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Abstract

Metrology of Quantum Control and Measurement in Superconducting

Qubits

by

Zijun Chen

Quantum computers have the potential to solve problems which are classically intractable.

Superconducting qubits present a promising path to building such a computer. Recent

experiments with these qubits have demonstrated the principles of quantum error correc-

tion, quantum simulation, quantum annealing, and more. Current research with super-

conducting qubits is focused on two primary goals: creating a fully fault tolerant logical

qubit out of many physical qubits using surface code error correction, and demonstrat-

ing an exponential speedup over any classical computer for a well-defined computational

problem. To achieve either of these goals requires high precision control of three com-

ponents: single qubit gates, two qubit gates, and qubit measurement. In this thesis, we

use randomized benchmarking to characterize single qubit gates with 99.95% fidelity and

two qubit gates wiht 99.5% fidelity in superconducting transmon qubits. In addition, we

use standard decoherence measurements as well as newly developed extensions of ran-

domized benchmarking to determine the limiting sources of error. Finally, we explore

the surprisingly complicated dynamics of measuring the transmon state through a cou-
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pled resonator, and show that fully understanding this process requires breaking a few

”standard” assumptions.
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Chapter 1

Introduction to Quantum

Computing

The theory of quantum mechanics is a foundation of modern physics, and successfully

describes a myriad of physical phenomena, from high energy particle physics to the

behavior of solid state materials near absolute zero. Quantum mechanics has also had

a profound impact on computing. For example, quantum mechanics was crucial to the

development of semiconductor physics which led to the invention of the transistor [1],

the bedrock of modern computing. Once esoteric quantum effects such as quantum

tunnelling are also becoming increasingly important as logic and storage grow more

dense [2, 3, 4]. However, the primary paradigm for computing has remained the same

since the days of vacuum tubes, and is based on classical, binary bits of information.

Quantum computing is the idea that by harnessing the power of quantum mechanics, we

1



can fundamentally change the way we store and process and information, and potentially

out perform classical computation.

1.1 Processing Information using Quantum Mechan-

ics

The fundamental unit of quantum information is the quantum bit, or qubit. A qubit is a

quantum system with two states, which we denote as |0〉 and |1〉. Information is encoded

in the amplitudes for each state

|ψ〉 = α|0〉+ β|1〉, (1.1)

where α and β are complex. The vector |ψ〉 is also known as a wavefunction. Information

is extracted from |ψ〉 by measuring the qubit, and the probability of measuring |0〉 is |α|2,

and likewise for |1〉 and β. After measurement, the wavefunction is said to be collapsed

into the state that was measured, with subsequent measurements always yielding the

same value. Since the combined measurement probability must be 1, α and β must

satisfy |α|2 + |β|2 = 1.

Equation 1.1 states that a qubit may exist in a superposition where it is neither

definitely |0〉 or |1〉. However, a qubit is more than just a probabilistic bit of information.

For example, the states (|0〉 + |1〉)/
√

2 and (|0〉 − |1〉)/
√

2 are fundamentally different

states despite yielding the same measurement probabilities, and both are different from

the state (|0〉+ i|1〉)/
√

2.

2



Figure 1.1: The Bloch sphere, representing a single qubit.

To better understand the information encoded in a qubit, we consider a qubit’s degrees

of freedom. Since α and β are complex, they each contain two degrees of freedom. The

normalization of total probability imposes one constraint. Additionally, we ignore a

second degree of freedom which scales |ψ〉 by a global complex phase factor that does not

have practical consequences for a single qubit. We then rewrite Eqn. 1.1 in the following

manner:

|ψ〉 = cos
θ

2
+ eiφ sin

θ

2
, (1.2)

and pair it with the geometrical construction shown in Fig. 1.1, which is known as

the Bloch sphere [5]. The qubit is represented as a vector from the origin to a point on

the surface of the sphere. Information is encoded in the azimuthal and equitorial angles

of the vector. The poles of the sphere correspond to |0〉 and |1〉, while the equator of

the sphere corresponds to 50/50 superposition states. However, note that the sphere is

3



symmetric with respect to rotation about any axis that passes through the origin. For

example, we can rotate the sphere such that the poles now correspond to (|0〉+ |1〉)/
√

2

and (|0〉 − |1〉)/
√

2. In an experiment, this action is equivalent to measuring the qubit

in a different basis, and in this way, we can resolve the difference between different

superposition states.

To bring a qubit from one state to another, we evolve it under a Hamiltonian H

according to Schrodinger’s equation.

H|ψ〉 = i~
d|ψ〉
dt

(1.3)

In quantum computing, it is often useful to assume that the Hamiltonian is zero during

”static” operation. Transformations are achieved by turning on a control Hamiltonian

for a discrete amount of time. The total transformation during this time is given by

solving the Schroedinger equation 1

U = exp [iHt/~] (1.4)

where U is known as a propagator, and is also referred to as a quantum gate in the

context of quantum computing. Importantly, U is unitary, which implies that quantum

gates are reversible. Unlike classical gates such as AND, the input to a known quantum

gate can always be constructed given the output.

For a single qubit, quantum gates can also be represented on the Bloch sphere. All

1If H is time dependent, then the expression for U is more complex and involves a time-ordered
integral.
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single qubit unitaries can be written as

U = exp

[
−iΘ
−→
S · −→n
2

]
(1.5)

where Θ is an angle, −→n is a length 3 direction vector, and
−→
S = (Sx, Sy, Sz) is the vector

of Pauli matrices

Sx =

0 1

1 0

 (1.6)

Sy =

0 −i

i 0

 (1.7)

Sx =

1 0

0 −1

 . (1.8)

In the Bloch sphere, the action of U is to rotate the vector |ψ〉 about the axis −→n by the

angle Θ.

Next, we consider systems of multiple qubits. A simple multiqubit state might consist

of two independent qubits with wavefunctions |ψ1〉 = α1|0〉 + β1|1〉 and |ψ2〉 = α2|0〉 +

β2|1〉. The total wavefunction is given by the outer product

|ψtotal〉 = |ψ1〉 ⊗ |ψ2〉 (1.9)

= α1α2|00〉+ β1α2|01〉+ α1β2|10〉+ β1β2|11〉. (1.10)

Such a state is called a product state. However, quantum mechanics allows other other
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multiqubit states such as

|ψtotal〉 =
|01〉+ |10〉√

2
. (1.11)

This state fundamentally cannot factored into separate wavefunctions for the two qubits.

