χ matrix for a given basis set of two-qubit states, we can use

that χ matrix to predict the output state for any arbitrary input state.

6.2.2 Quantum process tomography of the SQiSW gate

As illustrated in Figure 6.3, performing QPT on the SQiSW gate involves preparing

the qubits in a spanning set of input basis states, {HH,HV,HD,HR,V H,VV,V D,V R,

DH,DV,DD,DR,RH,RV,RD,RR}, operating with the gate on each of these states, and

then carrying out complete state tomography on each corresponding output state. The

definitions for the state labels {H,V,D,R} are given in the table shown in Figure 5.10.

We have already characterized the 16 input states and have obtained their density
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QBB

QBA

Tomo MeasureState
Prep.

Init.
9 experiments

I I, X I,  Y I 
IX, XX, YX
IY, XY, YY

3 probs
P00
P01
P10

27 Numbers

Extract output
density matrix (ρ)

I0

I0

Repeat 
for all 16

basis 
statestswap= π/(2g)

GATE

√i-swap

INPUT OUTPUT

Extract

matrix
for gate

χ

Figure 6.3: Pulse sequence for quantum process tomography (QPT) of SQiSW . QPT
consists of inputting each of the 16 two-qubit basis states into the quantum process to be char-
acterized and performing state tomography on each corresponding output state. Once the 16
input and output density matrices are obtained they can be used to mathematically extract the χ

matrix for that particular quantum process.

matrices, as described in the last chapter. These input states are represented by the

variable ρ in (6.3). We then operate on the input states with the SQiSW gate and carry

out complete state tomography on the output states. The output states are represented

by ε(ρ) in (6.3). In Figure 6.4, we show the full set of 16 density matrices of the

output states of the SQiSW gate corresponding to the 16 input state density matrices

shown earlier in Figure 5.12. We are interested in the quality of the entangling gate

itself, therefore we have calibrated out errors resulting from measurement; both from

visibility errors and from measurement crosstalk, as described in Appendix D. The

density matrices for the SQiSW gate input and output states, without the measurement

crosstalk and visibility error calibrated out, are also given in Appendix D, in Figures D.1

and D.2. From the complete set of calibrated input (Figure 5.12) and output (Figure 6.4)

density matrices, we can reconstruct the 16×16 χ matrix by using (6.3).
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Re(ρHR) Im(ρHR)

-1      -0.5       0        0.5      1

Re(ρHH) Im(ρHH)

Re(ρVD) Im(ρVD)

Re(ρDV) Im(ρDV)

Re(ρRH) Im(ρRH)

Re(ρHV) Im(ρHV)

Re(ρVH) Im(ρVH)

Re(ρVR) Im(ρVR)

Re(ρDD) Im(ρDD)

Re(ρRV) Im(ρRV) Re(ρRD) Im(ρRD)

Re(ρDR) Im(ρDR)

Re(ρDH) Im(ρDH)

Re(ρVV) Im(ρVV)

Re(ρHD) Im(ρHD)

Re(ρRR) Im(ρRR)

Re(ρ), Im(ρ)

Figure 6.4: The full set of density matrices, obtained via state tomography, for the output states
produced by the action of the SQiSW gate on the 16 two-qubit basis states shown previously in
Figure 5.12. Measurement errors have been calibrated out from this dataset. The solid bars are
the experimental data and the transparent bars are the theory. The states are labeled according
to the input states used with the {H,V,D,R} shorthand notation as defined in the table shown in
Figure 5.10a.

Additionally, standard QPT typically produces an unphysical χ matrix because of

inherent experimental noise [65, 60]. A physical χ matrix define a completely posi-

tive and trace preserving (CPTP) map [19, 41], which means that it must have positive
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eigenvalues that sum to one. Our measured χ matrix has several negative eigenvalues, as

discussed in Appendix D. As is commonly done in QPT experiments [65, 60], a χ ma-

trix that satisfies the CPTP constraints must be obtained from the experimental data be-

fore the data can be compared to a theoretically predicted χ matrix, which is physical by

construction. The problem of finding a physical approximation to unphysical QPT data

can be shown to be a convex optimization problem [15, 16], a technique commonly used

in control theory. We use a type of convex optimization called semidefinite program-

ming [15] to find the physical χ matrix that best approximates our measured, unphysical

χ matrix. Mathematically, for the experimentally obtained χ matrix and the physical

approximation χp, we minimize the two-norm distance ‖χp−χ‖2 ≡
√

tr{(χp−χ)2}

with the constraints that χp be CPTP. This physical matrix χ
p
m, which also includes

the calibrations for measurement errors, is shown in Figure 6.5. The experimentally

obtained data is shown as the solid color bars and the theoretically expected χ matrix

elements are shown using the transparent bars. This matrix closely matches the original

data before corrections for CPTP (see Appendix D).

In both the real and imaginary parts of the χ
p
m matrix, we observe non-zero matrix

elements in locations where such elements are expected, in qualitative agreement with

the theory. Quantitative comparison is obtained by calculating the process fidelity,

Fp = Tr(χtχ
p
m), where 0 < Fp < 1. The process fidelity gives a measure of how close

χ
p
m is to theoretical expectations [60]. For the SQiSW gate demonstrated here, with
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measurement calibration taken into account, we find Fp = Tr(χtχ
p
m) = 0.63, where χt is

the theoretical χ matrix for the SQiSW gate. The χm and χe matrices are the unphysical

χ matrices with and without measurement calibrations, respectively. The χ
p
e matrix

is the physical approximation to the χ matrix that does not include the measurement

calibrations. These are shown in Figures D.3-D.5 in Appendix D.
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Figure 6.5: χ matrix for SQiSW gate. Real and imaginary parts of the reconstructed χ

matrix for the SQiSW gate. Physical estimates to the experimental data are shown as solid
bars. Transparent bars give the theoretically expected χ matrix, which does not include effects
due to decoherence. Each bar represents the real and imaginary part of the coefficient of the
particular two-qubit basis operation, Êmn, in an expansion of the SQiSW operation in terms
of the 16 two-qubit basis operations as given by (6.3). Errors from measurement crosstalk
and visibility were calibrated out in this data. Technical details regarding calibrations and the
physical estimation can be found in the text and in Appendix D. The matrix elements of χ

p
m

that are non-zero because of energy relaxation and dephasing are marked with a “*” and “o”
symbol, respectively. As discussed in the text, these elements can be used to extract numerical
values for the dephasing time, T2, and to extract quantitative details about the noise acting on
the coupled qubit system.
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Errors in our SQiSW gate primarily arise because the time for the experiment (∼

50ns) is not significantly shorter than the dephasing time of 120ns. This is confirmed

using a recent theory [39] by Kofman et al., which includes the effects of dephasing

and decoherence on the SQiSW χ matrix. In particular, the elements marked with

an asterisk and a circle in Figure 6.5 are non-zero because of energy relaxation and

dephasing, respectively. The theoretical work done in [39] uses a modified basis of

operators. Hence to compare the data here to the work in [39], the sign of the real part

of (χp
m)XX ,YY and (χ

p
m)YY,XX , and the imaginary part of (χp

m)XX ,II and (χ
p
m)II,XX must

be changed. Using this theory and the real part of (χp
m)IZ,IZ and (χ

p
m)IZ,ZI , we estimate

our single-qubit dephasing time as T2 = (3π+ 2)/16g(χp
m)IZ,IZ . From Figure 6.5 we

find (χ
p
m)IZ,IZ = 0.105 and T2 = 123 ns, in close agreement with the value obtained

in Chapter 4 from Ramsey experiments. We also estimate the degree of correlation of

the dephasing noise between the coupled qubits using κ≈ (χ
p
m)IZ,ZI/(χ

p
m)IZ,IZ− [(π−

2)/(3π+2)]. Our measurement of (χp
m)IZ,ZI = 0.017 yields κ' 0.11, indicating that the

dephasing is mostly uncorrelated. This is in agreement with previous work [12, 53, 68]

that found a dephasing mechanism local to the individual qubits.

6.2.3 Improving gate performance

From the above experiments, it is clear that gate performance is limited by dephasing.

This is not surprising because the time required for the SQiSW operation together with
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the time required for the input state preparation and tomography pulses is already al-

most 50ns in length, a significant fraction of ∼ 120ns T2 time. There are two ways get

around the T2 limitation.

The source of dephasing could be located and the qubit can be made from materials

that do not contain this source of dephasing. Although conceptually this might seem

like a simple solution, finding the source of dephasing in superconducting qubits has

been a decades old problem that has remained unsolved despite a strong effort in both

experimental and theoretical physics, and in materials science [53]. Evidence from

recent work [12, 53, 68] does point to surface spin states as the source of dephasing,

but this has not been verified thoroughly and is still under investigation.

Another way to get around the T2 limit would be to make the swap operation faster

as it is the longest operation in the sequence. This can be accomplished by increas-

ing the coupling strength, g. At first glance there are serious problems with this. If

the coupling strength is increased, the measurement crosstalk will also increase. At

large coupling strengths the detuning, ∆o f f ≫ g, required to turn off the interaction

must also be larger thereby making it more difficult to get a high on/off ratio and fur-

ther exacerbating the frequency crowding issue. The ideal solution to this would be a

scheme for tunably coupling the qubits so that the coupling strength, g, could be turned

on during entangling operations and turned off during measurement and single-qubit

pulses. Therefore with tunable coupling the coupling strength can be made arbitrarily
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large without increasing measurement crosstalk or generating errors due to the coupling

being on during single-qubit operations. In the next chapter we demonstrate a tunable

coupling architecture for flux-biased phase qubits.
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Chapter 7

Connecting Phase Qubits Using

Tunable Coupling

7.1 Motivation and prior work

Tunable couplers have been previously demonstrated using superconducting qubits [33,

59, 2, 32], but only using designs that required the tuning element to be in close prox-

imity to the qubits, making scalability difficult. Also, previous demonstrations have

shown either limited time-domain control or low on/off ratios, thus providing a proof-

of-concept, but limited use in realistic quantum operations. The design we present here

for the first time, in a single device, addresses all of these shortcomings. It achieves

control of the coupling strength on nanosecond time scales with a large on/off coupling
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ratio and it is a novel design because it is completely modular, allowing for the coupling

of qubits across large distances, not just nearest-neighbors. Additionally, this design al-

lows for coupling to other superconducting circuit elements in addition to qubits. For

example, it can be used to controllably couple a qubit to a resonator, an amplifier cir-

cuit, or even to a qubit from other quantum computing architectures. In this chapter, we

introduce our tunable coupler design, characterize it, and demonstrate its use in tunable

swap experiments.

7.2 This tunable coupler design

The electrical circuit for the tunably coupled flux-biased phase qubits is shown in Fig-

ure 7.1a and a corresponding optical micrograph is shown in Figures 7.1b-f. Each

qubit still has the same parameter values as given in (4.2). The tunable coupling

element (Figures 7.1d-f) is a four-terminal device constructed using a fixed negative

mutual inductance −M (Figure 7.1e) and a single, current-biased Josephson junction

with critical current Ic
0 ' 1.6µA (Figure 7.1f) that acts as a tunable positive induc-

tance Lc. This inductance changes with coupler bias Icb according to (3.6), Lc =

(Φ0/2πIc
0)/
√

1− (Icb/Ic
0)

2.

where Ic
0 ' 1.6 µA is the coupler junction critical current. The coupler is biased

using a current bias, labeled as Icb and f in Figure 7.1. Although the coupler bias line

will be represented by a single current bias line, Icb, as shown in Figure 7.1, it is con-
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Figure 7.1: Device circuit and micrograph of two Josephson phase qubits coupled using
a tunable coupler. The circuit shows the two qubits in red and blue and the coupler in purple,
green and orange. A micrograph of a fabricated device is shown below the circuit where boxes
b and c enclose the two qubits. Each qubit is designed in the same manner and with the same
parameters as described in (4.2). The inductors Ls ' 2700 pH, LM ' 390 pH, and the negative
mutual inductance −M '−190 pH, which form the non-tunable part of the coupler, are shown
in purple and green, and boxes d and e. The current-biased coupler junction, with critical current
Ic
0 ' 1.6µA, forms the tunable element and is shown in orange and in box f . The inductor Lz = 9

nH isolates the coupler and qubits from the 50Ω characteristic impedance of the bias circuit.
The entire coupler, a modular four-terminal device, is shown by the dashed box. The coupler
connecting qubits b or c to inductor d can be made longer, if needed, to connect qubits over
longer distances.

structed exactly like the flux bias and measurement/z-pulse lines shown in Appendix B.

Fast (nanosecond scale) coupler bias signals are pulsed down a 50Ω attenuated line and

slow (DC to microsecond scale) coupler bias signals are applied to a DC line with a 1

kΩ series resistance. These two lines are impedance matched using a bias tee in the

same way that was done for the flux bias line, as described in Appendix B. As was
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described for the single-qubit flux bias line in Chapter 4, the low characeristic impen-

dance of the coupler bias line must be transformed up to a higher impedance in order

to limit dissipation. This is accomplished using the 9 nH inductor shown in Figure 7.1f

which increases the characteristic impedance of the coupler bias line.

The interaction Hamiltonian between qubits A and B for the tunable coupler is

derived in detail in [62] and is given by

Hint '
g
2

(
σXAσXB +

1
6
√

NANB
σZAσZB

)
(7.1)

with

g =
M−Lc

(LM +Ls)2ω10C
(7.2)

where the {σX ,σZ} are Pauli operators, NA (NB) is the number of states in the qubit well

of qubit A (B), g is the adjustable coupling strength, C ' 1 pF is the qubit capacitance,

and ω01/2π is the on-resonance frequency that the two qubits are biased to.

The direct connection of the qubits through this circuit creates a fixed coupling

of much higher strength than what we would like for our experiments. To reduce

the coupling magnitude to the desired 50 MHz range, series inductors Ls ' 2700 pH

(Figure 7.1d) are inserted in the connecting wires that are significantly larger than the

mutual inductance elements LM ' 390 pH and the mutual inductance itself, M ' 190
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pH. Because the number of levels in the potentials of qubits A and B are typically

NA ' NB ' 4− 10, the σZAσZB term in equation (7.1) gives a small contribution of

approximately 0.03 to the coupling strength. This interaction does not affect the re-

sults presented here and can be effectively removed using a refocusing pulse, if needed.

With parameters Ic
0 ' 1.6µ A and M = 190 pH, and full adjustment of the bias current,

we were able to vary the coupling strength, g/2π, from approximately 0 MHz to 100

MHz. However, the values of Ic
0 and M can be chosen so that other ranges of coupling

strength, both positive and negative in sign, are possible.

7.3 Coupler characterization and dynamic performance

The coupler can be operated in two modes. In the simplest “static” mode, the coupler

is held at a fixed coupling strength throughout a two-qubit pulse sequence. However,

the static mode cannot be used in more complex experiments because the coupling

strength cannot be tuned on-the-fly during single-qubit operations and measurement.