In other words, information is contained not only in the state of individual qubits, but also

in the correlations between the qubits. As a consequence, a system of N qubits requires

not 2N amplitudes to describe measurement probabilities, but 2N to fully capture all of

the joint probabilities. This phenomenon is known as quantum entanglement, and is one

of the primary resources for quantum computing since a collection of qubits can store

and manipulate an amount of information that is exponential in the number of qubits.

Entanglement can be generated by applying multiqubit quantum gates. For example,

the CNOT, which we express in the ordered basis (|00〉, |01〉, |10〉, |11〉) as

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0.

 (1.12)

flips the state of one of the qubit conditional on the state of the other qubit. If applied

the CNOT to the product state (|01〉 + |11〉)/
√

2, we obtain the entangled state from

Eqn. 1.11.

Having established the basic concepts of quantum computing, we can now describe

how a simple program for a quantum computer might run. We take a collection of qubits

and initialize them into a known state. We then apply a series of single and two (or

possibly more) qubit gates to the system, which is known as a quantum circuit. Finally,

we measure the qubits to extract some information from the output wavefunction.
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1.1.1 What is the Power of Quantum Computing?

Naively, superposition and entanglement appear to be powerful tools which should readily

give exponential speedups over classical computation. A oft-repeated trope is that a

quantum computer could prepare a superposition of N inputs using log2N qubits, act on

all of them simultaneously, and thus reduce an exponential number of function calls down

to one. However, this program will not provide and speedup because each measurement of

the final wavefunction only yields one bitstring. There, it will take an exponential number

of measurements to fully characterize the output wavefunction. A more subtle hint that

superposition and entanglement are not sufficient is the fact that quantum circuits which

contain only Clifford gates (which we will discuss in Chapter 7) can generate quantum

states which are highly entangled, and yet these circuits can be efficiently simulated on

a classical computer [6, 7].

Quantum algorithms which provide a speed up over classical algorithms must gen-

erally exploit a particular problem’s structure in some way, and we will see in the next

section how this is done in some well known cases. The computational complexity of

a generic quantum algorithm is still a highly debated topic, and drives much of the

theoretical and experimental research today.

1.2 Applications of Quantum Computing

In this section, we will discuss three applications of quantum computing and their general

strategies for achieving speedup over classical algorithms.
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1.2.1 Shor’s Algorithm

Shor’s algorithm factors a number into its prime factors, and was first discovered by

Peter Shor in 1994 [8]. Prime factorization is an important problem because many mod-

ern encryption protocols rely on the assumption that prime factoring large numbers

is an intractable problem. However, unlike the best known classical algorithms which

scale nearly exponentially with the number of digits, Shor’s algorithm scales polynomi-

ally. Thus, Shor’s algorithm shows that quantum computing could provide exponential

speedups in problems with real-world consequences, and has historically been a primary

motivator for funding quantum computing research.

Given a number N which we want to factor, Shor’s algorithm works by first con-

structing the function

f(x) = ax modN (1.13)

where a is a random integer smaller than N . Then, factoring N can be reduced to

finding the period of f , which is the integer r such that

f(x+ r) = f(x) (1.14)

for all integers x. Classically, we might evaluate f for all x < N , then compute the

discrete Fourier transform which converts the vector of the outputs of f to a frequency

domain representation. However, even just storing N values is classically expensive.

With a quantum computer, we can prepare a superposition of the outputs of f using

n = log2N qubits, then apply the quantum Fourier tranform (QFT) which is analagous

to the discrete Fourier transform for quantum amplitudes.
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The key to Shor’s algorithm is that the QFT can be computed much more efficiently

than the discrete Fourier transformation. In general, accessing the information in the

output of the QFT still requires an exponential number of measurements. However, since

our input vector is periodic by the nature of the problem, measuring the output state

will yield (with high probability) a result which informs us of the period of the input.

Many quantum algorithms, such as quantum phase estimation [9], take advantage of this

period finding property of the QFT to achieve speedups over classical algorithms.

1.2.2 Grover’s Algorithm

Grover’s algorithm [10] is used to invert functions of the form

f(x) =

{
1 if x = x̄

0 else
(1.15)

where x̄ is a member of a discrete set of N possible inputs to f . Such a function might

represent searching through a list of values for one which satisfies a certain property.

Grover’s algorithm works by using amplitude amplification. From an equal superposi-

tion of N states constructed using n = log2N qubits, Grover’s algorithm iteratively and

selectively increases the amplitude of |x̄〉. Given enough iterations, the final measured

state will be |x̄〉 with high probability. The number of iterations required for Grover’s

algorithm scales as
√
N , which is a quadratic speed up over a brute force classical search.

While the speed up is not exponential, a quadratic speedup is still substantial if N

is sufficiently large, and Grover’s algorithm may be used to help speed up brute force

searches for hard problems. Importantly, the scaling for Grover’s algorithm has been
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proven to be optimal and definitively better than any algorithm which does not use

quantum resources.

1.2.3 Quantum Simulation

The concept of quantum computing was first proposed by Richard Feynman [11], largely

in response to the difficulty of simulating physically interesting quantum systems with

classical computers. The general idea of quantum simulation is to initialize a known

quantum state, evolve it under a Hamiltonian which mimics a physical system of interest,

then measure observables of the final wavefunction. Proposals for interesting problems to

simulate include high temperature superconductivity [12, 13], quantum phase transitions

[14, 15, 16], chemical reactions [17, 18, 19], and even more exotic phenomenon such as

Hawking radiation [20].

Quantum simulation generally comes in two flavors. In a digital quantum simulation,

the evolution is divided into discrete time steps (a process called Trotterization [21]),

and the propagator for each time step is approximated using the available single and two

qubit gates on the hardware. Analog quantum simulations is a more direct approach in

which the system Hamiltonian is tailored to approximate the Hamiltonian of interest,

so that the desired evolution occurs naturally. Proof of principle experiments for both

digital and analog simulations have been performed.

While quantum simulation is of great interest to physicists, caution should be exer-

cised when claiming that quantum simulation will provide exponential speed up in any
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given problem. Initialization, evolution, and measurement may all turn out to have sig-

nificant overhead, especially when considering the presence of errors and noise and the

precision required for the simulation results.

1.3 Two Approaches to Quantum Computing Re-

search

The applications we have discussed promise significant progress for solving important

problems. However, realizing these applications is beyond the capabilities of current

quantum devices. In this section, we look at two approaches to quantum computing

research today. The first approach is to build a scalable (to millions of qubits) device with

high enough fidelity to implement quantum error correction, which is seen as the path to

ultimately implementing substantial quantum algorithms such as Shor’s algorithm. The

second approach is to build a smaller device - but still larger than any universal quantum

computer that exists today - with sufficient fidelity to perform a specific computational

task better than today’s classical computers.

1.3.1 Quantum Error Correction

Qubits are fundamentally analog devices. Information is encoded in complex amplitudes

which have no restrictions other than an overall normalization. Unlike classical bits which

are binary and digital, qubits are highly susceptible to noise. Real world systems will
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always have noise, either from the surrounding environment or from the very instruments

used to control the qubits. How can we protect qubits from these sources of error?

One of the breakthroughs in quantum information theory was the development of

quantum error correction (QEC). Like many classical error correction schemes, QEC

relies on encoding information from a single qubit into a multiqubit system. However,

the destructive nature of measurement prevents us from directly copying one qubit’s

information onto another 2. Instead, entanglement is used to construct multiqubit states

which will leave telltale signs if an error occurs. For example, in the simplest possible

code [23], a single logical qubit is encoded in the joint entangled state of three physical

qubits

|0〉L = |000〉 (1.16)

|1〉L = |111〉 (1.17)

|ψ〉L = α|000〉+ β|111〉 (1.18)

If one of the three qubits flips from |0〉 to |1〉 or vice versa, then we will measure a joint

state that is neither |000〉 or |111〉, such as |011〉. Furthermore, the measured joint state

can tell us which of the qubits flipped bits, e.g. the first qubit in our example.

This three qubit repetition code has one obvious drawback - we cannot distinguish

one qubit flipping from two qubits flipping. Even worse, we get no error detection at

all if all three qubits flip. One solution to this problem is to simply add more physical

2This feature of quantum mechanics is known as the no-cloning theorem [22].
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qubits to our logical qubit - the more qubits we have, the more bit flips we can tolerate

before logical failure. However, a more fundamental problem is that the repetition code

does not protect us from errors in which our logical qubits acquires an unwanted phase

shift between α and β. In fact, because measuring the joint state of the qubits collapses

each qubit into an eigenstate of Z (i.e. |0〉 or |1〉), the measurement destroys any phase

information encoded in the qubits. We could instead encode the logical qubit as

|0〉L = |+ ++〉 (1.19)

|1〉L = | − −−〉 (1.20)

where |+〉 = (|0〉+ |1〉)/
√

2 and |−〉 = (|0〉 − |1〉)/
√

2. We would then rotate the qubits

prior to measurement such that we measure in the X basis. Our logical qubit is now

protected against phase flips, but at the expense of bit flip protection.

Many QECs have been developed which address these shortcomings [25, 26, 27, 28, 29],

and one of the primary codes driving research today is the surface code [30, 24]. The

surface code is based on topological error correcting codes developed by Bravyi and Kitaev

[31]. A single logical qubit consists of many qubits arranged into a 2D checkerboard

pattern, where half of the qubits are data qubits and the other half of the qubits are

measure qubits which are interleaved between the data qubits. The measure qubits

further alternate between measure-X and measure-Z qubits. The surface code proceeds

in a repetitive cycle. On each cycle, each measure-X (measure-Z) qubit is entangled with

each of its four neighbors in the X (Z) basis with four successive CNOT (CZ) gates. After
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neighbors in the Z basis, while the other half entangle in the X basis. (b) Logical error rate
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the entanglement step, the measure qubits are measured. The result of the measurement

corresponds to an eigenvalue of the joint XXXX (ZZZZ) operator on the four data qubits,

which is known as a stabilizer.

Even though we do not measure the data qubits directly, the stabilizer measurement

still collapses the data qubits into an eigenstate of the joint measurement basis since they

are entangled with the measure qubit. However, the data qubits can simultaneously be

eigenstates of both XXXX and ZZZZ because the joint operators commute even though

the single qubit operators do not. This property means that we can extract both phase

and bit information from the data qubits without destroying either. Every measurement

cycle of the surface code collapses the data qubits into a highly entangled, simultaneous

eigenstate of many joint operators, and the pattern of measurement outcomes tells us

which eigenstate the data qubits are in. If the measurement outcome changes on any

given cycle, we have detected an error, and different types and locations of errors will

leave different signatures in the measurement. Given this knowledge, we can then correct

the errors in post processing.

As with the repetition code, a surface code logical qubit has greater protection from

errors with increasing number of qubits. A second important factor is the per cycle

error rate, which encapsulates errors in single qubit gates, two qubit entangling gates,

and measurement. The logical error rate as a function of these cycle rate and number

of qubits is shown in Fig. 1.2(b). Remarkably, the surface code has a fault tolerance

threshold which is akin to a phase transition. Below this threshold, error suppression
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becomes exponentially more effective with decreasing error rate.

A primary focus in quantum computing research today is building systems which are

below the error threshold, are scalable, and will maintain low error rates as they scale.

The first milestone in this research path would be to demonstrate a logical qubit as a

quantum memory which would have bit flip and phase flip rates that is lower than its

constituent systems.

1.3.2 Quantum Supremacy

Error correction will be necessary to do general quantum computing or to run complex

algorithms such as Shor’s algorithm. However, it is estimated that millions of physical

qubits will be required to build enough logical qubits to do useful computations [24],

while the state of the art today is tens of qubits. Nonetheless, these smaller devices can

be used to answer an important question - will a quantum computer work at even a

modest scale, and if so, can it do anything faster than a classical computer?