As mentioned earlier, having the coupler on during single-qubit operations or measure-

ment would lead to errors. Hence, this coupler can also be operated in a “dynamic”

mode where fast, nanosecond-scale pulses are used to turn the coupler on and off at any

chosen time during a complex pulse sequence.
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7.3.1 Static performance: tuning the avoided-level crossing

Using the static mode, we perform two-qubit spectroscopy at fixed coupler biases,

which allows us to measure the energy splitting g/2π at the avoided level crossing

where the detuning ∆/2π = (ωA
01−ωB

01)/2π between the two qubits is zero. The pulse

sequence for this experiment is shown in Figure 7.2a. The coupler bias (green) is set

to the value Icb, and is kept at this constant value throughout this static mode experi-

ment. The dashed line indicates the coupler bias level that corresponds to zero coupling

strength, g/2π ' 0 MHz. The qubits (red and blue) are initially detuned by 200 MHz

and each starts in the |0〉 state. The bias of qubit B is then adjusted using a z-pulse to

set its 0→ 1 transition frequency, ωB
01/2π, a distance ∆/2π from the qubit A frequency,

ωA
01/2π. A microwave pulse of frequency fµW and duration ∼ 2 µs is then applied to

each qubit. The two-qubit probabilities are then determined using a single-shot mea-

surement, in the same way that was done in the capacitive coupling experiments. A

representative subset of crossings for several coupler biases are shown in Figures 7.2b-

e. The coupler clearly modulates the size of the spectroscopic splitting, and allows

the setting and measuring of the coupling strength [62]. Although the data for 0 MHz

shows no apparent splitting, the resolution at zero coupling is limited to ±1.5 MHz by

the 3 MHz linewidth of each qubit’s 0→ 1 resonant response, which is slightly broad-

ened due to the high power of the microwave pulse. Sub-megahertz resolution of the

minimum coupling strength is obtained from the dynamic mode experiments, which
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will be discussed shortly.
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Figure 7.2: Tuning the spectroscopic splitting. a) Pulse sequence for two-qubit spectroscopy.
Two-qubit spectroscopy was previously described in Chapter 5, but here we add a line to the
pulse sequence diagram that represents the signal on the coupler line. The coupler is biased
to a fixed value of the coupler bias Icb and maintained at that value as the detuning ∆ and the
microwave source frequency fµw are scanned and the two-qubit probabilities P01 and P10 are
measured. The panels b) to e) are plots of the measured probability P10 (A excited) and P01
(B excited) versus the detuning frequency ∆/2π and the difference in microwave and qubit A
frequencies fµW −ωA

01. Each panel shows a different coupler bias Icb that increases from b) to
e). The minimum splitting size is equal to the coupling strength g/2π and is measured as the
minimum distance between the two resonance curves on the spectroscopy data. The data in
b) to e) shows the coupling strength being adjusted by the coupler and verifies static coupler
performance. The dotted lines are a guide to the eye.

7.3.2 Static performance: Measurement crosstalk minimization

Since we have determined that the fidelity of gate operations is limited by qubit de-

phasing times, we want to reduce gate times by using stronger coupling. As men-

tioned at the end of last chapter, for devices with fixed coupling this strategy cannot be

used effectively because of the rapid rise in measurement crosstalk with increased cou-

pling [54, 40]. Therefore, it is important to demonstrate that measurement crosstalk can

be reduced to a minimal value when the coupler is turned off. As shown is Figure 7.3a,

we determine measurement crosstalk by driving only one qubit with Rabi oscillations,
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and then simultaneously measuring the excitation probabilities of both qubits, a tech-

nique that was first used to measure crosstalk in [4]. The undriven qubit shows no

response if there is no measurement crosstalk. The coupler (green) is set to a static bias

Icb. The coupler bias level corresponding to zero coupling strength, g/2π' 0 MHz, is

indicated by the dashed line. The qubits remain detuned by 200 MHz throughout the

experiment, and only one qubit (shown here, A) is excited with the Rabi microwave

pulse. The amplitude of the oscillation on the undriven divided by the amplitude of os-

cillation on the driven qubit gives a quantitative measure of the measurement crosstalk.

The Rabi data is shown in Figures 7.3b and c for both the driven and undriven qubits,

using representative coupling strengths of 0 MHz and ∼ 17 MHz. The measurement

crosstalk is plotted as a function of coupler bias in Figure 7.3d, where there is a broad

region of coupler bias where the measurement crosstalk amplitude is minimized. This

tunable coupler allows operation of phase qubits at large coupling strengths without the

drawback of large measurement crosstalk.

7.3.3 Dynamic performance: the tunable swap operation

The dynamic mode of operation tests coupler performance with a sequence that mimics

actual use in an algorithm, a swap experiment. This pulse sequence is illustrated in

Figure 7.4a. The coupler (green) is first set to the coupler bias value corresponding to

g/2π' 0 MHz, as measured previously. The qubits (red and blue) are initially detuned
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Figure 7.3: Turning off measurement crosstalk. a) Pulse sequence for determining the mea-
surement crosstalk as a function of coupler bias. The coupler is set to a value of coupler bias
Icb and is kept at this value throughout the experiment. The qubits are biased off-resonance by
∆o f f ' 200 MHz and are kept off-resonance for the duration of the experiment. This is done
to mimic how the operating biases are usually set during measurement, off-resoance by 200
MHz, as previously described in Chapter 5. Each qubit is initialized into the |0〉 state and a
Rabi is excited on one qubit (shown here, qubit A). No microwave or z-pulses are applied to
the other qubit (shown here, qubit B). The two-qubit probabilities are then measured using a
single-shot measurement. The pulse sequence is repeated for various Rabi pulse lengths and a
full Rabi scan is taken for a few representative values of the coupler bias, Icb. b) For the tunable
coupler turned off, we plot Px1 = P01 +P11 and P1x = P10 +P11 versus the Rabi pulse time trabi.
Rabi oscillations in P1x (qubit A) are observed, with only a small amplitude oscillation of Px1
(qubit B) indicating that measurement crosstalk is present. c) Same as for b), but with coupling
turned on to 17 MHz where a much larger measurement crosstalk signal is observed in Px1. d)
Measurement crosstalk amplitude as a function of coupler bias Icb for the case of Rabi drive on
qubit A (red) and qubit B (blue). For the case of drive on qubit A (qubit B), crosstalk amplitude
is displayed as the ratio of the amplitudes of the oscillations of Px1(P1x) to that of P1x(Px1).

by ∆o f f = 200 MHz and start in the |0〉 state. A π microwave pulse is then applied to

qubit A, exciting it to the |1〉 state. The coupling interaction remains off during this

pulse to minimize errors resulting from two-qubit interactions. A fast bias pulse then

detunes qubit B from qubit A by a frequency ∆/2π, and at the same time compensates
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for qubit bias shifts due to the coupler bias, which will be discussed in more detail

below. Simultaneously, the coupler is turned on to a bias Icb using a fast bias pulse with

∼ 2 ns rise and fall times. The coupler and qubit biases are held at these values for a

time tswap, allowing the two-qubit system to evolve under the coupling interaction. The

coupling produces a two-qubit swap operation which arises from the σXAσXB operator in

Eq. (7.1), and is the basis for universal gate operations as descirbed in the last chapter.

The qubits are then detuned again to ∆o f f = 200 MHz and Icb is set back to the zero

coupling strength value, allowing for a crosstalk-free, single-shot measurement of the

two-qubit probabilities PAB = {P01,P10,P11}.

In Figure 7.4b, we show swap data at ∆/2π' 0 MHz for two representative settings

of off and on coupling, g/2π' 0 MHz and 40 MHz. The P11 signal is now minimized,

indicating that measurement crosstalk has been turned off. In Figure 7.4c, swap data for

P01 and P10 are shown where the detuning, ∆/2π was varied for several representative

coupling strengths g/2π' 0, 11, 27, 45, and 100 MHz. The swaps exhibit the expected

chevron pattern for the resonant interaction [54]. In Figure 7.4d the swap frequency

is plotted versus coupler bias at ∆/2π' 0 MHz for representative coupler bias values.

Coupling strengths up to 100 MHz are possible, although we find that the decay times

of the swaps degrade above 60 MHz, presumably due to the coupler bias approaching

the critical current of the coupler junction.
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Figure 7.4: Demonstration of dynamic coupler operation via swap experiment. a) Pulse
sequence demonstrating dynamic mode of coupler operation. The coupler is first biased to the
Icb value corresponding to zero coupling strength, g/2π ' 0, and each qubit is initialized into
the |0〉 state. With the coupling off, qubit A can be excited into the |1〉 state using a π pulse and
without generating sinlge-qubit pulse errors due to the coupling interaction. The coupler is then
turned on to a value Icb and qubit B is simultaneously z-pulsed, biasing it to a frequency ∆/2π

within resonance of qubit A. The system is then left to evolve for a time tswap after which the
coupler is returned to the off bias and the two-qubit probabilities are measured. With the coupler
off during measurement, measurement crosstalk is not generated. b) The measured two-qubit
probabilities P01, P10, and P11 are plotted versus tswap for qubits on resonance ∆/2π = 0 and
two sets of coupling g/2π, corresponding to off (top) and on (bottom) conditions. c) Measured
qubit probability, P10, plotted versus tswap and qubit detuning ∆/2π for representative coupling
strengths g/2π = 0 MHz, 11 MHz, 27 MHz, 45 MHz, and 100 MHz. d) Swap frequency g/2π

versus coupler bias Icb for all coupler biases measured in this experiment (solid dots). Solid red
line is theory obtained from (7.2) and measured device parameters.
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7.4 Scalability: the on/off ratio and stray capacitances,

long-distance coupling and modularity

The determination of the minimum coupling strength, which quantifies how well the

interaction can be turned off, is limited by the minimum detectable swap frequency of

the qubits. Our ability to resolve this frequency is, in turn, limited by qubit decoherence

because for low coupling strengths, energy relaxation (T1) makes the swap oscillations

decay before the occurrence of a full swap. Hence, it is difficult to quantify the time

of a full oscillation period from the g/2π = OFF data in Figure 7.4 and this limits

our ability to measure the minimum coupling strength which is needed to calculate the

on/off ratio. To determine the minimum coupling strength corresponding to the off data

shown again in Figure 7.5a, we performed simulations of a two-qubit coupled system

that included the T1 ∼ 350 ns decay as measured for each qubit. The computer code

and a detailed description of the simulations can be found in reference [3]. We show

in Figures 7.5b-d, the simulations for coupling strengths of 0.1 MHz, 0.3 MHz, and

0.5 MHz. The best fit to the data occurs at a simulated coupling strength of 0.1 MHz.

Below coupling strengths of 0.1 MHz, the oscillations cannot be resolved due to T1

decay. Therefore, we take the minimum coupling strength to be no greater than 0.1

MHz, giving a lower bound on the on/off ratio of 100MHz/0.1MHz= 1000. However,

we expect that the actual on/off ratio is much greater than this.
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Figure 7.5: Finding the minimum coupling strength. Comparing the experimental swap data
for ∆/2π' 0 a) with simulations for various coupling strengths b)-d) allows for the estimation
of the minimum coupling strength. The simulation for 0.1 MHz best fits the data in a) hence
the minimum coupling strength is no greater than 0.1MHz. This gives an on/off ratio of at least
100 MHz/0.1 MHz' 1000.

Stray capacitances and inductances in the circuit introduce stray coupling that may

limit the on/off ratio. In this design, the greatest contribution to stray coupling comes

from the small (∼ 50 fF), inherent capacitance of the coupler junction as represented by

Cc j in Figure 7.6a. The coupler junction has a self-resonance frequency of ωc0/2π' 30

GHz, which implies that its effective inductance Lc[1− (ω/ωc0)
2] changes in value
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from ω/2π = 0 and 6 GHz by ∼ 4% [62]. The σZAσZB and σXAσXB interactions in Eq.

(7.1) will thus turn on and off at slightly different coupler biases and, along with virtual

transitions as shown in Figure 7.6, will limit how far the coupler can be turned off [62,

5]. A useful feature of this coupler is that this imperfection can be compensated for by

including a small shunt capacitor CS ' across the mutual inductance. The theoretical

analysis behind this conclusion can be found in reference [62]. With this shunt, we

should be able to attain on/off ratios up to 104.
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Figure 7.6: Stray coupling. a) The small capacitance due to the coupler junction, Cc j ' 50 fF,
has a self-resonance frequency of ωc0/2π' 30 GHz, which implies that its effective inductance
Lc[1− (ω/ωc0)

2] changes in value from ω/2π = 0 and 6 GHz by ∼ 4%. As discussed in [62],
this will cause the σZAσZB and σXAσXB interactions in (7.1) to turn on and off at slightly different
coupler biases leading to stray coupling. This stray coupling can be eliminated by shunting
the coupler with a capacitance CS ' 0.6 fF. b) An energy level diagram showing the qubit and
coupler energy levels. A virtual transition through the coupler state at approximately 30 GHz,
contributes to the stray coupling between the |01〉 and |10〉 states. The stray coupling is small,
as described above, because the coupler transition at ∼ 30 GHz is far off-resonance from the
qubit transition at ∼ 6 GHz.

This coupler design is unique compared to other tunable superconducting qubit

couplers because it does not require the qubits and coupler to be in close proximity.
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As shown in Figure 7.1, the wire connecting the qubits (labeled b and c) to the coupler

inductors (labeled d), can be made longer to facilitate coupling of qubits over large dis-

tances. Also, the coupler is self-contained, as shown by the dashed box in Figure 7.1.

These two features allow our coupler design to be used as a “drop-in” module for con-

necting qubits to other devices such as superconducting parametric amplifiers [9] or

in coupling qubits to readout circuitry, superconducting resonators, or potentially even

coupling superconducting qubits to qubits from other quantum computing architectures.

7.5 Technical points: multistability of the coupler cir-

cuit and influence of coupler bias on qubit bias

There are a few technical details which are important to the proper experimental im-

plementation of the coupler. The coupler’s connection to ground via the qubits forms

a loop which has multiple stable flux states. Therefore, similarly to the qubit flux bias

reset discussed in Chapter 4, the coupler bias also needs to be reset as discussed be-

low. Also, there are direct-current connections between the coupler bias and the qubits

which produce small shifts in the qubit frequency due to changes in the coupler bias.

These shifts can be readily compensated for using the qubit biases V A,B
Z and are also

discussed below.
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7.5.1 Coupler reset protocol

A direct-current connection between the coupler and qubits requires the coupler to be

reset. Because the Josephson inductance of the qubit junctions is much larger than the

shunt inductor L, current flowing from the coupler mostly flows through L. As a result,

the coupler junction is effectively shunted by two loops with net inductance (LM +Ls+

L)/2, as shown in Figure 7.7a. A junction with a shunt inductance can have multiple

stable operating points [6] if β = 2πIc
0(Ls +LM +L)/2Φ0 > 1; here Ls +LM +L' 4.2

nH and Ic
0 ' 1.6µA, giving β ' 20/2 = 10. For these parameters, Figure 7.7b shows

the expected behavior of the internal flux, Φ, in the loop versus external current bias

Icb, where the stable operating points are branches with positive slope A, B, C, D and E

(solid lines), and unstable operating points are given by dashed lines. When the coupler

is set to the bias labeled ION
cb , it can randomly assume any of the flux values given by

the intersection of the gray dotted line with the stable branches A-E.

The branch must be precisely reset to place the coupler at a known bias. This

may be accomplished using a similar reset technique to that used for single qubits and

described in Chapter 4. For example, to place the coupler on branch C, the coupler

bias is repeatedly varied between the two values I+cb and I−cb. As occupation in any other

branch will result in a switch out of that branch, with enough trials the coupler will

eventually find itself in C, the only stable branch. Figure 7.7c shows how this reset

protocol is simply integrated into the swap experiment. To determine I+cb and I−cb, a
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Figure 7.7: The need for a coupler “reset”. a) Unshaded parts of the circuit reveal the path
from the coupler bias, through the qubit inductors, to ground, forming a Josephson junction
in a loop which is known to display multi-stable behavior. b) Schematic depiction of multi-
stability of coupler circuit. The internal flux, Φ, in the the unshaded circuit shown in a) is
plotted as a function of coupler bias, Icb. Solid lines are values of the coupler bias for which
stable operating points exist and dashed lines are unstable operating points. This diagram is
similar to the SQUID steps data, where there are multiple stable overlapping branches, here
labeled A-E. c) Pulse sequence for the swap experiment which now also shows the coupler
reset sequence. Similar to the single qubit reset procedure described in Chapter 4, we cycle the
coupler bias, Icb, between the two points I−cb and I+cb that correspond to minimal overlap of the
stable branch labeled C with the other branches. After repeating this for 30 cycles, the coupler
will be initialized into the stable branch C, as discussed in detail in the text.

qubit can be used to detect when the coupler switches to a different branch. When

switching happens, the direct-current coupling between the coupler and qubit causes a

qubit bias shift, which in turn can be measured by monitoring the escape of the qubit

|0〉 state using a step edge experiment where the operating bias is set to the steepest part

of the step edge. For this measurement, we must first map out the position of the step

edge as a function of coupler and qubit bias. The |0〉 state escape rate is given by (4.3).