An affirmative answer to this question would demonstrate quantum supremacy3, a

term coined by John Preskill [33]. Quantum supremacy requires two ingredients: a well

defined computational task which can be performed on a quantum computer with an

exponential speedup over any classical computer, and hardware capable of running the

algorithm to complete this task. There are a few approaches to the computational task

[34, 35]. We will discus the approach of Ref [32], which is to sample the output of a

3This term is somewhat controversial. Other proposed terms are quantum advantage, quantum edge,
or somewhat jokingly, quantum relevancy.
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Figure 1.3: (a) An example random circuit on a 1D array of qubits. (b) Cross-entropy
fidelity (α) versus number of qubits in a 2D grid, for a range of two qubit error rates,
r. At 49 qubits, current classical computations can no longer accurately simulate the
evolution of the system. Adapted with permission from Ref. [32]
.
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random quantum circuit.

A random quantum circuit is implemented on an N × N 2D grid of qubits by first

initializing all of the qubits in superposition states, then alternating between rounds of 2

qubit entangling gates and single qubit gates 4. The goal is to generate a quantum state

where the 2N
2

amplitudes of the total wavefunction are completely randomly distributed.

Randomization requires that every qubit has the opportunity to be entangled with ev-

ery other qubit, and this can be done if the number of two qubit entangling rounds is

roughly at least N . For a large enough system, the final random quantum state will

exhibit an exponential distribution over its measurement probabilities 5. We cannot ex-

perimentally characterize the entire distribution because the number of possible bitstrings

is intractable. However, the exponential distribution implies that certain measurement

outcomes are far more likely to occur than others, and if our device is working correctly,

the bitstrings which we sample should be biased towards those in the high probability

part of the distribution.

Separately, a classical computer is also tasked with sampling from the same random

quantum state. Because the random quantum circuit has no structure, the only general

algorithm is to simulate the entire quantum circuit, a task that scales exponentially with

the number of qubits 6. For a sufficiently large number of qubits - currently around 50

4Importantly, some of the gates should not be Clifford gates, and this can be achieved by using T
gates, i.e. π/4 rotations about Z.

5This observation about random quantum states is related to work by Wigner on energy levels and
couplings in complex nuclear systems [36]. It can formally be obtained via random matrix theory [37],
and is also referred to as the Porter-Thomas distribution [38].

6It has not been definitively proven that random quantum sampling is exponentially difficult for
a classical computer. However, if this was not the case, there would be interesting and unexpected
consequences for computational complexity theory [39]
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for state of the art algorithms on a powerful supercomputer - this computation becomes

impossible, giving us a path to demonstrating quantum supremacy.

However, up until we reach this threshold number of qubits, the classical simulation

will be necessary to confirm that the quantum device is behaving as expected. Because

the quantum supremacy device will likely be too small to use error correction, we can

tolerate at most one total error in the execution of the entire random circuit. Figure

1.3(b) shows the cross entropy - a measure of the sampling fidelity of the quantum device

- versus the error rate per two qubit entangling gate, the most error prone part of the

quantum circuit. In order to comfortably reach quantum supremacy we would like to

two qubit error rates below 5× 10−3 on a device with at least 50 qubits.

1.3.3 Outlook

The error correction and supremacy proposals we have discussed are different in some

important ways. For example, the surface code operates on a repetitive measurement

cycle, while quantum supremacy would only require one-shot experiments with one mea-

surement. The error requirements for quantum supreamcy are somewhat more stringent,

while the surface code is particularly sensitive to leakage to non-computational states.

However, the two approaches are fundamentally similar in that they require high fidelity

control over a system of qubits with at least a 2D grid of connectivity.
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1.4 Qubit Implementations

The possibility of solving classically intractable problems has led to many experimental

advances in controllable quantum systems. In this section we will take a non-exhaustive

look at some of the popular approaches to building a qubit sytems today.

1.4.1 Trapped Ions

Nature readily gives us stable, discrete quantum systems - atoms. Atoms can be isolated

by first ionizing them, then trapping them in an electromagnetic field within an ultra-

high vacuum environment [40, 41, 42]. Historically, trapped ions were first used as highly

stable clocks because the energy levels of the ions were highly stable and predictable

[43, 44]. These properties also lend themselves to high fidelity single qubit manipulation.

The qubit basis is formed using two of the ion’s energy levels, chosen based on a balance

of stability and ease of manipulation and measurement. Single qubits can be controlled

using microwaves [45, 46] or lasers [47]. The qubit state is measured by driving a tran-

sition which causes the ion to fluoresce conditional on the qubit state [48]. Two qubit

interactions are generally mediated by the Coulomb force between two ions, and high

fidelity two qubit gates have been achieved by conditionally driving a vibrational mode

between the two qubits [47].

The challenge in building a trapped ion quantum computer is scaling up the number

of qubits. One focus of current research is to microfabricate traps on chip to reduce the

footprint of the trap [49, 50]. However, a single trap can only support a finite number of
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ions, and a full scale quantum computer will likely require connecting multiple separate

traps with photonic interconnects [51, 52].

1.4.2 Semiconductor Qubits

A more recent approach to building qubits is to create artificial atom-like objects in

solid state materials. The hope is that these qubits can be created in large quantities

by leveraging modern semiconductor fabrication technology, allowing the technology to

scale. DiVencenzo himself proposed that qubits could be created out of quantum dots

[53], which are nanometer sized confinements created by electrically gating a 2D or 1D

semiconductor structure. The dots are electrically tuned so that they contain a stable

electron configuration, and the spin of the electron(s) can then be used as a qubit. Control

is performed using standard electron spin resonance (ESR) techniques [54], while readout

is achieved using a technique called spin-to-charge conversion [55].

Qubits can also be created by introducing dopants and defects into semicondcutors.

The nitrogen-vacancy (NV) center in diamond [56] is a prime example of this type of

quantum system. The NV center consists of a substitutional nitrogen paired with a

vacancy defect in a diamond carbon lattice, and and the result is a spin-1 system which

contains both optical transitions and a tunable microwave transition. Remarkably, the

NV center retains its quantum properties even at room temperature. Other popular

defect systems include vacancy defects in silicon carbide [57, 58], and phosphorus donors

in silicon [59].

21



Two qubit interactions remain a challenge for spin qubits because the interactions be-

tween single electrons is inherently weak, though progress has been made in executing two

qubit gates on quantum dots. Another difficulty in scaling up spin qubit systems is that

the qubits are often very sensitive to their microscopic environment. Thus, spin qubits

may vary between manufacturing runs and even from cooldown to cooldown. Aside from

quantum computing, spin and defect qubits show promise for other practical quantum

applications, such as magnetic field sensing [60, 61], and quantum key distribution [62].