In Figure 7.8a, we show the escape probability for the |0〉 state as a function of reset
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offset IR
cb = I−cb = I+cb and the bias of qubit A. We take the dotted line as the condition

where the |0〉 state had not escaped (below step-edge), and the dashed line as when the

|0〉 state had fully escaped (above step-edge). We then plot in Figures 7.8b and c these

conditions versus the two coupler biases I+cb and I−cb. The data for the former case is

shown in Figure 7.8b, where the region enclosed by the dashed box gives the values of

I+cb and I−cb where the coupler is properly reset, i.e. when the qubit does not escape from

the |0〉 state due to changing of a branch. Figure 7.8c shows the scan for a bias above

the step edge where this same region should now have the |0〉 state fully escaped. For

optimal reset, I+cb and I−cb were chosen at the center of the dashed box. Repeating these

measurements for qubit B gave similar values.

Because a number of reset cycles must be used to reliably reset the coupler, the reset

probability must be measured versus the number of resets. As shown in Figure 7.8d,

we found an exponential decay with the number of reset cycles, as expected, and that

30 cycles produced an acceptable error of ∼ 1.5×10−4.

We next confirmed that I+cb and I−cb properly reset the coupler for all coupler and qubit

bias values up to the critical current of the coupler junction. As shown in Figure 7.8e,

we perform a step-edge experiment as a function of coupler bias. The slope in the curve

is expected, and is due to the direct current connection between the coupler and qubit

as discussed below. The increase in slope at the two ends of the curve arises from the

non-linearity of the qubits Josephson inductance as the critical current is approached.
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Figure 7.8: Calibrating the reset. a) to c) We must calibrate the values of I+cb and I−cb needed to
properly reset the coupler into one of the stable branches depicted in Figure 7.7b. This is done
using a series of experiments that monitor the probability of |0〉 state tunneling as a function
of coupler reset amplitudes, as described in the text. d) Measurement of qubit error versus the
number of coupler resets indicates that in order to maintain the coupler in one particular stable
branch with probability greater than 1− 10−4, the coupler bias must be cycled between the
values I+cb and I−cb at least 30 times. e) Verification of proper coupler reset. We verify that the
coupler is properly reset by performing the step edge experiment as a function of coupler bias.
A sharp step edge with a smooth dependence on coupler bias indicates that the coupler has been
reset properly and remains in a single stable branch for the full range of coupler bias values.

7.5.2 Compensation for qubit bias shift due to coupler bias

The coupler and qubit biases are connected via a direct-current path. As a result, a bias

applied to the coupler also shifts the qubit biases. This can be seen in Figure 7.9a and

b, which show the pulse sequence and data for two-qubit spectroscopy as a function of

coupler bias. As the coupler bias Icb increases, the qubit biases shift in a direction that

increases the qubit resonance frequencies. The shifts are approximately the same for
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both qubits, and can be negated by compensating z-pulses, as shown in Figures 7.9c

and d. Here, the pulse sequence and spectroscopy data are the same except the qubit

biases also contain a compensation pulse. With compensation, the qubit frequencies

are approximately constant as a function of coupler bias, indicating the shifts have been

minimized.

7.5.3 Future work on tunable coupling

The major issue with this tunable coupler design is the direct connection between the

coupler bias and the qubits In a future design, it is desirable for the coupler to be iso-

lated from the qubit circuit by using capacitive coupling. The stray coupling discussed

above is not an issue for a small number of qubits, but if this tunable coupling ar-

chitecture is to be scaled up then this needs to be addressed. As a first step, a shunt

capacitor like that in Figure 7.6a can be added. Furthermore, this design as presented

in this thesis can already be used to connect qubits to other superconducting circuit

elements. As this work was nearing completion, we began work on designing a de-

vice where the tunable coupler served as a tunable on/off switch between a qubit and

a measurement circuit that allows for the quantum non-demolition measurement of the

flux-biased phase qubits. This illustrates one of the many possible applications of this

tunable coupler. We hope that this tunable coupling element will serve as a versatile

circuit element in superconducting qubits and in other areas that use superconducting
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Figure 7.9: Compensating for coupler induced qubit bias shifts. The direct current con-
nection between the coupler bias and the qubits leads to shifts in each qubit’s operating bias.
These shifts can be measured by performing two-qubit fine spectroscopy as a function of cou-
pler bias, Icb. We can then compensate fot the bias shifts using z-pulses. a) Pulse sequence and
b) spectroscopy data without compensation for shift due to coupler bias. We excited each qubit
with ∼ 2µs long microwave pulses and then measure P01 and P10 as a function of microwave
drive frequency. We repeat this for increasing values of coupler bias to map out the qubit bias
shift by measuring the shift in ω

A,B
01 /2π with Icb. c) to d) Same pulse sequence, but now with

added z-pulses to compensate for the qubit bias shifts due to the increasing coupler bias. Now,
the qubit frequencies do not change as a function of coupler bias indicating that we can suc-
cessfully compensate for the shifts in qubit operating biases due to the coupler bias by using
z-pulses.

circuits.
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Appendix A

Device Fabrication

This appendix provides a brief overview of the steps involved in the microfabrication

of the superconducting qubits discussed in this thesis. All the fabrication was done at

the UC Santa Barbara Nanofabrication Facilities. Photolithography carried out using

a SPR955 resist and MF701 developer. The resist was stripped using a sonicated ace-

tone bath, although heated 1165 resist stripper followed by a deionized water rinse can

also be used. The optical stepper used was a GCA 6300 Optical I-Line Wafer Step-

per. Dry etching was done using a Panasonic E640 inductively coupled plasma etch

system. Aluminum sputtering and oxidation carried out using a custom Kurt Lesker

sputter and ion mill system. Dielectric materials were deposited using a UNAXIS high

density plasma enhanced chemical vapor deposition (HD PECVD) system, pre-cleaned

at 200◦C with SF6/O2 for 40 minutes.
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Figure A.1: Microfabrication steps CAD representations of qubit device microfabrication
steps and micrographs of finished devices. Each step is discussed in detail in the text. a) Base
wiring deposition and patterning. (b) Dielectric deposition and patterning. c) Junction base
electrode Al deposition and definition. d)-e) Josephson junction oxidation and patterning. f)
Top wiring and shorting strap definition. g) Dielectric etch h) Scanning electron microscope
image of an actual Josephson junction in a microfabricated qubit device. i) Optical microscope
image of microfabricated qubit.

A.0.4 Substrate

The qubit is fabricated on a crystalline sapphire substrate. The crystal orientation of the

substrates used in this thesis was either c-plane or r-plane sapphire. Sapphire is used

because it has a low loss tangent at GHz frequencies [53].
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A.0.5 Base wiring deposition and patterning

Before sputtering the aluminum that will define the base layer of the qubit, the sapphire

substrate is milled using an argon mill process at an Ar pressure of 2.0x10−4 Torr,

900 V beam voltage, 100 V accelerating voltage, and 35 V discharge voltage for ∼ 2

mins. The mill is done at room temperature. After milling, 130 nm of Al is sputtered

using an Ar gas plasma sputter source operating at 110 W at 5mT Ar. This gives a

deposition rate of ∼ 9 nm per min. This Al layer is patterned using optical lithography

and etched using a BCl3/Cl2 inductively coupled Plasma (ICP) reactive ion etch (RIE).

The etch is followed with a CF4 gas passivation step and a post-passivation de-ionized

(DI) H2O dip to get rid of by-products generated by the interaction of Al and Cl. A

computer generated representation of the device at the conclusion of this step is shown

in Figure A.1a. Only the Al base wiring is shown, the sapphire substrate is not.

A.0.6 Dielectric deposition and patterning

After the base wiring is deposited, patterned, etched, and the resist is stripped, 250 nm

of amorphous silicon hydride (a-Si:H) dielectric is deposited onto the base wiring. It

will form the capacitor that shunts the qubit junction and will also provide insulation

that will prevent overlapping wires from shorting together. This deposition is done

at 100◦C using a HD PECVD system. The dielectric is then patterned using optical

lithography and etched using a CF4/O2 ICP RIE recipe. This creates vias that will be
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used to make contact between the top and bottom wiring layers. Figure A.1b shows the

device at the end of this step.

A.0.7 Junction base electrode Al deposition and definition

We have found that the HD PECVD dielectric deposition affects the base Al in a way

that leads to non-functional Josephson junctions. Therefore, a fresh layer of Al un-

touched by the processing steps of the HD PECVD deposition is needed to make work-

ing Josephson junctions. This layer of Al will also be used for the top wiring, but the

patterning and etching of the top wiring will be done in a later step. We sputter ∼ 180

nm of fresh Al using the same parameters as for the base wiring deposition. We again

include the pre-deposition mill to etch away any oxide or organic films that might have

built up on the base layer Al. This layer of Al is then patterned using optical lithogra-

phy and etched using the same BCl3/Cl2 ICP RIE process. The patterning and etching

for this step punch a hole through the fresh Al metal only in a small rectangular region

between the junction leads. This hole will prevent the junction electrodes from shorting

together. A computer generated representation of the device at the end of this step is

shown in Figure A.1c.
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A.0.8 Josephson junction oxidation and definition

In this step we form the actual Josephson junction. We first ion mill the surface of the

fresh metal deposited in the previous step to remove any organics or oxide. The mill

recipe is the same as the one used in the previous steps. We then oxidize at room tem-

perature by bathing the sample in pure O2 at 10 mTorr for ∼ 10 minutes (Figure A.1d).

We then sputter 130 nm of Al in the same way as described in the previous steps. This

will be the top Al layer of the Josephson junction. The optical lithography is purpose-

fully misaligned to the layers below it. This allows us to control the area of the junction

by adjusting the amount of overlap between the triangular junction counter electrode

and the oxidized Al layer below (see scanning electron microscope image of a finished

Josephson junction in Figure A.1h). For this step, the plasma etch used is also different.

We want to etch fully into the Al we just sputtered for the junction counter electrode,

but not into the metal below it that we need for the base and top wiring. In order to do

this we use an Ar/Cl2 etch rather than the BCl3/Cl2 etch. Compared to the chemical

BCl3/Cl2 etch, the Ar/Cl2 etch is a physical etch which means that the Ar physically

mills the Al. The Cl2 is added to scavenge the milled byproducts so they can be pumped

away. In addition to the more precise control, this physical etch also allows us to get

nice, vertical sidewalls on the junction electrodes. We use the same ICP RIE system and

break the etch up into small time intervals in order to monitor for etch completion, and

thereby prevent overetching. However, the sample remains in the plasma etcher and is
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unexposed to the cleanroom environment during visual inspections for completion. We

follow up the etch with CF4 gas passivation and a DI H2O dip. The device at the end of

this step is shown in Figure A.1e.

A.0.9 Top wiring and shorting strap definition

Now we need to etch away the remaining metal so that only the top wiring and base

wiring remain along with straps that are used as shorts between the Josephson junctions

and ground. These straps will prevent pinholes in the junction oxide from being formed

by the large electric fields present in the plasma etching steps. The straps will be etched

away in the final processing step using a wet chemical etch. Again, optical lithography

and the BCl3/Cl2 etch process are used to define the top wiring and strap layers. The

device at the end of this step is depicted in Figure A.1f (shorting straps are not shown).

A.0.10 Dielectric etch

In this step we etch away any unnecessary dielectric material because it may contribute

to dissipation and decrease qubit coherence times. We again use optical lithography

and the same CF4/O2 ICP RIE etch. The end result is shown in Figure A.1g.
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A.0.11 Shorting strap etch

Finally, we remove the shorting straps using a wet chemical etch, consisting of sub-

merging the device wafer into Transene etchant heated to 80◦C for 10− 20 seconds,

and thoroughly rinsing with DI water. An optical micrograph of a finished device is

shown in Figure A.1i.
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Appendix B

Electronics And Low Temperature

Experimental Set-up

B.1 Low temperature setup

Figure B.1 shows the electronics and filtering present inside the dilution refrigerator,

and Figure B.2 is a photo of the actual dilution refrigerator internals that house the

qubit sample and low temperature wiring and filtering.

Let us start at the qubit sample, at 25mK. The qubit chip is enclosed in an aluminum

box. Each of the on-chip leads is wirebonded to a 50Ω SMA coaxial cable made from

a copper conductor and a teflon insulator. These carry the signals out of the aluminum

sample box and connect to the dilution fridge wiring. Making the sample box out of
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Figure B.1: The qubit is cooled to 25 mK in a dilution refrigerator. Above is a schematic of
dilution refrigerator wiring for a single qubit, with the temperature of each stage as labeled on
the right. Microwave (violet) and measurement/z-pulse (orange) lines have 50Ω characteristic
impedances and are attenuated with 50Ω microwave attenuators. Flux (brown) and SQUID bias
(red) lines are filtered using copper powder filters. Other circuit details are discussed in the text.

a superconducting metal provides electromagnetic shielding and may help prevent the

trapping of magnetic flux in the chip groundplane when the sample is cooled below

the superconducting transition temperature for aluminum, Tc ' 1.2K. It is important
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to minimize trapped flux because it can generate dissipation [72]. Connected to the

sample box, via SMA connectors, are the various control and bias lines as described in

Figure 4.2. The aluminum sample box is clamped to the bottom most copper plate of

the dilution refrigerator which sits at 25mK. Each of the signal lines coming out of the

qubit chip will now be described, working up from the qubit sample box at 25 mK to

room temperature, as shown in Figure B.1. and this box is clamped to the bottom most

plate of the dilution refrigerator.

B.1.1 The SQUID lines

These were the lines labeled as VSQ and V readout
SQ in Figure 4.2. At the sample box

there is a ∼ 30Ω resistor (Rshunt) that shunts the SQUID to ground, making the SQUID

switch to a voltage that is about 1/3 of the superconducting gap, 2∆c for aluminum,

greatly reducing the generation of quasiparticleas that can cause dissipation. Also at 25

mK, the SQUID line is fed through a copper-powder filter that attenuates signals above

a few gigahertz. Further up at 4 K, the SQUID line splits into the VSQ and V readout
SQ

lines shown in Figure 4.2. Each of these two lines has a series 10 kΩ resistance. At

room temperature, the VSQ line connects via a low-pass filter and a voltage divider into

a low-noise DC bias source. The low-pass filter eliminates high frequency noise on this

DC line. The V readout
SQ line is fed into an amplifier with a gain of 1000 that passes the

amplified switching signal into another low-pass filter and comparator circuit.
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B.1.2 The flux bias and measurement/z-pulse lines

Both the flux bias and measurement/z-pulse signals labeled as Vbias and VZ in Figure 4.2,

are applied to the same flux bias coil at the level of the qubit chip. As the flux bias

signal leaves the qubit sample box, it enters a tee circuit which splits the line out into

two separate lines: a microwave SMA coax line for the measurement/z-pulse line (Vz)

and a DC SMA coax line for the flux bias line (Vbias). The tee circuit is also at 25 mK

and can be seen in Figure B.1. On the measurement/z-pulse line, there is one 10 dB,

50Ω microwave attenuator on the bias tee, one 20 dB attenuator at the 25 mK plate

and another 20 dB attenuator at 4 K. These attenuators reduce the thermally induced

noise coming from the hotter stages of the refrigerator and from the room temperature

electronics. At room temperature the measurement/z-pulse line connects to a digital-to-

analog (DAC) board capable of sequencing arbitrary ns long pulses that will be briefly

discussed below. When the flux bias part of the line (Vbias) exists the sample box, it gets

passed through a copper-powder filter at 25mK that is identical to the one used for the

SQUID line. Before connecting to a low-noise DC bias source, it also passes through a

low-pass filter at 4K that has a series resistance of 1kΩ, as shown in Figure B.1.

B.1.3 The microwave line

On the actual chip, the microwave line labeled as Vµw in Figure 4.2 is fed into the qubit

using tapered microwave launchers that maintain a 50Ω impedance as the size of the
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Figure B.2: A photograph of the actual dilution refrigerator that houses everything shown in
Figure B.1. Radiation shields and vacuum cans have been removed for the photo and are not
shown.

leads is reduced from that of the wirebond pad diameter to the 2µm microwave traces

on-chip. From the chip, the microwave line is connected via SMA coax up through

the various temperature stages of the dilution fridge and into a room temperature mixer

that is used along with another room temperature DAC board to generate nanosecond

microwave pulses with arbitrary phase and amplitude, as discussed in the next section.
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Along the way however, the microwave line is attenuated once by 20 dB at 25 mK and

again by 20 dB at 4 K to reduce noise injected at higher temperatures.

B.2 Room temperature electronics

The room temperature electronics for one qubit are schematically depicted in Fig-

ure B.3. Photos of the actual circuit boards and microwave components that make up

the room temperature electronics are shown in Figure B.4. The flux bias and SQUID

lines are controlled by 4 channel low-noise bias sources. As shown in Figure B.3,

the measurement/z-pulse lines are pulsed using a 1 GHz DAC and filtered with a low-

pass filter that rejects any frequencies above 200 MHz, to reduce the DAC clock feed-

through and to produce a Nyquist filter.

The electronics used to generate microwave pulses with arbitrary frequency, phase,

and amplitude are a little more complex and are found on a separate DAC board. An IQ

mixer is used to generate the pulse where the I and Q values are set using 1 GHz DAC

channels. A good discussion of IQ mixers and the basics of microwave electronics can

be found in [64]. The 9 GHz low-pass prevents harmonics of the carrier frequency from

reaching the qubit and exciting, the 0→ 2 transition. The microwave pulse frequency

can be set in two ways. The easiest is to change the carrier frequency, however this

method is not always practical, especially when controlling multiple qubits, because

the same carrier signal is fed into multiple qubits to ensure phase stability across all
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Figure B.3: Schematic depction of the various components of the room temperature electronics
needed to control a single qubit. The low-noise DC bias sources control the flux bias lines (Vbias
and SQUID lines (VSQ and V readout

SQ ). The 1 GHz Digital-to-Analog (DAC) board shape the
pulses for the microwave lines (Vµw) and measurement/z-pulse lines (VZ). The IQ Mixer gives
us arbitrary phase and amplitude control for the microwave pulses as well as allowing us to
perform sideband mixing to control the microwave pulse frequency [64].
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qubits. Therefore we also control the microwave pulse frequency by sideband mixing

using the IQ mixer [64]. Because there is one IQ mixer per qubit, this allows us to

control the frequency of each qubit’s pulses even when running multiple qubits at the

same time from a single microwave generator.

The electronics hardware is controlled by a Python-based open-source software

package called LabRAD, that was developed in-house and can be found at http:

//sourceforge.net/projects/labrad/.

GHz DAC

RF LP filters
Microwave 
Power Amp

Microwave 
LP Filter

IQ
Mixer

4 Chan low-noise DC bias source

a) b)

Figure B.4: Photographs of the actual circuit boards and components that make up a) the
microwave electronics and b) the low-noise DC bias sources.

156

http://sourceforge.net/projects/labrad/
http://sourceforge.net/projects/labrad/


Appendix C

Calculation of capacitive coupling

Hamiltonian

Here we include a Mathematica notebook where we have calculated the interaction

term for the Hamiltonian for two capacitively coupled qubits as depicted in Figure 5.1.

The calculation also shows the transformation to the rotating frame of the microwave

source. The comments in the Mathematica notebook include explanations behind most

of the steps.
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Appendix D

Quantum Tomography calibrations and

physicality

D.1 Calibrating out measurement errors

The origin of measurement errors in this experiment is understood as discussed in Chap-

ters 4 and 5 and because the errors vary in a predictable way with parameters and bias-

ing, they can be reliably removed using calibration procedures. The two dominant error

mechanisms are measurement crosstalk and measurement fidelity. Defining the mea-

surement probabilities PAB of qubits A and B with the column vector (P00,P01,P10,P11)
T ,

the intrinsic (actual) probabilities Pi will give measured probabilities Pm according to

the matrix equation Pm =XFPi, where X and F are the correction matrices for measure-
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ment crosstalk and fidelity, respectively. The order of the matrices reflects the fact that

errors in fidelity generate crosstalk (see below). By measuring the correction matrices,

the intrinsic probabilities can be calculated from the measured values by the inverted

relation Pi = F−1X−1Pm.

The procedure for calibrating measurement fidelity for single qubits has been dis-

cussed previously in reference [74]. Defining f0 and f1 as the probabilities to correctly

identify the state as |0〉 and |1〉, respectively, the measurement fidelity matrix for two

qubits is given by

F =

[
f0 1− f1

1− f0 f1

]
A
⊗
[

f0 1− f1
1− f0 f1

]
B

(D.1)

=


f0A f0B f0A(1− f1B) (1− f1A) f0B (1− f1A)(1− f1B)

f0A(1− f0B) f0A f1B (1− f1A)(1− f0B) (1− f1A) f1B
(1− f0A) f0B (1− f0A)(1− f1B) f1A f0B f1A(1− f1B)

(1− f0A)(1− f0B) (1− f0A) f1B f1A(1− f0B) f1A f1B



We measure these fidelities by biasing only one qubit into operation, and then mea-

suring the tunneling probabilities for the |0〉 and |1〉 states, with the latter produced by

a microwave π-pulse optimized for the largest tunneling probability. This calibration

depends on accurately producing a π pulse, which we have demonstrated can be done

with 98% accuracy. The 2% error arises from T1 energy decay, which can be measured

and corrected for in the calibration [47].

Measurement crosstalk for two capacitively coupled Josephson phase qubits has

been studied and understood in previous work [54]. As mentioned in Chapter 5, for
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this mechanism, crosstalk contributes when one qubit state is measured as |1〉, causing

the other qubit state, when in the |0〉 state, to have probability x to be excited and thus

measured in the |1〉 state. The matrix describing measurement crosstalk for both qubits

is thus

X =


1 0 0 0
0 1− xBA 0 0
0 0 1− xAB 0
0 xBA xAB 1

 (D.2)

where xAB (xBA) is the probability of the |1〉 state of qubit A (qubit B) exciting a

0→ 1 transition on qubit B (qubit A).

The two unknowns in the X matrix can be directly determined from the 3 indepen-

dent equations in Pm = X(FPi), where FPi is obtained from the F matrix calibration

procedure described above.

A more robust method is to compare the differences in tunneling of the first qubit

caused by a change in tunneling of the second. From the four measurement probabilities

P00, P01, P10, and P11, we extract for each qubit independent probabilities to be in the

|1〉 state by performing a partial trace over the other qubit

P1A ≡P10 +P11

P1B ≡P01 +P11
(D.3)

We measure P1A(00) and P1B(01) for the two cases where we prepare the initial
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states |00〉 and |01〉, respectively. Using the correction matrices for X and F , we calcu-

late

P1A(01)−P1A(00)
P1B(01)−P1B(00)

=
f0A

1− (1− f0A)xAB
xBA ' f0AxBA (D.4)

where the approximate result arises from neglecting both correction terms in the

denominator, since 1− f0A and xBA, are both small. This result holds even if the states

|00〉 and |01〉 are not prepared perfectly, as we calculate the ratio of the change in

probabilities. A similar result for f0BxAB is obtained for the initial states |00〉 and |10〉.

We also perform a consistency check on the measurements of xAB and xBA for the

simple case of measuring only the |00〉 state when f0A, f0B 6= 0. Here, a general solu-

tion is not possible as there are four unknowns f0A, f0B, xAB, and xBA and only three

equations for the probabilities. However, by assuming a fixed ratio between the two

crosstalk parameters k = xBA/xAB, a solution can be found:

xAB =
P00 + kP00− k+ kP10 +P01−1

2k(P00−1)
−√

((1−P00−P01)− k(1−P00−P10))2 +4kP10P01/P00

2k(P00−1)

(D.5)

For a typical device measured in this thesis, the measurement fidelities were near

unity: f0A = 0.95 and f1A = 0.95 for qubit A, and f0B = 0.93 and f1B = 0.93 for qubit B.

Using the P11 probability in the capacitively coupled qubit swap experiments, crosstalk
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was measured to be xAB = xBA = 0.117.

D.2 State tomography data and measurement calibra-

tion

This section contains the density matrix data obtained from state tomography of the

16 two-qubit basis states used as input to our SQiSW gate, and from the state tomog-

raphy of the output density matrices after the action of the SQiSW gate. Again the

{H,V,D,R} shorthand is defined in the table shown in Figure 5.10. Figure D.1 shows

the 16 input state density matrices experimentally obtained using quantum state to-

mography and without measurement errors calibrated out. Figure D.2 shows the 16

SQiSW gate output state density matrices experimentally obtained using quantum state

tomography and without measurement errors calibrated out.

D.3 Physicality of the χ Matrix

We define the original χ matrix data as χe, and the data with measurement effects cali-

brated out as χm. Plots of χe and χm are shown Figures D.3 and D.4 respectively; some

small negative eigenvalues are found for this data, which implies it is unphysical. To

be physical, the experimentally obtained matrix must be a positive and trace preserving

map. The closest physical estimates to these matrices given these constraints are χ
p
e
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Figure D.1: The full set of density matrices for the 16 two-qubit basis states as obtained via
state tomography. Measurement errors have not been calibrated out from this data set.

and χ
p
m, as shown in Figure D.5 and in Figure 6.5 of the main paper, respectively.

To perform the physical estimation, we used the MATLAB packages YALMIP

(http://users.isy.liu.se/johanl/yalmip/) and SeDuMi (http://sedumi.ie.

lehigh.edu/) to perform a semidefinite programming convex optimization. We find

the physical χ matrix that best approximates our measured, unphysical χ matrix. Math-
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Figure D.2: The full set of density matrices, obtained via state tomography, for the output
states produced by the action of the SQiSW gate on the 16 two-qubit basis states. Measurement
errors have not been calibrated out from this dataset.

ematically, for the experimentally obtained χ matrix and the physical approximation χp,

we minimize the two-norm distance ‖χp−χ‖2 ≡
√

tr{(χp−χ)2} with the constraints

that χp be CPTP. The source code for the convex optimization is included at the end of

this appendix.
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Figure D.3: The unphysical experimental χ matrix where measurement errors have not been
calibrated out.
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Figure D.4: The χ matrix where measurement errors have been calibrated out, but the matrix
is still unphysical.
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As in reference [60], we then histogrammed the differences ∆p between the peak

heights of χe and χ
p
e for the real parts of each of the 256 matrix elements. We fit a

Gaussian, γe−∆2
p/σ2

to the histogram and obtained a sense of the relative error of the

process tomography from its width σ. We repeated this procedure also for χ
p
m, and

plotted these histograms and fits for χ
p
m and χ

p
m as shown in Figures D.6a and b. The

fidelities of the above mentioned χ matrices are:

Tr(χtχ
p
e ) = 0.49 (D.6)

Tr(χtχ
p
m) = 0.61 (D.7)

Tr(χtχe) = 0.51 (D.8)
Tr(χtχm) = 0.65 (D.9)
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Figure D.5: The closest physical approximation to the experimentally obtained χ matrix where
measurement errors have not been calibrated out.
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Figure D.6: In order to check that the physical approximations to the unphysical experimental
χ matrices are accurate, we take the absolute value of the difference between an element of the
unphysical χ matrix and the same element in the χ matrix that is the physical approximation.
We do this for all elements and plot these differences, ∆p, as a histogram. The small spread, σ,
about ∆p = 0 indicates a good approximation.

D.4 MATLAB and Mathematica code used for state to-

mography analysis

D.4.1 State tomography pre-processing using Mathematica

The code for tomography is broken up into two parts. The first part requires symbolic

manipulation, which is best done in Mathematica. The second part involves processing

the actual experimental data and numerics therefore it is done in MATLAB. We begin

with the Mathematica code. Mathematica comments are enclosed in “(∗...∗)” and the

code comments contain the information necessary to understand the analysis. Much of

the state tomography code is based on work by Matthias Steffen [73].

To obtain the density matrix from the state tomography data we first perform sym-
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bolic manipulation on a parametrized density matrix using Mathematica. We parametrize

a density matrix for any general state as

ρ =


r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44

 (D.10)

Using Mathematica, we symbolically operate on (D.10) using the tomography pulses

{X ,Y, I} and obtain a set of 9 resulting density matrices {XρX†,XρY †,XρI†,Y ρX†,

Y ρY †,Y ρI†, IρX†, IρY †, IρY †} as shown in the source code in Figure D.8. As shown

in Figure D.9, from each member of this set of 9 density matrices, we extract the 3

elements that correspond to the probabilities P01, P10, P11. These elements give us the

probabilities P01, P10, P11 as a function of the parameters rmn in (D.10). So we have

a total of 27 equations in terms of the 16 unknowns, rmn, as shown in the source code

in Figure D.10. We set each of these equal to the probabilities obtained in the actual

state tomography experiment and perform a least squares fit to obtain the closest set

of values rmn to the experimental data (see Figures D.11 and D.12). The actual least

squares fit is done using MATLAB as shown in Figures D.13 to D.17. Figures D.13 to

D.16 define some of the variables obtained from the Mathematica calculation and read

in and parse the experimental data from disk. The data is stored as time traces of the

probabilities P01, P10, P11 as a function of the measurement time tmeas. The values of

P01, P10, P11 used in the tomography analysis occur right after the tomography pulses,
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at a time tmeas = tomoTime. Also the P01, P10, P11 probabilities in the data are stored

as numbers 0 to 100 and not 0 to 1 therefore division by 100 is needed, as done in the

code. Figure D.17 contains the code for the least squares fit and uses the MATLAB

mldivide command to find the least squares solution.

<< LinearAlgebra`MatrixManipulation`

Off @General::spell D;

H∗define kronecker product operation ∗L
MatrixDirectProduct @a_List?MatrixQ, b_List?MatrixQ D : = BlockMatrix @Outer @Times, a, b DD

H∗define form of single qubit density matrices ∗L
Clear @X, Y, Z D;

ρA = J a1 c1 + I ∗ d1

c1 − I ∗ d1 b1
N;

ρB = J a2 c2 + I ∗ d2

c2 − I ∗ d2 b2
N;

H∗define single qubit rotation matrices ∗L
RX@θ_D : = J Cos@θê 2D −I Sin @θê 2D

−I Sin @θê 2D Cos@θê 2D N

RY@θ_D : = J Cos@θê 2D −Sin @θê 2D
Sin @θê 2D Cos@θ ê 2D N

RZ@θ_D : = J Exp@−I θê 2D 0
0 Exp@I θê 2D N

H∗ define X,Y,Z rotations ∗L
Y = RX@−π ê 2D;

Y êê MatrixForm

X = RY@π ê 2D;

X êê MatrixForm

Z = RZ@0D;

Z êê MatrixForm

H∗define two −qubit density matrix: ρ = ρA⊗ρB, but it'  s better to express ρ as ρ =

i

k

jjjjjjjjjjjj

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

y

{

zzzzzzzzzzz
since will need to do a least squares fit to find the 16 −1=15 parameters of ρ

so don'  t want them in terms of parameters of ρA  and ρB to minimize the number of variables ∗L

ρ =

i

k

jjjjjjjjjjjj

r 11 r 12 r 13 r 14

r 21 r 22 r 23 r 24

r 31 r 32 r 33 r 34

r 41 r 42 r 43 r 44

y

{

zzzzzzzzzzz
;

Figure D.7: First we initialize some variables and definitons that will be used later.
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H∗define density matrices for the results of

applying the set of tomography pulses on the two−qubit state ρ. ∗L

ρXX = MatrixDirectProduct@X, XD.ρ.MatrixDirectProduct@X, XD�;

ρXY = MatrixDirectProduct@X, YD.ρ.MatrixDirectProduct@X, YD�;

ρXZ = MatrixDirectProduct@X, ZD.ρ.MatrixDirectProduct@X, ZD�;

ρYX = MatrixDirectProduct@Y, XD.ρ.MatrixDirectProduct@Y, XD�;

ρYY = MatrixDirectProduct@Y, YD.ρ.MatrixDirectProduct@Y, YD�;

ρYZ = MatrixDirectProduct@Y, ZD.ρ.MatrixDirectProduct@Y, ZD�;

ρZX = MatrixDirectProduct@Z, XD.ρ.MatrixDirectProduct@Z, XD�;

ρZY = MatrixDirectProduct@Z, YD.ρ.MatrixDirectProduct@Z, YD�;

ρZZ = MatrixDirectProduct@Z, ZD.ρ.MatrixDirectProduct@Z, ZD�;