1.4.3 Superconducting Qubits

Trapped ions and spin qubits derive their quantum properties from fundamental parti-

cles of nature. Superconducting qubits lie on the other end of the spectrum - they are

macroscopic and man-made objects which exhibit quantum behavior. Superconducting

qubits are radio frequency circuits which are fabricated out of a superconducting metal

such as aluminum or niobium. When cooled to sub-kelvin temperatures inside a dilution

refrigerator, the metals become superconducting, which has two important consequences.

First, a metal in a superconducting state has zero resistance, and low dissipation is a

requirement for quantum coherence since quantum mechanics is reversible. Second, elec-

trons in a superconducting metal are bound into pairs called Cooper pairs, and because

Cooper pairs are bosons, they can condense into the same quantum ground state. There-

fore, the electrical properties of a superconducting circuit, such as the charge or phase,

can considered to be single, macroscopic quantum properties of the circuit.
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Superconducting qubits have a number of attractive qualities for quantum comput-

ing. Because they are man-made circuits, superconducting qubits are not constrained

by natural constants such as atomic transitions or dipole moments. The qubit transi-

tion frequency and qubit-qubit couplings can be designed by simply varying capacitances

and inductanes in the circuit, and can even by tuned in situ with electrical signals. Like

semiconductor qubits, superconducting qubits can also leverage existing fabrication tech-

nology to make large quantities of qubits. Somewhat counterintuitively, the macroscopic

nature of superconducting qubits is actually an advantage for scaling up, because the

larger size affords more space for routing control and measurement wires.

Historically, the primary disadvantage of superconducting qubits is their short coher-

ence times. The tunability and large size of superconducting qubits makes them highly

susceptible to environmental noise and materials defects. However, qubit coherence has

improved dramatically in recent years, thanks to improvements in materials quality and

in the design of the qubits. Of particular note is the introduction of the transmon qubit

by researchers at Yale [63], which solved an outstanding problem of sensitivity of qubit

devices to charge noise.

1.5 Summary and Thesis Outline

Quantum computing exploits the features of quantum mechanics to store and manipulate

information, and could potentially solve certain problems faster than classical computing.

Moreover, precisely controlling a quantum system with many degrees of freedom would
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in and of itself be an important milestone for experimental physics. Current research in

quantum computing is focused on scaling up the number of qubits while maintaining high

fidelities in order to achieve fault tolerance for error correction and quantum supremacy.

There are many approaches to building quantum systems, each with their own merits

and drawbacks.

Superconducting qubits have seen particularly exciting progress in recent years. They

have improved to the point that their two qubit fidelities are among the best of any

implementation [64, 65]. Furthermore, recent devices indicate that these fidelities can be

maintained when increasing the number of qubits, enabling proof of principle experiments

in error correction [66, 67]. This thesis will focus on the implementation of single qubit

gates, two qubit gates, and readout in superconducting qubits. These components are the

basis for any quantum algorithm, and all of them need to be high fidelity operations to

achieve fault tolerance or quantum supremacy. In Chapter 2, we will review the design

of the transmon circuit . Then, in Chapter 3, we will survey the techniques used to

fabricate these circuits, and in Chapter 4, we will focus on the infrastructure we use

control superconducting qubits. In Chapter 5, we will detail the calibration procedure

for single qubit gates. In Chapters 6 and 7, we will benchmark the result of our single

qubit calibration procedure using a variety of metrological tools. In Chapter 8, we will

calibrate two qubit gates then apply the same metrological tools to characterize two

qubit gate fidelity. Finally, in Chapter 9, we will explore the complicated dynamics of

dispersive readout and the limits it places on high fidelity qubit measurement.
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Chapter 2

Superconducting Transmon Qubits

In this chapter, we introduce the basic building block for our experiments, the transmon

qubit. We start with a review of quantum mechanics as it applies to electrical oscillators,

then apply similar concepts to derive the energy level structure for a transmon. Next,

we discuss how to couple quantum circuits, both to the outside world for control and

measurement, and to other quantum devices. Finally, we look at the constraints on

various device parameters such as frequencies and control couplings, and list the device

parameters that we typically use in experiments. The primary sources for this chapter

were Daniel Sank’s thesis [68], notes by Steve Girvin [69] and Michel Devoret [70], and

the original paper by Koch et al. describing the transmon [63].
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Figure 2.1: A simple LC oscillator.

2.1 LC Circuit

To understand how quantum mechanics applies to electrical circuits, we begin with the

oscillating LC circuit shown in Fig. 2.1. We identify the potential energy of the circuit

as the energy stored in the capacitor which has charge Q, and kinetic energy as due to

the current Q̇ flowing in the inductor

U =
Q2

2C
(2.1)

T =
LQ̇2

2
. (2.2)

We then write the Lagrangian:

L = T − U (2.3)

=
LQ̇2

2
− Q2

2C
(2.4)

26



and after applying the Euler-Lagrange equation, we confirm that the resulting equations

of motion match our expectation from applying Kirchoff’s laws

∂L
∂Q
− ∂

∂t

∂L
∂Q̇

= 0 (2.5)

Q

C
+ LQ̈ = 0 (2.6)

ω2Q+ Q̈ = 0. (2.7)

where ω = 1/
√
LC is the resonance frequency of the circuit. The conjugate coordinate

to Q is

∂L
∂Q̇

= LQ̇ = Φ, (2.8)

where Φ is the flux through the inductor. We then arrive at the Hamiltonian for the LC

circuit

H = ΦQ̇− L =
Φ2

2L
+
Q2

2C
(2.9)

which is the familiar Hamiltonian for a harmonic oscillator.

So far, we have chosen the charge Q as our ”position” coordinate. Thus, in an

analogous mechanical oscillator, Φ would represent the momentum, and L and C would

represent the mass and inverse of the spring constant, respectively. However, Eqn. 2.9 is

symmetric in the position and momentum coordinates, and we will see later on that it is

more convenient to choose Φ as the position coordinate. Earlier, we interpreted Φ as the

flux threading the inductor. Alternatively, we may define Φ as the integral of the voltage
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at a node in the circuit

Φ(t) =

∫ t

V (τ)dτ. (2.10)

This quantity is known as the node flux or branch flux. Starting with Φ as the position

coordinate, we would reverse the position of the minus sign in the Lagrangian in Eqn. 2.4,

but would eventually arrive at the same Hamiltonian as Eqn. 2.9.