Figure D.8: Now we mimic how a general two-qubit state would be transformed by the various
tomography pulses.
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H∗ Now calculate get the two −

qubit probabilities for each of the states defined by the above density matrices. So now have 36

measurements 27 of which are unique. Below P αβ
ij is defined as: P αβ

ij
≡ Xij » ραβ »ij \. Where α,

β = 8X,Y,Z <. In terms of our set −up, we'  ll have to do 9 sweeps... because we collect P αβ
Ol ,

Pαβ
lO , P αβ

ll during each sweep. ∗L

POOXX= Simplify @ρXX @@1, 1 DDD

POlXX = Simplify @ρXX @@2, 2 DDD

PlOXX = Simplify @ρXX @@3, 3 DDD

PllXX = Simplify @ρXX @@4, 4 DDD

POOXY= Simplify @ρXY @@1, 1 DDD

POlXY = Simplify @ρXY @@2, 2 DDD

PlOXY = Simplify @ρXY @@3, 3 DDD

PllXY = Simplify @ρXY @@4, 4 DDD

POOXZ= Simplify @ρXZ @@1, 1 DDD

POlXZ = Simplify @ρXZ @@2, 2 DDD

PlOXZ = Simplify @ρXZ @@3, 3 DDD

PllXZ = Simplify @ρXZ @@4, 4 DDD

POOYX= Simplify @ρYX @@1, 1 DDD

POlYX = Simplify @ρYX @@2, 2 DDD

PlOYX = Simplify @ρYX @@3, 3 DDD

PllYX = Simplify @ρYX @@4, 4 DDD

POOYY= Simplify @ρYY @@1, 1 DDD

POlYY = Simplify @ρYY @@2, 2 DDD

PlOYY = Simplify @ρYY @@3, 3 DDD

PllYY = Simplify @ρYY @@4, 4 DDD

POOYZ= Simplify @ρYZ @@1, 1 DDD

POlYZ = Simplify @ρYZ @@2, 2 DDD

PlOYZ = Simplify @ρYZ @@3, 3 DDD

PllYZ = Simplify @ρYZ @@4, 4 DDD

POOZX= Simplify @ρZX @@1, 1 DDD

POlZX = Simplify @ρZX @@2, 2 DDD

PlOZX = Simplify @ρZX @@3, 3 DDD

PllZX = Simplify @ρZX @@4, 4 DDD

POOZY= Simplify @ρZY @@1, 1 DDD

POlZY = Simplify @ρZY @@2, 2 DDD

PlOZY = Simplify @ρZY @@3, 3 DDD

PllZY = Simplify @ρZY @@4, 4 DDD

POOZZ= Simplify @ρZZ @@1, 1 DDD

POlZZ = Simplify @ρZZ @@2, 2 DDD

PlOZZ = Simplify @ρZZ @@3, 3 DDD

PllZZ = Simplify @ρZZ @@4, 4 DDD

Figure D.9: From the density matrices in Figure D.8, we extract the entries for the two-qubit
probabilities P10,P01, and P11. Each of these is a function of the elements, rmn, of the general
two-qubit density matrix declared in Figure D.7.
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Figure D.10: The otput of the segment of code in Figure D.9 shows the functional dependence
of each probability on rmn.
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H∗ now the experimentally measured values... to be filled in after the experiment is done ∗L

PexOOXX;

PexOlXX;

PexlOXX;

PexllXX;

PexOOXY;

PexOlXY;

PexlOXY;

PexllXY;

PexOOXZ;

PexOlXZ;

PexlOXZ;

PexllXZ;

PexOOYX;

PexOlYX;

PexlOYX;

PexllYX;

PexOOYY;

PexOlYY;

PexlOYY;

PexllYY;

PexOOYZ;

PexOlYZ;

PexlOYZ;

PexllYZ;

PexOOZX;

PexOlZX;

PexlOZX;

PexllZX;

PexOOZY;

PexOlZY;

PexlOZY;

PexllZY;

PexOOZZ;

PexOlZZ;

PexlOZZ;

PexllZZ;

Figure D.11: These symbolic variables represent the experimental two-qubit probability data
that will be taken in the state tomography experiments.
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H∗
Now all that'  s left is to do a least squares minimization on Pex αβ

ij
− Pαβ

ij ,

but in vector form: min »»Pexαβ
ij

− Pαβ
ij »»2

That is, want a solution to the overconstrained problem :

Pex
−−−→

= P
→

where Pex
−−−→

is a vector with the 36 scalars, Pex αβ
ij , which were measured in the tomography experiment.

P
→

is a vector whose 36 elements are the 36 equations P αβ
ij solved for

symbolically above. Each equation, P αβ
ij , is a function of the 16 parameters r ll ,

r 12 ,r 22 ,...,r 44 which are the elements of the density matrix ρ.

∗L

H∗
If this is put into the form Pex

−−−→
= B

	
r
→

where r
→

=

i

k

jjjjjjjjjjjjjjjjj

r ll

r 12

r 13

.



r 44

y

{

zzzzzzzzzzzzzzzzz
is a 16  x1 matrix. B

	
is a 36 x 16 matrix. Pex

−−−→
is a

36 x 1 matrix. Then we can use the matlab command mldivide to find the value of r
→

which gives the least squares solution to Pex
−−−→

= P
→

. Mldivide performs Pex
−−−→íB

	
= r

→

∗L

H∗ B
	

is just the matrix of coefficients so we don'  t need the experimental data

to solve for it. We can use Mathematica to symbolically solve for the 36  x16 matrix,

B
	

, of the coefficients of the r mn in the 36 equations labeled as P αβ
ij above ∗L

BB= LinearEquationsToMatrices @8POOXX== PexOOXX, P OlXX == PexOlXX , P lOXX == Pex lOXX , P llXX == Pex llXX , P OOXY== PexOOXY,

POlXY == PexOlXY , P lOXY == Pex lOXY , P llXY == Pex llXY , P OOXZ== PexOOXZ, P OlXZ == PexOlXZ , P lOXZ == Pex lOXZ , P llXZ == Pex llXZ ,

POOYX== PexOOYX, P OlYX == PexOlYX , P lOYX == Pex lOYX , P llYX == Pex llYX , P OOYY== PexOOYY, P OlYY == PexOlYY ,

PlOYY == Pex lOYY , P llYY == Pex llYY , P OOYZ== PexOOYZ, P OlYZ == PexOlYZ , P lOYZ == Pex lOYZ , P llYZ == Pex llYZ ,

POOZX== PexOOZX, P OlZX == PexOlZX , P lOZX == Pex lOZX , P llZX == Pex llZX , P OOZY== PexOOZY, P OlZY == PexOlZY ,

PlOZY == Pex lOZY , P llZY == Pex llZY , P OOZZ== PexOOZZ, P OlZZ == PexOlZZ , P lOZZ == Pex lOZZ , P llZZ == Pex llZZ <,

8r 11 , r 12 , r 13 , r 14 , r 21 , r 22 , r 23 , r 24 , r 31 , r 32 , r 33 , r 34 , r 41 , r 42 , r 43 , r 44<D

BB@@1DD êê MatrixForm

Figure D.12: Now we perform the symbolic computations that extract the matrix that contains
all the coefficients to the equations in Figure D.10. This matrix is the BB matrix in the code
above.
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D.4.2 State tomography data analysis using MATLAB

Now that we have calculated the B matrix, we can use MATLAB code to perform the

least-squares minimization described in Figure D.12.
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1   function rho = get_rho(state,directory,tomoTime)

2   

3   

4   %state: label for state HH,HV,HD,HR,etc.

5   %directory: directory where data is stored

6   %tomoTime: pulse sequence time (in ns) at which tomography was done

7   %rho: the experimental density matrix of state specified by "state" as measured by data 

in directory specified by "directory" 

8   

9   %B matrix is the matrix with coefficients of r_mn terms that will be used to perfrom 

least squares minimization

10   %since we never got the symbolic toolbox for our copy of matlab: get B matrix from 

mathematica

11   B =[

12   1/4, -1/4, -1/4, 1/4, -1/4, 1/4, 1/4, -1/4, -1/4, 1/4, 1/4, -1/4, 1/4, -1/4, -1/4, 1/4;

13   1/4, 1/4, -1/4, -1/4, 1/4, 1/4, -1/4, -1/4, -1/4, -1/4, 1/4, 1/4, -1/4, -1/4, 1/4, 1/4;

14   1/4, -1/4, 1/4, -1/4, -1/4, 1/4, -1/4, 1/4, 1/4, -1/4, 1/4, -1/4, -1/4, 1/4, -1/4, 1/4;

15   1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4;

16   1/4, -i/4, -1/4, i/4, i/4, 1/4, -i/4, -1/4, -1/4, i/4, 1/4, -i/4,-i/4, -1/4, i/4, 1/4;

17   1/4, i/4, -1/4, -i/4, -i/4, 1/4, i/4, -1/4, -1/4, -i/4, 1/4, i/4, i/4, -1/4, -i/4, 1/4;

18   1/4, -i/4, 1/4, -i/4, i/4, 1/4, i/4, 1/4, 1/4, -i/4, 1/4, -i/4, i/4, 1/4, i/4, 1/4;

19   1/4, i/4, 1/4, i/4, -i/4, 1/4, -i/4, 1/4, 1/4, i/4, 1/4, i/4, -i/4, 1/4, -i/4, 1/4;

20   1/2, 0, -1/2, 0, 0, 0, 0, 0, -1/2, 0, 1/2, 0, 0, 0, 0, 0;

21   0, 0, 0, 0, 0, 1/2, 0, -1/2, 0, 0, 0, 0, 0, -1/2, 0, 1/2;

22   1/2, 0, 1/2, 0, 0, 0, 0, 0, 1/2, 0, 1/2, 0, 0, 0, 0, 0;

23   0, 0, 0, 0, 0, 1/2, 0, 1/2, 0, 0, 0, 0, 0, 1/2, 0, 1/2;

24   1/4, -1/4, -i/4, i/4, -1/4, 1/4, i/4, -i/4, i/4, -i/4, 1/4, -1/4, -i/4, i/4, -1/4, 1/4;

25   1/4, 1/4, -i/4, -i/4, 1/4, 1/4, -i/4, -i/4, i/4, i/4, 1/4, 1/4, i/4, i/4, 1/4, 1/4;

26   1/4, -1/4, i/4, -i/4, -1/4, 1/4, -i/4, i/4, -i/4, i/4, 1/4, -1/4, i/4, -i/4, -1/4, 1/4;

27   1/4, 1/4, i/4, i/4, 1/4, 1/4, i/4, i/4, -i/4, -i/4, 1/4, 1/4, -i/4, -i/4, 1/4, 1/4;

28   1/4, -i/4, -i/4, -1/4, i/4, 1/4, 1/4, -i/4, i/4, 1/4, 1/4, -i/4, -1/4, i/4, i/4, 1/4;

29   1/4, i/4, -i/4, 1/4, -i/4, 1/4, -1/4, -i/4, i/4, -1/4, 1/4, i/4, 1/4, i/4, -i/4, 1/4;

30   1/4, -i/4, i/4, 1/4, i/4, 1/4, -1/4, i/4, -i/4, -1/4, 1/4, -i/4, 1/4, -i/4, i/4, 1/4;

31   1/4, i/4, i/4, -1/4, -i/4, 1/4, 1/4, i/4, -i/4, 1/4, 1/4, i/4, -1/4, -i/4, -i/4, 1/4;

32   1/2, 0, -i/2, 0, 0, 0, 0, 0, i/2, 0, 1/2, 0, 0, 0, 0, 0;

33   0, 0, 0, 0, 0, 1/2, 0, -i/2, 0, 0, 0, 0, 0, i/2, 0, 1/2;

34   1/2, 0, i/2, 0, 0, 0, 0, 0, -i/2, 0, 1/2, 0, 0, 0, 0, 0;

35   0, 0, 0, 0, 0, 1/2, 0, i/2, 0, 0, 0, 0, 0, -i/2, 0, 1/2;

36   1/2, -1/2, 0, 0, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

37   1/2, 1/2, 0, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

38   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, -1/2, 0, 0, -1/2, 1/2;

39   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, 1/2, 0, 0, 1/2, 1/2;

40   1/2, -i/2, 0, 0, i/2, 1/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

41   1/2, i/2, 0, 0, -i/2, 1/2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

42   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, -i/2, 0, 0, i/2, 1/2;

43   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, i/2, 0, 0, -i/2, 1/2;

44   1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

45   0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

46   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0;

47   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];

48   

49   

50   

51   

52   

Figure D.13: Part 1 of 5 of MATLAB code to obtain density matrix from experimental data.
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53   % flags to indicate if full tdataset is present for each case

54   xxFlag=0;

55   xyFlag=0;

56   xzFlag=0;

57   

58   yxFlag=0;

59   yyFlag=0;

60   yzFlag=0;

61   

62   zxFlag=0;

63   zyFlag=0;

64   zzFlag=0;

65   

66   

67   % load data from disk but only at time specified by tomoTime

68   files = dir(sprintf('%s\\*.csv',directory));

69   for m = 1:length(files)

70   

71   if length(strfind(files(m).name,'XX'))>0 && length(strfind(files(m).name,state))

72   filename = sprintf('%s\\%s',directory,files(m).name);

73   data = dlmread(filename,',');

74   t_data_XX=data(:,1);

75   [blah tomoTime_index]=min(abs(tomoTime-t_data_XX));

76   data(tomoTime_index,1);

77   P_01_XX=data(tomoTime_index,2)/100;

78   P_10_XX=data(tomoTime_index,3)/100;

79   P_11_XX=data(tomoTime_index,4)/100;

80   P_00_XX=1-(P_11_XX+P_01_XX+P_10_XX);

81   xxFlag=1;

82   end

83   

84   if length(strfind(files(m).name,'XY'))>0 && length(strfind(files(m).name,state))

85   filename = sprintf('%s\\%s',directory,files(m).name);

86   data = dlmread(filename,',');

87   t_data_XY=data(:,1);

88   [blah tomoTime_index]=min(abs(tomoTime-t_data_XY));

89   data(tomoTime_index,1);

90   P_01_XY=data(tomoTime_index,2)/100;

91   P_10_XY=data(tomoTime_index,3)/100;

92   P_11_XY=data(tomoTime_index,4)/100;

93   P_00_XY=1-(P_11_XY+P_01_XY+P_10_XY);

94   xyFlag=1;

95   end

96   

97   if (length(strfind(files(m).name,'XZ'))>0 || length(strfind(files(m).name,'XI'))>0)

&& length(strfind(files(m).name,state))

98   filename = sprintf('%s\\%s',directory,files(m).name);

99   data = dlmread(filename,',');

100   t_data_XZ=data(:,1);

101   [blah tomoTime_index]=min(abs(tomoTime-t_data_XZ));

102   data(tomoTime_index,1);

103   P_01_XZ=data(tomoTime_index,2)/100;

104   P_10_XZ=data(tomoTime_index,3)/100;

105   P_11_XZ=data(tomoTime_index,4)/100;

106   P_00_XZ=1-(P_11_XZ+P_01_XZ+P_10_XZ);

Figure D.14: Part 2 of 5 of MATLAB code to obtain density matrix from experimental data.
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107   xzFlag=1;

108   end

109   

110   if length(strfind(files(m).name,'YX'))>0 && length(strfind(files(m).name,state))

111   filename = sprintf('%s\\%s',directory,files(m).name);

112   data = dlmread(filename,',');

113   t_data_YX=data(:,1);

114   [blah tomoTime_index]=min(abs(tomoTime-t_data_YX));

115   data(tomoTime_index,1);

116   P_01_YX=data(tomoTime_index,2)/100;

117   P_10_YX=data(tomoTime_index,3)/100;

118   P_11_YX=data(tomoTime_index,4)/100;

119   P_00_YX=1-(P_11_YX+P_01_YX+P_10_YX);

120   yxFlag=1;

121   end

122   

123   if length(strfind(files(m).name,'YY'))>0 && length(strfind(files(m).name,state))

124   filename = sprintf('%s\\%s',directory,files(m).name);

125   data = dlmread(filename,',');

126   t_data_YY=data(:,1);

127   [blah tomoTime_index]=min(abs(tomoTime-t_data_YY));

128   data(tomoTime_index,1);

129   P_01_YY=data(tomoTime_index,2)/100;

130   P_10_YY=data(tomoTime_index,3)/100;

131   P_11_YY=data(tomoTime_index,4)/100;

132   P_00_YY=1-(P_11_YY+P_01_YY+P_10_YY);

133   yyFlag=1;

134   end

135   

136   if (length(strfind(files(m).name,'YZ'))>0 || length(strfind(files(m).name,'YI'))>0)

&& length(strfind(files(m).name,state))

137   filename = sprintf('%s\\%s',directory,files(m).name);

138   data = dlmread(filename,',');

139   t_data_YZ=data(:,1);

140   [blah tomoTime_index]=min(abs(tomoTime-t_data_YZ));

141   data(tomoTime_index,1);

142   P_01_YZ=data(tomoTime_index,2)/100;

143   P_10_YZ=data(tomoTime_index,3)/100;

144   P_11_YZ=data(tomoTime_index,4)/100;

145   P_00_YZ=1-(P_11_YZ+P_01_YZ+P_10_YZ);

146   yzFlag=1;

147   end

148   

149   if (length(strfind(files(m).name,'ZX')) || length(strfind(files(m).name,'IX'))) &&

length(strfind(files(m).name,state))

150   filename = sprintf('%s\\%s',directory,files(m).name);

151   data = dlmread(filename,',');

152   t_data_ZX=data(:,1);

153   [blah tomoTime_index]=min(abs(tomoTime-t_data_ZX));

154   data(tomoTime_index,1);

155   P_01_ZX=data(tomoTime_index,2)/100;

156   P_10_ZX=data(tomoTime_index,3)/100;

157   P_11_ZX=data(tomoTime_index,4)/100;

158   P_00_ZX=1-(P_11_ZX+P_01_ZX+P_10_ZX);

159   zxFlag=1;

Figure D.15: Part 3 of 5 of MATLAB code to obtain density matrix from experimental data.