The LC oscillator has the all of the familiar properties of a harmonic oscillator. The

two conjugate coordinates follow the canonical commutation relation

[Φ, Q] = i~ (2.11)

and the Hamiltonian can be rewritten in terms of raising and lowering operators

H = ~ω
(
a†a+

1

2

)
(2.12)

a =

√
1

2~Z
(Φ + iZQ) (2.13)

a† =

√
1

2~Z
(Φ− iZQ) (2.14)

where a† and a are the raising and lowering operators, and Z = 1√
LC

is the characteristic

impedance of the circuit. We can also rewrite the charge and flux operators in terms of
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Figure 2.2: The transmon qubit.

the raising and lowering operator

Q = i

√
~

2Z
(a† − a) (2.15)

= iQzpf(a− a†) (2.16)

Φ =

√
~Z
2

(a† + a) (2.17)

= Φzpf(a+ a†) (2.18)

where Qzpf =
√
〈0|Q2|0〉 =

√
~/2Z is the zero point fluctuation of the charge operator,

and Φzpf =
√

~Z/2 is likewise the zero point fluctuation of the phase operator.

2.2 Transmon Hamiltonian

Up to now, we have studied a linear LC circuit where the energy levels are evenly spaced

with energy difference ~ω. This linear energy structure is not suitable for performing

quantum computation, because no two energy levels can be addressed by classical con-

trols without also addressing other transitions in the ladder. To obtain a nonlinear energy

level structure, we require a nonlinear circuit element. Fortunately, a nonlinear super-

conducting circuit element exists: the Josephson junction [71]. The Josephson junction
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(JJ) consists of two superconducting leads connected by a weak link, typically an thin

(few nanometer) insulating barrier. A JJ is governed by the Josephson relations:

V (t) =
~
2e

∂φ

∂t
(2.19)

I(t) = Ic sinφ(t) (2.20)

where φ is the phase difference across the junction and IC is the critical current of the

junction, above which the junction acts like a normal resistor. By combining Eqn. 2.10

and Eqn. 2.20, we see that φ is related to the branch flux by φ = 2e/~Φ = 2πΦ/Φ0, where

Φ0 is the flux quantum. As current flows through the junction, it accumulates energy,

which we can find by integrating the power

U =

∫ t

0

V (t)I(t)dt (2.21)

=
~
2e

∫
Ic sinφ

∂φ

∂t
dt (2.22)

=
~
2e

∫
Ic sinφdφ (2.23)

= −EJ cosφ. (2.24)

We find that the energy stored in the junction is proportional to the cosine of the phase

difference, with an energy scale EJ = Φ0Ic/2π, also called the Josephson energy.

We now replace the linear inductor of our LC circuit with the nonlinear Josephson
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inductance as shown in Fig. 2.2, and obtain the following Hamiltonian for the transmon

H =
Q2

2C
− EJ cos

2πΦ

Φ0

(2.25)

which is also commonly written as

H = 4Ecn
2 − EJ cosφ (2.26)

where n = Q/2e is the number of Cooper pairs, Ec = e2/2C is the charging energy, and

the variables n and φ have the commutation relation [φ, n] = 1.

To understand the transmon Hamiltonian, we expand the cosine term assuming that

fluctuations in φ are small

cosφ ≈ 1− φ2 + φ4/24 + . . . . (2.27)

Ignoring the constant term, to first order we obtain the harmonic oscillator Hamiltonian

H ≈ 4Ecn
2 + EJφ

2 (2.28)

where the energy levels form an evenly spaced ladder with energy spacing
√

8EJEC .

Next, we consider the effect of the quartic term perturbatively by writing it in terms of

harmonic oscillator ladder operators

φ =

(
2EC
EJ

)1/4 (
a† + a

)
(2.29)

−EJ
φ4

24
= −EC

12

(
a† + a

)4
. (2.30)
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We now apply this correction term to the mth first order oscillator basis state

∆Em = −EC
12
〈m|

(
a† + a

)4 |m〉 (2.31)

= −EC
12

(
6m2 + 6m+ 3

)
(2.32)

Em = m
√

8EJEC −
EC
12

(
6m2 + 6m+ 3

)
. (2.33)

Finally, we compute the difference between neighboring energy levels

Em − Em−1 = −mEc. (2.34)

We find that the energy spacing decreases as we go up the ladder in energy. Thus, we

can use the ground and first excited states of the energy ladder as our two level qubit,

which will have energy

E10 =
√

8EJEC − EC , (2.35)

and the difference between E10 and E21 is simply E21−E10 = −EC , the charging energy.

This quantity is also known as the anharmonicity, η.

The anharmonicity sets a speed limit on how fast we can control our qubit - faster

control pulses are more spectrally broad, and if the width of the pulse is larger than η in

frequency space, we can induce undesired transitions to the second excited state. Based

on this property, we might be tempted to make EC as large as possible by making the

capacitance as small as possible. However, up to now we have neglected a term in the

transmon Hamiltonian in Eqn. 2.26 due to external voltages on the capacitor, which we
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Figure 2.3: An LC oscillator coupled to a voltage drive.

write as follows

H = 4Ec (n− ng)2 − EJ cosφ (2.36)

where ng is known as the gate charge. This gate charge may be due to external voltage

biases applied by the experimenter, but can also come from charge fluctuations in the

environment. Fluctuations in the gate charge lead to fluctuations in the energy levels

and are thus a source of decoherence. In fact, 1/f charge noise was the dominant source

of decoherence in early superconducting qubit devices.

The key to the design of the transmon is that the sensitivity of the energy levels to the

gate charge is proportional to e
√

8EJ/EC - in other words, decreasing the charging energy

by adding additional capacitance to the circuit exponentially decreases the sensitivity to

charge noise. Thus, picking transmon parameters is largely a matter balancing the ratio

of EJ/EC so that our device is sufficiently anharmonic but insensitive to charge noise.