181



160   end

161   

162   if (length(strfind(files(m).name,'ZY')) || length(strfind(files(m).name,'IY'))) &&

length(strfind(files(m).name,state))

163   filename = sprintf('%s\\%s',directory,files(m).name);

164   data = dlmread(filename,',');

165   t_data_ZY=data(:,1);

166   [blah tomoTime_index]=min(abs(tomoTime-t_data_ZY));

167   data(tomoTime_index,1);

168   P_01_ZY=data(tomoTime_index,2)/100;

169   P_10_ZY=data(tomoTime_index,3)/100;

170   P_11_ZY=data(tomoTime_index,4)/100;

171   P_00_ZY=1-(P_11_ZY+P_01_ZY+P_10_ZY);

172   zyFlag=1;

173   end

174   

175   if (length(strfind(files(m).name,'ZZ')) || length(strfind(files(m).name,'II'))) &&

length(strfind(files(m).name,state))

176   filename = sprintf('%s\\%s',directory,files(m).name)

177   data = dlmread(filename,',')

178   t_data_ZZ=data(:,1);

179   [blah tomoTime_index]=min(abs(tomoTime-t_data_ZZ));

180   data(tomoTime_index,1);

181   P_01_ZZ=data(tomoTime_index,2)/100;

182   P_10_ZZ=data(tomoTime_index,3)/100;

183   P_11_ZZ=data(tomoTime_index,4)/100;

184   P_00_ZZ=1-(P_11_ZZ+P_01_ZZ+P_10_ZZ);

185   zzFlag=1;

186   end

187   

188   end

189   

190   

191   

192   

193   

194   %set up 36x1 P_ex matrix for P_ex=B r

195   P_ex=[

196   P_00_XX;

197   P_01_XX;

198   P_10_XX;

199   P_11_XX;

200   P_00_XY;

201   P_01_XY;

202   P_10_XY;

203   P_11_XY;

204   P_00_XZ;

205   P_01_XZ;

206   P_10_XZ;

207   P_11_XZ;

208   P_00_YX;

209   P_01_YX;

210   P_10_YX;

211   P_11_YX;

212   P_00_YY;

Figure D.16: Part 4 of 5 of MATLAB code to obtain density matrix from experimental data.
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213   P_01_YY;

214   P_10_YY;

215   P_11_YY;

216   P_00_YZ;

217   P_01_YZ;

218   P_10_YZ;

219   P_11_YZ;

220   P_00_ZX;

221   P_01_ZX;

222   P_10_ZX;

223   P_11_ZX;

224   P_00_ZY;

225   P_01_ZY;

226   P_10_ZY;

227   P_11_ZY;

228   P_00_ZZ;

229   P_01_ZZ;

230   P_10_ZZ;

231   P_11_ZZ

232   ];

233   

234   %the least squares solution via the mldivide command    

235   r=B\P_ex;

236   

237   %the experimentally obtained density matrix

238   rho=[

239   r(1) r(2) r(3) r(4);

240   r(5) r(6) r(7) r(8);

241   r(9) r(10) r(11) r(12);

242   r(13) r(14) r(15) r(16)

243   ];

244   

245   

Figure D.17: Part 5 of 5 of MATLAB code to obtain density matrix from experimental data.
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D.5 MATLAB code used for process tomography analy-

sis

D.5.1 MATLAB code used for process tomography

The MATLAB process tomography code requires some introduction. Let us call the

column vector of the experimentally obtained density matrices of the 16 two-qubit basis

states νexp. Each row of this vector is ραβ, where α and β can be any one of {H,V,D,R}

state labels that we defined in the table shown in Figure 5.10a. These are the states that

will be input to our gate. To obtain a χ matrix we follow the procedure described in [58]

and [86]. First, to make things mathematically simple to work with, we transform the

input state density matrices ραβ to an “easy basis”, ρ(i, j), where ρ(i, j) is a density matrix

with a one at the (i, j)th element and zeros elsewhere. Let us call νeasy the column

vector whose rows are the easy basis density matrices, ρ(i, j). Then both these 16× 1

column vectors can be written as

νexp =



ρHH

ρHV

ρHD

.

.

.
ρRD

ρRR


(D.11)
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and

νeasy =



ρ11

ρ12

ρ13

.

.

.
ρ43

ρ44


(D.12)

and we are looking for the transformation 16×16 transformation matrix M such that

νeasy = M−1
νexp (D.13)

Since equivalently Mνeasy = νexp, M can be written as the row representation of each

experimentally obtained density matrix

M =



ρHH
1,1 ρHH

1,2 ρHH
1,3 . . . ρHH

16,16
ρHV

1,1 ρHV
1,2 ρHV

1,3 . . . ρHV
16,16

. . . . . . .

. . . . . . .

. . . . . . .
ρRR

1,1 ρRR
1,2 ρRR

1,3 . . . ρRR
16,16

 (D.14)

Also if the input to the quantum gate is the density matrix ρ, then let us define the

density matrix that defines the output of the gate as ε(ρ).

So, in order to extract the χ matrix from the experimental state tomography data of

the 16 input state density matrices and the 16 output state density matrices, we follow

the steps below. These are explained in detail in Chapter 8 of reference [58]
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1. Find M using the experimentally obtained input state density matrices ραβ

2. Invert M

3. Using M, we can also transform the experimentally obtained gate output density

matrices ε(ραβ) to the easy basis ε(ραβ)(i, j). This is possible because quantum

operations are linear.

4. Now, in order to find the χ matrix, we can plug ε(ραβ)(i, j) into equations that can

be found in [58, 19]

P = I⊗ ((ρ(1,1)+ρ
(2,3)+ρ

(3,2)+ρ
(4,4))⊗ I) (D.15)

d =
1
2


1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

 (D.16)

D2 = d⊗d (D.17)

χ = D′P′χprePD; (D.18)
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5. We then find the nearest physical χ matrix to the experimentally obtained χ ma-

trix as described earlier in this appendix.

The following is the MATLAB code that performs these calculations:
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1   function Chi = getChi(eps_HH,eps_HV,eps_HD,eps_HR,eps_VH,eps_VV,eps_VD,eps_VR,eps_DH,

eps_DV,eps_DD,eps_DR,eps_RH,eps_RV,eps_RD,eps_RR,i_HH,i_HV,i_HD,i_HR,i_VH,i_VV,i_VD,i_VR

,i_DH,i_DV,i_DD,i_DR,i_RH,i_RV,i_RD,i_RR)

2   

3   

4   %i_ab: the 16 two-qubit basis state density matrices used as input to gate 

5   %eps_ab: the 16 two-qubit outputs after the i_ab were input into the gate

6   %Chi: the physical approximation to the experimentally obtained chi matrix 

7   

8   % matrix needed to transform input state density matrices to "easy basis"

9   M = [

10   

11   i_HH(1,1) i_HH(1,2) i_HH(1,3) i_HH(1,4) i_HH(2,1) i_HH(2,2) i_HH(2,3) i_HH(2,4) i_HH

(3,1) i_HH(3,2) i_HH(3,3) i_HH(3,4) i_HH(4,1) i_HH(4,2) i_HH(4,3) i_HH(4,4);

12   i_HV(1,1) i_HV(1,2) i_HV(1,3) i_HV(1,4) i_HV(2,1) i_HV(2,2) i_HV(2,3) i_HV(2,4) i_HV

(3,1) i_HV(3,2) i_HV(3,3) i_HV(3,4) i_HV(4,1) i_HV(4,2) i_HV(4,3) i_HV(4,4);

13   i_HD(1,1) i_HD(1,2) i_HD(1,3) i_HD(1,4) i_HD(2,1) i_HD(2,2) i_HD(2,3) i_HD(2,4) i_HD

(3,1) i_HD(3,2) i_HD(3,3) i_HD(3,4) i_HD(4,1) i_HD(4,2) i_HD(4,3) i_HD(4,4);

14   i_HR(1,1) i_HR(1,2) i_HR(1,3) i_HR(1,4) i_HR(2,1) i_HR(2,2) i_HR(2,3) i_HR(2,4) i_HR

(3,1) i_HR(3,2) i_HR(3,3) i_HR(3,4) i_HR(4,1) i_HR(4,2) i_HR(4,3) i_HR(4,4);

15   i_VH(1,1) i_VH(1,2) i_VH(1,3) i_VH(1,4) i_VH(2,1) i_VH(2,2) i_VH(2,3) i_VH(2,4) i_VH

(3,1) i_VH(3,2) i_VH(3,3) i_VH(3,4) i_VH(4,1) i_VH(4,2) i_VH(4,3) i_VH(4,4);

16   i_VV(1,1) i_VV(1,2) i_VV(1,3) i_VV(1,4) i_VV(2,1) i_VV(2,2) i_VV(2,3) i_VV(2,4) i_VV

(3,1) i_VV(3,2) i_VV(3,3) i_VV(3,4) i_VV(4,1) i_VV(4,2) i_VV(4,3) i_VV(4,4);

17   i_VD(1,1) i_VD(1,2) i_VD(1,3) i_VD(1,4) i_VD(2,1) i_VD(2,2) i_VD(2,3) i_VD(2,4) i_VD

(3,1) i_VD(3,2) i_VD(3,3) i_VD(3,4) i_VD(4,1) i_VD(4,2) i_VD(4,3) i_VD(4,4);

18   i_VR(1,1) i_VR(1,2) i_VR(1,3) i_VR(1,4) i_VR(2,1) i_VR(2,2) i_VR(2,3) i_VR(2,4) i_VR

(3,1) i_VR(3,2) i_VR(3,3) i_VR(3,4) i_VR(4,1) i_VR(4,2) i_VR(4,3) i_VR(4,4);

19   i_DH(1,1) i_DH(1,2) i_DH(1,3) i_DH(1,4) i_DH(2,1) i_DH(2,2) i_DH(2,3) i_DH(2,4) i_DH

(3,1) i_DH(3,2) i_DH(3,3) i_DH(3,4) i_DH(4,1) i_DH(4,2) i_DH(4,3) i_DH(4,4);

20   i_DV(1,1) i_DV(1,2) i_DV(1,3) i_DV(1,4) i_DV(2,1) i_DV(2,2) i_DV(2,3) i_DV(2,4) i_DV

(3,1) i_DV(3,2) i_DV(3,3) i_DV(3,4) i_DV(4,1) i_DV(4,2) i_DV(4,3) i_DV(4,4);

21   i_DD(1,1) i_DD(1,2) i_DD(1,3) i_DD(1,4) i_DD(2,1) i_DD(2,2) i_DD(2,3) i_DD(2,4) i_DD

(3,1) i_DD(3,2) i_DD(3,3) i_DD(3,4) i_DD(4,1) i_DD(4,2) i_DD(4,3) i_DD(4,4);

22   i_DR(1,1) i_DR(1,2) i_DR(1,3) i_DR(1,4) i_DR(2,1) i_DR(2,2) i_DR(2,3) i_DR(2,4) i_DR

(3,1) i_DR(3,2) i_DR(3,3) i_DR(3,4) i_DR(4,1) i_DR(4,2) i_DR(4,3) i_DR(4,4);

23   i_RH(1,1) i_RH(1,2) i_RH(1,3) i_RH(1,4) i_RH(2,1) i_RH(2,2) i_RH(2,3) i_RH(2,4) i_RH

(3,1) i_RH(3,2) i_RH(3,3) i_RH(3,4) i_RH(4,1) i_RH(4,2) i_RH(4,3) i_RH(4,4);

24   i_RV(1,1) i_RV(1,2) i_RV(1,3) i_RV(1,4) i_RV(2,1) i_RV(2,2) i_RV(2,3) i_RV(2,4) i_RV

(3,1) i_RV(3,2) i_RV(3,3) i_RV(3,4) i_RV(4,1) i_RV(4,2) i_RV(4,3) i_RV(4,4);

25   i_RD(1,1) i_RD(1,2) i_RD(1,3) i_RD(1,4) i_RD(2,1) i_RD(2,2) i_RD(2,3) i_RD(2,4) i_RD

(3,1) i_RD(3,2) i_RD(3,3) i_RD(3,4) i_RD(4,1) i_RD(4,2) i_RD(4,3) i_RD(4,4);

26   i_RR(1,1) i_RR(1,2) i_RR(1,3) i_RR(1,4) i_RR(2,1) i_RR(2,2) i_RR(2,3) i_RR(2,4) i_RR

(3,1) i_RR(3,2) i_RR(3,3) i_RR(3,4) i_RR(4,1) i_RR(4,2) i_RR(4,3) i_RR(4,4)

27   

28   ];

29   

30   %take its inverse

31   M = inv(M);

32   

33   %since quantum operations are linear can transform the output density matrices to easy

34   %basis using same method as that used for transforming input density matrices

35   eps_11=M(1,1)*eps_HH + M(1,2)*eps_HV + M(1,3)*eps_HD + M(1,4)*eps_HR + M(1,5)*eps_VH + M

(1,6)*eps_VV + M(1,7)*eps_VD + M(1,8)*eps_VR + M(1,9)*eps_DH + M(1,10)*eps_DV + M(1,11)*

eps_DD + M(1,12)*eps_DR + M(1,13)*eps_RH + M(1,14)*eps_RV + M(1,15)*eps_RD + M(1,16)*

Figure D.18: Part 1 of 5 of MATLAB code to obtain the χ matrix.
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eps_RR;

36   eps_12=M(2,1)*eps_HH + M(2,2)*eps_HV + M(2,3)*eps_HD + M(2,4)*eps_HR + M(2,5)*eps_VH + M

(2,6)*eps_VV + M(2,7)*eps_VD + M(2,8)*eps_VR + M(2,9)*eps_DH + M(2,10)*eps_DV + M(2,11)*

eps_DD + M(2,12)*eps_DR + M(2,13)*eps_RH + M(2,14)*eps_RV + M(2,15)*eps_RD + M(2,16)*

eps_RR;

37   eps_13=M(3,1)*eps_HH + M(3,2)*eps_HV + M(3,3)*eps_HD + M(3,4)*eps_HR + M(3,5)*eps_VH + M

(3,6)*eps_VV + M(3,7)*eps_VD + M(3,8)*eps_VR + M(3,9)*eps_DH + M(3,10)*eps_DV + M(3,11)*

eps_DD + M(3,12)*eps_DR + M(3,13)*eps_RH + M(3,14)*eps_RV + M(3,15)*eps_RD + M(3,16)*

eps_RR;

38   eps_14=M(4,1)*eps_HH + M(4,2)*eps_HV + M(4,3)*eps_HD + M(4,4)*eps_HR + M(4,5)*eps_VH + M

(4,6)*eps_VV + M(4,7)*eps_VD + M(4,8)*eps_VR + M(4,9)*eps_DH + M(4,10)*eps_DV + M(4,11)*

eps_DD + M(4,12)*eps_DR + M(4,13)*eps_RH + M(4,14)*eps_RV + M(4,15)*eps_RD + M(4,16)*

eps_RR;

39   

40   eps_21=M(5,1)*eps_HH + M(5,2)*eps_HV + M(5,3)*eps_HD + M(5,4)*eps_HR + M(5,5)*eps_VH + M

(5,6)*eps_VV + M(5,7)*eps_VD + M(5,8)*eps_VR + M(5,9)*eps_DH + M(5,10)*eps_DV + M(5,11)*

eps_DD + M(5,12)*eps_DR + M(5,13)*eps_RH + M(5,14)*eps_RV + M(5,15)*eps_RD + M(5,16)*

eps_RR;

41   eps_22=M(6,1)*eps_HH + M(6,2)*eps_HV + M(6,3)*eps_HD + M(6,4)*eps_HR + M(6,5)*eps_VH + M

(6,6)*eps_VV + M(6,7)*eps_VD + M(6,8)*eps_VR + M(6,9)*eps_DH + M(6,10)*eps_DV + M(6,11)*

eps_DD + M(6,12)*eps_DR + M(6,13)*eps_RH + M(6,14)*eps_RV + M(6,15)*eps_RD + M(6,16)*

eps_RR;

42   eps_23=M(7,1)*eps_HH + M(7,2)*eps_HV + M(7,3)*eps_HD + M(7,4)*eps_HR + M(7,5)*eps_VH + M

(7,6)*eps_VV + M(7,7)*eps_VD + M(7,8)*eps_VR + M(7,9)*eps_DH + M(7,10)*eps_DV + M(7,11)*

eps_DD + M(7,12)*eps_DR + M(7,13)*eps_RH + M(7,14)*eps_RV + M(7,15)*eps_RD + M(7,16)*

eps_RR;

43   eps_24=M(8,1)*eps_HH + M(8,2)*eps_HV + M(8,3)*eps_HD + M(8,4)*eps_HR + M(8,5)*eps_VH + M

(8,6)*eps_VV + M(8,7)*eps_VD + M(8,8)*eps_VR + M(8,9)*eps_DH + M(8,10)*eps_DV + M(8,11)*

eps_DD + M(8,12)*eps_DR + M(8,13)*eps_RH + M(8,14)*eps_RV + M(8,15)*eps_RD + M(8,16)*

eps_RR;

44   

45   eps_31=M(9,1)*eps_HH + M(9,2)*eps_HV + M(9,3)*eps_HD + M(9,4)*eps_HR + M(9,5)*eps_VH + M

(9,6)*eps_VV + M(9,7)*eps_VD + M(9,8)*eps_VR + M(9,9)*eps_DH + M(9,10)*eps_DV + M(9,11)*

eps_DD + M(9,12)*eps_DR + M(9,13)*eps_RH + M(9,14)*eps_RV + M(9,15)*eps_RD + M(9,16)*

eps_RR;

46   eps_32=M(10,1)*eps_HH + M(10,2)*eps_HV + M(10,3)*eps_HD + M(10,4)*eps_HR + M(10,5)*

eps_VH + M(10,6)*eps_VV + M(10,7)*eps_VD + M(10,8)*eps_VR + M(10,9)*eps_DH + M(10,10)*

eps_DV + M(10,11)*eps_DD + M(10,12)*eps_DR + M(10,13)*eps_RH + M(10,14)*eps_RV + M(10,15

)*eps_RD + M(10,16)*eps_RR;

47   eps_33=M(11,1)*eps_HH + M(11,2)*eps_HV + M(11,3)*eps_HD + M(11,4)*eps_HR + M(11,5)*

eps_VH + M(11,6)*eps_VV + M(11,7)*eps_VD + M(11,8)*eps_VR + M(11,9)*eps_DH + M(11,10)*

eps_DV + M(11,11)*eps_DD + M(11,12)*eps_DR + M(11,13)*eps_RH + M(11,14)*eps_RV + M(11,15

)*eps_RD + M(11,16)*eps_RR;

48   eps_34=M(12,1)*eps_HH + M(12,2)*eps_HV + M(12,3)*eps_HD + M(12,4)*eps_HR + M(12,5)*

eps_VH + M(12,6)*eps_VV + M(12,7)*eps_VD + M(12,8)*eps_VR + M(12,9)*eps_DH + M(12,10)*

eps_DV + M(12,11)*eps_DD + M(12,12)*eps_DR + M(12,13)*eps_RH + M(12,14)*eps_RV + M(12,15

)*eps_RD + M(12,16)*eps_RR;

49   

50   eps_41=M(13,1)*eps_HH + M(13,2)*eps_HV + M(13,3)*eps_HD + M(13,4)*eps_HR + M(13,5)*

eps_VH + M(13,6)*eps_VV + M(13,7)*eps_VD + M(13,8)*eps_VR + M(13,9)*eps_DH + M(13,10)*

eps_DV + M(13,11)*eps_DD + M(13,12)*eps_DR + M(13,13)*eps_RH + M(13,14)*eps_RV + M(13,15

)*eps_RD + M(13,16)*eps_RR;

51   eps_42=M(14,1)*eps_HH + M(14,2)*eps_HV + M(14,3)*eps_HD + M(14,4)*eps_HR + M(14,5)*

eps_VH + M(14,6)*eps_VV + M(14,7)*eps_VD + M(14,8)*eps_VR + M(14,9)*eps_DH + M(14,10)*

eps_DV + M(14,11)*eps_DD + M(14,12)*eps_DR + M(14,13)*eps_RH + M(14,14)*eps_RV + M(14,15

Figure D.19: Part 2 of 5 of MATLAB code to obtain the χ matrix.
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)*eps_RD + M(14,16)*eps_RR;

52   eps_43=M(15,1)*eps_HH + M(15,2)*eps_HV + M(15,3)*eps_HD + M(15,4)*eps_HR + M(15,5)*

eps_VH + M(15,6)*eps_VV + M(15,7)*eps_VD + M(15,8)*eps_VR + M(15,9)*eps_DH + M(15,10)*

eps_DV + M(15,11)*eps_DD + M(15,12)*eps_DR + M(15,13)*eps_RH + M(15,14)*eps_RV + M(15,15

)*eps_RD + M(15,16)*eps_RR;

53   eps_44=M(16,1)*eps_HH + M(16,2)*eps_HV + M(16,3)*eps_HD + M(16,4)*eps_HR + M(16,5)*

eps_VH + M(16,6)*eps_VV + M(16,7)*eps_VD + M(16,8)*eps_VR + M(16,9)*eps_DH + M(16,10)*

eps_DV + M(16,11)*eps_DD + M(16,12)*eps_DR + M(16,13)*eps_RH + M(16,14)*eps_RV + M(16,15

)*eps_RD + M(16,16)*eps_RR;

54   

55   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

56   % calculate chi matrix according to procedure in Nielsen and Chuang

57   % Quantum Information text

58   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59   

60   preChi=[

61   eps_11(1,1) eps_11(1,2) eps_11(1,3) eps_11(1,4) eps_12(1,1) eps_12(1,2) eps_12(1,3)

eps_12(1,4) eps_13(1,1) eps_13(1,2) eps_13(1,3) eps_13(1,4) eps_14(1,1) eps_14(1,2)

eps_14(1,3) eps_14(1,4);

62   eps_11(2,1) eps_11(2,2) eps_11(2,3) eps_11(2,4) eps_12(2,1) eps_12(2,2) eps_12(2,3)

eps_12(2,4) eps_13(2,1) eps_13(2,2) eps_13(2,3) eps_13(2,4) eps_14(2,1) eps_14(2,2)

eps_14(2,3) eps_14(2,4);

63   eps_11(3,1) eps_11(3,2) eps_11(3,3) eps_11(3,4) eps_12(3,1) eps_12(3,2) eps_12(3,3)

eps_12(3,4) eps_13(3,1) eps_13(3,2) eps_13(3,3) eps_13(3,4) eps_14(3,1) eps_14(3,2)

eps_14(3,3) eps_14(3,4);

64   eps_11(4,1) eps_11(4,2) eps_11(4,3) eps_11(4,4) eps_12(4,1) eps_12(4,2) eps_12(4,3)

eps_12(4,4) eps_13(4,1) eps_13(4,2) eps_13(4,3) eps_13(4,4) eps_14(4,1) eps_14(4,2)

eps_14(4,3) eps_14(4,4);

65   

66   eps_21(1,1) eps_21(1,2) eps_21(1,3) eps_21(1,4) eps_22(1,1) eps_22(1,2) eps_22(1,3)

eps_22(1,4) eps_23(1,1) eps_23(1,2) eps_23(1,3) eps_23(1,4) eps_24(1,1) eps_24(1,2)

eps_24(1,3) eps_24(1,4);

67   eps_21(2,1) eps_21(2,2) eps_21(2,3) eps_21(2,4) eps_22(2,1) eps_22(2,2) eps_22(2,3)

eps_22(2,4) eps_23(2,1) eps_23(2,2) eps_23(2,3) eps_23(2,4) eps_24(2,1) eps_24(2,2)

eps_24(2,3) eps_24(2,4);

68   eps_21(3,1) eps_21(3,2) eps_21(3,3) eps_21(3,4) eps_22(3,1) eps_22(3,2) eps_22(3,3)

eps_22(3,4) eps_23(3,1) eps_23(3,2) eps_23(3,3) eps_23(3,4) eps_24(3,1) eps_24(3,2)

eps_24(3,3) eps_24(3,4);

69   eps_21(4,1) eps_21(4,2) eps_21(4,3) eps_21(4,4) eps_22(4,1) eps_22(4,2) eps_22(4,3)

eps_22(4,4) eps_23(4,1) eps_23(4,2) eps_23(4,3) eps_23(4,4) eps_24(4,1) eps_24(4,2)

eps_24(4,3) eps_24(4,4);

70   

71   eps_31(1,1) eps_31(1,2) eps_31(1,3) eps_31(1,4) eps_32(1,1) eps_32(1,2) eps_32(1,3)

eps_32(1,4) eps_33(1,1) eps_33(1,2) eps_33(1,3) eps_33(1,4) eps_34(1,1) eps_34(1,2)

eps_34(1,3) eps_34(1,4);

72   eps_31(2,1) eps_31(2,2) eps_31(2,3) eps_31(2,4) eps_32(2,1) eps_32(2,2) eps_32(2,3)

eps_32(2,4) eps_33(2,1) eps_33(2,2) eps_33(2,3) eps_33(2,4) eps_34(2,1) eps_34(2,2)

eps_34(2,3) eps_34(2,4);

73   eps_31(3,1) eps_31(3,2) eps_31(3,3) eps_31(3,4) eps_32(3,1) eps_32(3,2) eps_32(3,3)

eps_32(3,4) eps_33(3,1) eps_33(3,2) eps_33(3,3) eps_33(3,4) eps_34(3,1) eps_34(3,2)

eps_34(3,3) eps_34(3,4);

74   eps_31(4,1) eps_31(4,2) eps_31(4,3) eps_31(4,4) eps_32(4,1) eps_32(4,2) eps_32(4,3)

eps_32(4,4) eps_33(4,1) eps_33(4,2) eps_33(4,3) eps_33(4,4) eps_34(4,1) eps_34(4,2)

eps_34(4,3) eps_34(4,4);

75   

Figure D.20: Part 3 of 5 of MATLAB code to obtain the χ matrix.
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76   eps_41(1,1) eps_41(1,2) eps_41(1,3) eps_41(1,4) eps_42(1,1) eps_42(1,2) eps_42(1,3)

eps_42(1,4) eps_43(1,1) eps_43(1,2) eps_43(1,3) eps_43(1,4) eps_44(1,1) eps_44(1,2)

eps_44(1,3) eps_44(1,4);

77   eps_41(2,1) eps_41(2,2) eps_41(2,3) eps_41(2,4) eps_42(2,1) eps_42(2,2) eps_42(2,3)

eps_42(2,4) eps_43(2,1) eps_43(2,2) eps_43(2,3) eps_43(2,4) eps_44(2,1) eps_44(2,2)

eps_44(2,3) eps_44(2,4);

78   eps_41(3,1) eps_41(3,2) eps_41(3,3) eps_41(3,4) eps_42(3,1) eps_42(3,2) eps_42(3,3)

eps_42(3,4) eps_43(3,1) eps_43(3,2) eps_43(3,3) eps_43(3,4) eps_44(3,1) eps_44(3,2)

eps_44(3,3) eps_44(3,4);

79   eps_41(4,1) eps_41(4,2) eps_41(4,3) eps_41(4,4) eps_42(4,1) eps_42(4,2) eps_42(4,3)

eps_42(4,4) eps_43(4,1) eps_43(4,2) eps_43(4,3) eps_43(4,4) eps_44(4,1) eps_44(4,2)

eps_44(4,3) eps_44(4,4)

80   ];

81   

82   

83   rho_11 = [ 1 0 0 0;

84   0 0 0 0;

85   0 0 0 0;

86   0 0 0 0];

87   

88   rho_23 = [ 0 0 0 0;

89   0 0 1 0;

90   0 0 0 0;

91   0 0 0 0];

92   

93   rho_32 = [ 0 0 0 0;

94   0 0 0 0;

95   0 1 0 0;

96   0 0 0 0];

97   

98   rho_44 = [ 0 0 0 0;

99   0 0 0 0;

100   0 0 0 0;

101   0 0 0 1];

102   

103   P_matrix = kron(eye(2),kron(rho_11+rho_23+rho_32+rho_44,eye(2)));

104   

105   Delta_matrix = .5*[1 0 0 1;

106   0 1 1 0;

107   0 1 -1 0;

108   1 0 0 -1];

109   

110   Delta2_matrix = kron(Delta_matrix,Delta_matrix);

111   

112   Chi=Delta2_matrix'*P_matrix'*preChi*P_matrix*Delta2_matrix;

113   

114   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

115   % Perform convex optimization, i.e. find the best two-norm approximation with a physical 

116   % chi matrix of a process

117   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

118   

119   % The dimension of the chi matrix

120   n=16;

121   

122   % the unphysical chi matrix

Figure D.21: Part 4 of 5 of MATLAB code to obtain the χ matrix.
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123   chiunphys = Chi; %corrected_chi_real + i*corrected_chi_imag;

124   

125   % let sdpvar know that chi matrix will be complex and hermitian

126   Chi=sdpvar(n,n,'hermitian','complex');

127   

128   % enforce constraint of unit trace

129   F=set(trace(Chi)==1);

130   

131   % enforce complete positivity

132   F=F+set(chi>=0);

133   

134   % find the best two-norm approximation 

135   solvesdp(F,trace((Chi-chiunphys)*(Chi-chiunphys)));

136   TwoNorm=sqrt(double(real(trace((Chi-chiunphys)*(Chi-chiunphys)))));

137   TwoNormChi=double(Chi);

138   

Figure D.22: Part 5 of 5 of MATLAB code to obtain the χ matrix.
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[8] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters.
Teleporting an unknown quantum state via dual classical and einstein-podolsky-
rosen channels. Phys. Rev. Lett., 70(13):1895–1899, Mar 1993.

[9] N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio,
D. E. Prober, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret. Nature, 465:64,
2010.

193



[10] R. C. Bialczak, M. Ansmann, M. Hofheinz, M. Lenander, E. Lucero, M. Neeley,
A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, T. Yamamoto, A. N.
Cleland, and J. M. Martinis. Fast tunable coupler for superconducting qubits.
Phys. Rev. Lett., 106(6):060501, 2011.

[11] R. C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero, M. Neeley, A. D.
O’Connell, D. Sank, H. Wang, J. Wenner, M. Steffen, A. N. Cleland, and J. M.
Martinis. Quantum process tomography of a universal entangling gate imple-
mented with josephson phase qubits. Nature Physics, 6:409–413, 2010.

[12] R. C. Bialczak, R. McDermott, M. Ansmann, M. Hofheinz, N. Katz, E. Lucero,
M. Neeley, A. D. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis. 1/ f
flux noise in josephson phase qubits. Phys. Rev. Lett., 99(18):187006, 2007.