2.3 Driving

We now turn to the mechanisms for controlling and coupling transmon qubits. Because

transmons are nearly harmonic, we will use the LC oscillator as a stand-in for under-
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standing the basic physics, then truncate down to the two lowest levels to obtain the

Hamiltonian for a qubit. First consider the circuit shown in Fig. 2.3, consisting of a volt-

age source with output impedance Zd coupled to an LC circuit by a capacitor Cd. If the

there is no voltage on the driving circuit, the Lagrangian and Hamiltonian of the total

circuit is

L =
1

2
CΦ̇2 +

1

2
CdΦ̇

2 − Φ2

2L
(2.37)

H =
Q2

2CΣ

+
Φ2

2L
(2.38)

and the conjugate variable to Φ is now slightly modified to be Q = CΣΦ̇, where CΣ =

C +Cd is the total capacitance to ground. Next, we add a time dependent voltage Vd(t)

due to the driving circuit

Ldriven =
1

2
CΣΦ̇2 +

1

2
Cd(Vd(t)− Φ̇)2 − Φ2

2L
(2.39)

= L+
1

2
CdV

2
d − CdVd(t)Φ̇. (2.40)

We can ignore the 1
2
CdVd(t)

2 term because it does not contain Φ or Φ̇. We now recompute

the conjugate to Φ

Q̃ = CΣΦ̇− CdVd(t) (2.41)
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and express the Hamiltonian as a function of Q̃ and Φ

Hdriven = Q̃Φ− Ldriven (2.42)

=
1

2
CΣΦ̇2 +

Φ2

2L
. (2.43)

Next we invert Eqn. 2.41 to get Φ̇ as a function of Q̃, and substitute into Eqn.2.43 to

get

Hdriven =
Q̃2

2CΣ

+
Φ2

2L
+
Cd
CΣ

VdQ̃+
C2
dVd(t)

2

2CΣ

. (2.44)

Again, we can neglect the last term which does not include either coordinate. We see

that the driving term couples to the momentum of the oscillator. We now treat this term

as a small perturbation on the undriven Hamiltonian and assume Q̃ ≈ Q. Then, using

Eqn. 2.18, we write the Hamiltonian in terms of raising and lowering operators

Hdriven = ~ωa†a+
1

2
− iCdVd(t)

CΣ

Qzpf(a− a†). (2.45)

Having derived the Hamiltonian for an oscillator, we can truncate down to the lowest

two levels to get an approximate Hamiltonian for a two level qubit. In converting the

oscillator Hamiltonian to a qubit Hamiltonian, we use the following relations between
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raising and lowering operators and the qubit operators in the Pauli basis

a→ σ− (2.46)

a† → σ+ (2.47)

a+ a† → σx (2.48)

i(a† − a)→ σy (2.49)

1− 2a†a→ σz (2.50)

and obtain the following qubit Hamiltonian

Hqubit = H0 +Hd (2.51)

H0/~ = −ω
2
σz (2.52)

Hd = Ωf(t)σy, (2.53)

where Vd = V0f(t) and Ω is known as the Rabi frequency, and is given by

Ω =
CdV0Qzpf

~(C + Cd)
. (2.54)

First, consider the static part of the Hamiltonian, H0. The time evolution of a

state |ψ(t)〉 is given by the solution to Schroedinger’s equation for a time independent
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Hamiltonian

i~
∂

∂t
|ψ(t)〉 = H0|ψ(t)〉 (2.55)

|ψ(t)〉 = exp

[
−iH0t

~

]
|ψ(0)〉 (2.56)

= U |ψ(0)〉 (2.57)

where U is the propagator, a unitary operator describing the evolution of the system.

Often, we are interested in only the effect the driving, time dependent part of the Hamil-

tonian. In other words, we want the time evolution of the system after accounting for

the effect of U . We consider a new time dependent basis

|Θ(t)〉 = U †|ψ(t)〉, (2.58)

which removes the time dependence of |ψ〉. The time evolution of this new basis under

the Hamiltonian (H0 +Hd) is

i~
∂

∂t
|Θ(t)〉 = i~

(
∂U †

∂t
|ψ(t)〉+ U †

∂

∂t
|ψ(t)〉

)
(2.59)

= −H0UU
†|Θ(t)〉+ U †(H0 +Hd)U |Θ(t)〉 (2.60)

= U †HdU |Θ(t)〉 (2.61)

where we used the fact that U commutes withH and ∂U †/∂t = (iH0/~)U . This procedure

is known as moving to the ”rotating frame” or the ”interaction picture”. From Eqn. 2.53,
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we now have

H ′ = ~Ωf(t)e−iωtσz/2σye
iωtσz/2 (2.62)

= ~Ωf(t)

 0 −ie−iωt

ieiωt 0

 (2.63)

= i~Ωf(t)
(
eiωtσ+ − e−iωtσ−

)
. (2.64)

Now, suppose f(t) is a continuous wave drive on resonance with the qubit

f(t) = sinωt+ φ (2.65)

= −i
(
ei(ωt+φ) − e−i(ωt+φ)

)
/2. (2.66)

Substituting into Eqn. 2.64, and ignoring terms which rotate at 2ω 1, we have

H ′/~ = −Ω

2

(
e−iφσ+ + eiφσ−

)
(2.67)

= −Ω

2
(cosφσx − sinφσy) . (2.68)

In the Bloch sphere picture, an on resonance drive causes the state to rotate about the

equator of the sphere, with the axis of rotation determined by the phase of the drive. To

1We ignore these terms because they oscillate quickly and average out to zero.
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Figure 2.4: Two coupled LC oscillators.

determine the rotation frequency, let us assume φ = 0. Then, we have

U ′ = e−iH
′t/~ (2.69)

=

 cos Ωt/2 i sin Ωt/2

i sin Ωt/2 cos Ωt/2

 . (2.70)

If the qubit begins in the ground state, then at time t the state of the qubit is

U ′|0〉 = cos
Ωt

2
|0〉+ i sin

Ωt

2
|1〉. (2.71)

The qubit completes a full cycle on the Bloch sphere when Ωt = 2π, and hence the rate

of rotation is Ω/2π, the Rabi frequency.
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2.4 Coupling