[13] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret. Quantum coherence
with a single cooper pair. Physica Scripta, 1998(T76):165, 1998.

[14] D. Bouwmeester, A. K. Ekert, and A. Zeilinger. The Physics of Quantum Infor-
mation: Quantum Cryptography, Quantum Teleportation, Quantum Computation.
Springer, Germany, 2010.

[15] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[16] M. P. A. Branderhorst, N. J., W. I. A., and K. R. L. Simplified quantum process
tomography. New Journal of Physics, 11(11):115010, 2009.

[17] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mor-
timer, M. A. Nielsen, and T. J. Osborne. Practical scheme for quantum computa-
tion with any two-qubit entangling gate. Phys. Rev. Lett., 89(24):247902, 2002.

[18] A. M. Childs, I. L. Chuang, and D. W. Leung. Realization of quantum process
tomography in nmr. Phys. Rev. A, 64(1):012314, 2001.

[19] I. L. Chuang and M. A. Nielsen. Prescription for experimental determination of
the dynamics of a quantum black box. Journal of Modern Optics, 44(11):2455–
2467, 1997.

[20] A. Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:345–363, 1936.

[21] C. CohenTannoudji, B. Diu, and F. Laloe. Quantum Mechanics (2 vol. set). Wiley-
Interscience, 2006.

194



[22] G. A. D’Ariano and L. Maccone. Quantum tomography for imaging. Electronic
Notes in Discrete Mathematics, 20:133 – 150, 2005.

[23] D. Deutsch. Quantum theory, the church-turing principle and the universal quan-
tum computer. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, 400(1818):97–117, 1985.

[24] M. Devoret. Fluctuations Quantiques / Quantum Fluctuations: Les Houches Ses-
sion LXIII, June 27 - July 28, 1995. A UJFG / a NATO Advanced Study Institute
conference. Edited by S. Reynaud, E. Giacobino and J. Zinn-Justin. Elsevier, Am-
sterdam, The Netherlands, 1997.

[25] M. Devoret, A. Wallraff, and J. Martinis. Superconducting qubits: A short review.
arXiv:cond-mat/0411174v1 [cond-mat.mes-hall], 2004.

[26] M. H. Devoret and J. M. Martinis. Implementing qubits with superconducting
integrated circuits. Quantum Information Processing, 3:163–203, 2004.

[27] D. P. DiVincenzo. The physical implementation of quantum computation.
Fortschritte der Physik, 48(9-11):771–783, 2000.

[28] R. Feynman. Simulating physics with computers. International Journal of Theo-
retical Physics, 21:467–488, 1982.

[29] K. Gottfried and T. M. Yan. Quantum Mechanics: Fundamentals. Springer, 2004.

[30] L. Grover. A fast quantum mechanical algorithm for database search. Proceed-
ings, 28th Annual ACM Symposium on the Theory of Computing, page 212, May
1996.

[31] S. Haroche and J. Raimond. Exploring the Quantum: Atoms, Cavities, and Pho-
tons (Oxford Graduate Texts). Oxford University Press, USA, 2006.

[32] R. Harris, A. J. Berkley, M. W. Johnson, P. Bunyk, S. Govorkov, M. C. Thom,
S. Uchaikin, A. B. Wilson, J. Chung, E. Holtham, J. D. Biamonte, A. Y. Smirnov,
M. H. S. Amin, and A. M. van den Brink. Phys. Rev. Lett., 98, 2007.

[33] T. Hime, P. A. Reichardt, B. L. T. Plourde, T. L. Robertson, C. E. Wu, A. V.
Ustinov, , and J. Clarke. Science, 314:1427, 2006.

[34] M. Howard, J. Twamley, C. Wittmann, T. Gaebel, F. Jelezko, and J. Wrachtrup.
Quantum process tomography and linblad estimation of a solid-state qubit. New
Journal of Physics, 8(3):33, 2006.

195



[35] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White. Measurement of
qubits. Phys. Rev. A, 64(5):052312, 2001.

[36] P. R. Johnson, F. W. Strauch, A. J. Dragt, R. C. Ramos, C. J. Lobb, J. R. Anderson,
and F. C. Wellstood. Spectroscopy of capacitively coupled josephson-junction
qubits. Phys. Rev. B, 67(2):020509, 2003.

[37] N. Katz, M. Ansmann, R. C. Bialczak, E. Lucero, R. McDermott, M. Neeley,
M. Steffen, E. M. Weig, A. N. Cleland, J. M. Martinis, and A. N. Korotkov. Co-
herent State Evolution in a Superconducting Qubit from Partial-Collapse Mea-
surement. Science, 312(5779):1498–1500, 2006.

[38] P. Kaye, R. Laflamme, and M. Mosca. An Introduction to Quantum Computing.
Oxford University Press, USA, 2007.

[39] A. G. Kofman and A. N. Korotkov. Two-qubit decoherence mechanisms revealed
via quantum process tomography. Phys. Rev. A, 80(4):042103, 2009.

[40] A. G. Kofman, Q. Zhang, J. M. Martinis, and A. N. Korotkov. Theoretical anal-
ysis of measurement crosstalk for coupled josephson phase qubits. Phys. Rev. B,
75(1):014524, 2007.

[41] R. L. Kosut. Quantum Process Tomography via L1-norm Minimization.
arXiv:0812.4323v2 [quant-ph], 2008.

[42] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien.
Nature, 94:45–53, 2010.

[43] M. Lenander, H. Wang, R. C. Bialczak, E. Lucero, M. Mariantoni, M. Neeley,
A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao,
A. N. Cleland, and J. M. Martinis. Energy decay and frequency shift of a super-
conducting qubit from non-equilibrium quasiparticles. arXiv:1101.0862v1 [cond-
mat.supr-con], 2011.

[44] B. G. Levi. Physics Today, 62:14, 2009.

[45] Y.-x. Liu, L. F. Wei, and F. Nori. Tomographic measurements on superconducting
qubit states. Phys. Rev. B, 72(1):014547, 2005.

[46] L. Ljung. System Identification: Theory for the User. Prentice Hall, 1999.

[47] E. Lucero, M. Hofheinz, M. Ansmann, R. C. Bialczak, N. Katz, M. Neeley, A. D.
O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis. High-fidelity gates in a
single josephson qubit. Phys. Rev. Lett., 100(24):247001, 2008.

196



[48] J. Martinis. Macroscopic Quantum Tunneling and Energy-Level Quantization in
the Zero Voltage State of the Current-Biased Josephson Junction. PhD thesis,
University of California, Berkeley, 1985.

[49] J. Martinis. Superconducting phase qubits. Quantum Information Processing,
8:81–103, 2009.

[50] J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann, K. D. Os-
born, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C. Yu. Decoherence
in josephson qubits from dielectric loss. Phys. Rev. Lett., 95(21):210503, 2005.

[51] J. M. Martinis, S. Nam, J. Aumentado, K. M. Lang, and C. Urbina. Decoherence
of a superconducting qubit due to bias noise. Phys. Rev. B, 67(9):094510, 2003.

[52] J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina. Rabi oscillations in a large
josephson-junction qubit. Phys. Rev. Lett., 89(11):117901, 2002.

[53] R. McDermott. Materials origins of decoherence in superconducting qubits. Ap-
plied Superconductivity, IEEE Transactions on, 19(1):2–13, 2009.

[54] R. McDermott, R. W. Simmonds, M. Steffen, K. B. Cooper, K. Cicak, K. D.
Osborn, S. Oh, D. P. Pappas, and J. M. Martinis. Simultaneous State Measurement
of Coupled Josephson Phase Qubits. Science, 307(5713):1299–1302, 2005.

[55] J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd.
Josephson persistent-current qubit. Science, 285(5430):1036–1039, 1999.

[56] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai. Coherent control of macroscopic
quantum states in a single-cooper-pair box. Nature, 398(6730):786–788, 1999.

[57] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero,
A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis. Transformed dis-
sipation in superconducting quantum circuits. Phys. Rev. B, 77(18):180508, 2008.

[58] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2000.

[59] A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and J. S. Tsai.
Science, 316:723–6, 2007.

[60] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C.
Ralph, and A. G. White. Quantum process tomography of a controlled-not gate.
Phys. Rev. Lett., 93(8):080502, 2004.

197



[61] M. Paris and J. Rehacek. Quantum State Estimation: Series: Lecture Notes in
Physics, volume 649. Springer, 2004.

[62] R. A. Pinto, A. N. Korotkov, M. R. Geller, V. S. Shumeiko, and J. M. Martinis.
Analysis of a tuneable coupler for superconducting phase qubits, 2010.

[63] J. H. Plantenberg, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij. Demon-
stration of controlled-NOT quantum gates on a pair of superconducting quantum
bits. Nature, 447(7146):836–839, 2007.

[64] D. M. Pozar. Microwave Engineering. Wiley, 2004.

[65] M. Riebe, K. Kim, P. Schindler, T. Monz, P. O. Schmidt, T. K. Korber, W. Hansel,
H. Haffner, C. F. Roos, and R. Blatt. Process tomography of ion trap quantum
gates. Phys. Rev. Lett., 97(22):220407, 2006.

[66] J. Sakurai. Modern Quantum Mechanics (Revised Edition). Addison Wesley,
1993.

[67] N. Schuch and J. Siewert. Natural two-qubit gate for quantum computation using
the xy interaction. Phys. Rev. A, 67(3):032301, 2003.

[68] S. Sendelbach, D. Hover, A. Kittel, M. Mück, J. M. Martinis, and R. Mc-
Dermott. Magnetism in squids at millikelvin temperatures. Phys. Rev. Lett.,
100(22):227006, 2008.

[69] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Review, 41(2):303–332, 1999.

[70] R. W. Simmonds, K. M. Lang, D. A. Hite, S. Nam, D. P. Pappas, and J. M. Marti-
nis. Decoherence in josephson phase qubits from junction resonators. Phys. Rev.
Lett., 93(7):077003, 2004.

[71] R. Solovay and V. Strassen. A fast monte-carlo test for primality. SIAM Journal
on Computing, 6(1):84–85, 1977.

[72] C. Song, M. P. DeFeo, K. Yu, and B. L. T. Plourde. Appl. Phys. Lett., 95:232501,
2009.

[73] M. Steffen. A Prototype Quantum Computer Using Nuclear Spins in Liquid Solu-
tion. PhD thesis, Stanford University, 2003.

198



[74] M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott,
M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis. Measurement of the
Entanglement of Two Superconducting Qubits via State Tomography. Science,
313(5792):1423–1425, 2006.

[75] M. Steffen, M. Ansmann, R. McDermott, N. Katz, R. C. Bialczak, E. Lucero,
M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis. State tomography of ca-
pacitively shunted phase qubits with high fidelity. Phys. Rev. Lett., 97(5):050502,
2006.

[76] M. Steffen, J. M. Martinis, and I. L. Chuang. Accurate control of josephson phase
qubits. Phys. Rev. B, 68(22):224518, 2003.

[77] O. Steuernagel and J. A. Vaccaro. Reconstructing the density operator via simple
projectors. Phys. Rev. Lett., 75(18):3201–3205, 1995.

[78] F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R. Anderson, and F. C.
Wellstood. Quantum logic gates for coupled superconducting phase qubits. Phys.
Rev. Lett., 91(16):167005, 2003.

[79] S. Thornton and J. B. Marion. Classical Dynamics of Particles and Systems.
Brooks Cole, 2003.

[80] R. J. Tocci, N. Widmer, and G. Moss. Digital Systems: Principles and Applica-
tions. Prentice Hall, 2006.

[81] A. M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–
265, 1937.

[82] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and
M. Devoret. Rabi oscillations, ramsey fringes and spin echoes in an electrical
circuit. Fortschritte der Physik, 51(4-5):462–468, 2003.

[83] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M.
Girvin, and R. J. Schoelkopf. Approaching unit visibility for control of a super-
conducting qubit with dispersive readout. Phys. Rev. Lett., 95(6):060501, Aug
2005.

[84] M. Weissbluth. Photon-Atom Interactions. Academic Press, 1989.

[85] G. Wendin and V. Shumeiko. Superconducting Quantum Circuits, Qubits and
Computing (prepared for Handbook of Theoretical and Computational Nanotech-
nology). Cambridge University Press, 2006.

199



[86] A. G. White, A. Gilchrist, G. J. Pryde, J. L. O’Brien, M. J. Bremner, and N. K.
Langford. Measuring two-qubit gates. J. Opt. Soc. Am. B, 24(2):172–183, 2007.

[87] T. Yamamoto, Y. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai. Demonstra-
tion of conditional gate operation using superconducting charge qubits. Nature,
425(6961):941–944, 2003.

[88] Q. Zhang, A. G. Kofman, J. M. Martinis, and A. N. Korotkov. Analysis of mea-
surement errors for a superconducting phase qubit. Phys. Rev. B, 74(21):214518,
2006.

200


	Contents
	Foreword
	A guide for the reader

	Introduction to Quantum Computing
	Why is quantum computing important? A historical perspective.
	Qubit physics in a nutshell
	Qubit basics and the Bloch sphere
	The density operator formalism and multiple qubits
	Quantum operations
	Qubit-environment interactions: decoherence and visibility

	Classical v.s. quantum computation

	Superconducting Qubits
	Superconducting qubits compared to other architectures
	The Josephson junction: the key element of superconducting qubits
	Types of superconducting qubits

	Single Phase Qubit Design and Operation
	The flux-biased phase qubit
	Single Qubit Biasing, Measurement, Readout and Logic Operations
	Flux Bias and Measurement
	Readout
	Logic Operations

	Experimental Characterization of A Single Qubit
	Calibrating the readout, qubit reset, and bias points
	Step Edge: fine calibration of the bias point
	S-curve: measurement pulse amplitude calibration
	Spectroscopy
	Rabi Oscillations
	Measuring energy relaxation
	Measuring dephasing


	Connecting Phase Qubits Using Fixed Coupling
	Fixed Capacitive Coupling
	Two-qubit circuit Hamiltonian and the swap operation
	Measuring coupled qubits: single-shot measurement and measurement crosstalk
	Detuning and errors due to fixed coupling

	Experimental bring-up and characterization of capacitively coupled phase qubits
	Calibrating qubit operating biases for turning on and for minimizing the coupling interaction
	The swap experiment
	Measuring on/off ratio of capacitively coupled qubits
	Phase calibration for two-qubit microwave pulses
	State tomography of the 16 two-qubit basis states


	Demonstration and Characterization of A Universal Quantum Gate
	What is a universal quantum gate?
	Experimental characterization of a universal quantum gate using quantum process tomography (QPT)
	Motivation
	Quantum process tomography of the SQiSW gate
	Improving gate performance


	Connecting Phase Qubits Using Tunable Coupling
	Motivation and prior work
	This tunable coupler design
	Coupler characterization and dynamic performance
	Static performance: tuning the avoided-level crossing
	Static performance: Measurement crosstalk minimization
	Dynamic performance: the tunable swap operation

	Scalability: the on/off ratio and stray capacitances, long-distance coupling and modularity
	Technical points: multistability of the coupler circuit and influence of coupler bias on qubit bias
	Coupler reset protocol
	Compensation for qubit bias shift due to coupler bias
	Future work on tunable coupling


	Device Fabrication
	Substrate
	Base wiring deposition and patterning
	Dielectric deposition and patterning
	Junction base electrode Al deposition and definition
	Josephson junction oxidation and definition
	Top wiring and shorting strap definition
	Dielectric etch
	Shorting strap etch


	Electronics And Low Temperature Experimental Set-up
	Low temperature setup
	The SQUID lines
	The flux bias and measurement/z-pulse lines
	The microwave line

	Room temperature electronics

	Calculation of capacitive coupling Hamiltonian
	Quantum Tomography calibrations and physicality
	Calibrating out measurement errors
	State tomography data and measurement calibration
	Physicality of the  Matrix
	MATLAB and Mathematica code used for state tomography analysis
	State tomography pre-processing using Mathematica
	State tomography data analysis using MATLAB

	MATLAB code used for process tomography analysis
	MATLAB code used for process tomography


	Bibliography