2.4.1 Oscillator-Oscillator Coupling

Next we turn to two coupled LC circuits as shown in Fig. 2.4. We first consider only

the kinetic part of the Lagrangian

T =
1

2
C1Φ̇2

1 +
1

2
C2Φ̇2

2 +
1

2
Cg

(
Φ̇2 − Φ̇1

)2

(2.72)

=
1

2
(C1 + Cg)Φ̇

2
1 +

1

2
(C2 + Cg)Φ̇

2
2 − CgΦ̇2Φ̇1 (2.73)

Equation 2.73 can be rewritten in matrix form as

T =
1

2
Φ̇TCΦ̇ (2.74)

Φ =

Φ1

Φ2

 (2.75)

C =

C1 + Cg −Cg

−Cg C2 + Cg

 (2.76)
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The conjugate charges to the vector Φ are

Q =

 ∂L
∂Φ̇1

∂L
∂Φ̇2

 (2.77)

=

 (C1 + Cg)Φ̇1 − CgΦ̇2

−CgΦ̇1 + (C2 + Cg)Φ̇2

 (2.78)

Q = CΦ̇ (2.79)

C−1Q = Φ̇ (2.80)

Using the fact that transposing a matrix product reverses the multiplication order, we

can now rewrite Eqn. 2.73 as

T =
1

2
QTC−1Q, (2.81)

and it follows that the total Hamiltonian is

H =
1

2
QTC−1Q+

Φ2
1

2L1

+
Φ2

2

2L2

(2.82)

The inverse capacitance matrix is

C−1 =
1

C1C2 + C1Cg + C2Cg

C2 + Cg Cg

Cg C1 + Cg,

 (2.83)
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and the charge portion of the Hamiltonian can be written as

HQ =
Q2

1

2C ′1
+

Q2
2

2C ′2
+
Q1Q2

C ′g
(2.84)

(2.85)

where the new capacitances are

C ′1 = C1 +
C2Cg
C2 + Cg

(2.86)

C ′2 = C2 +
C1Cg
C1 + Cg

(2.87)

C ′g =
C1C2 + C1Cg + C2Cg

Cg
. (2.88)

Using Eqn. 2.18, we can write the coupling Hamiltonian as

Hg =
Qzpf,1Qzpf,2

C ′g
(a†1 − a1)(a2 − a†2) (2.89)

=
~

2
√
Z1Z2C ′g

(a†1 − a1)(a2 − a†2). (2.90)

We use the fact that Z = 1/ωC, and fold the prefactor into a new quantity, the coupling
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strength g

Hg = ~g(a†1 − a1)(a2 − a†2) (2.91)

g =
√
ω1ω2

√
C ′1C

′
2

2C ′g
(2.92)

=
√
ω1ω2

Cg

2
√

(C1 + Cg)(C2 + Cg)
. (2.93)

2.4.2 Oscillator-Qubit Coupling

Having derived the coupling term for two oscillators, we now consider the case of an

oscillator coupled to a qubit. We will first take the standard mathematical approach to

solving this system, then consider a graphical approach which allows us to easily account

for the higher states of the transmon.

From Eqn. 2.93, we identify the ladder operators a and a† with the lowering and

raising operators σ− and σ+, and rewrite the coupling Hamiltonian as

Hg = ~g(a† − a)(σ− − σ+) (2.94)

Hg = ~g(a†σ− + aσ+ − a†σ+ − aσ−) (2.95)

The third and fourth term do not conserve the total number of excitations in the

oscillator-qubit system, and in the rotating wave approximation, these terms are ne-
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glected. The total Hamiltonian is now

H

~
= ωra

†a− 1

2
ωqσz + g(a†σ− + aσ+). (2.96)

Equation 2.96 is the Jaynes-Cummings Hamiltonian [72], which is frequently used in

quantum optics to describe the interaction between an atom and a resonant cavity. The

important parameters in the Jaynes-Cummings Hamiltonian are the detuning ∆ = ωq−ωr

and the coupling strength g. We will mostly work in the dispersive limit where |∆| >> |g|.

In this limit, the coupling term of the Hamiltonian can be found via perturbation theory

to be

Hg

~
≈ −g

2

∆
σza

†a (2.97)

= χσza
†a, (2.98)

where χ = −g2/∆ is known as the dispersive shift.

The effect of Eqn 2.98 can be seen by rewriting the total Hamiltonian as

H

~
= ωra

†a− 1

2
(ωq − 2χa†a)σz (2.99)

where we find that the frequency of the qubit decreases by 2χ for every excitation in the

resonator. This effect is commonly known as the AC Stark effect. Alternatively, we can
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Figure 2.5: The first three levels of the Jaynes-Cummings ladder for a transmon.

write

H

~
= (ωr + χσz)a

†a− 1

2
ωqσz (2.100)

and observe that the frequency of the resonator depends on the state of the qubit, with

the difference in resonator frequency between the two qubit states equal to 2χ.

The Jaynes Cummings Ladder for a Transmon

To visualize the levels of the transmon and resonator, we use a construction called the

Jaynes-Cummings (JC) ladder. The JC ladder is built from the joint states of the qubit

and resonator, which we denote by |q, n〉 where q is the number of excitations in the

qubit and n is the photon occupation of the resonator. For this example, we will assume

that ωr > ωq and thus ∆ < 0.
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At the bottom of the ladder is the joint ground state |0, 0〉. Above the ground state,

either the qubit can be excited with joint state |1, 0〉, or the resonator can be excited

with joint state is |0, 1〉. These two states comprise the first ”rung” of the ladder since

these these two states are close in energy. The next rung contains the joint states with

two excitations, which include |0, 2〉 and |1, 1〉, as well as |2, 0〉 since the transmon has

higher excited states. The ladder continues upward with increasing excitation number,

in principle to infinity since the resonator has no limit on its number of bound states.

Next, we consider how the states within the ladder are coupled. In our ladder picture,

the effect of the rotating wave approximation is to restrict couplings to only occur within

the each rung of the ladder, under the assumption that states in different rungs are far

detuned. For this reason, these rungs are also referred to as RWA strips. Furthermore,

because the transmon is nearly harmonic, we restrict couplings to only occur between

neighboring transmon states.

We also have to determine the coupling strengths between states within each rung.

The nominal coupling strength g corresponds to the coupling between |1, 0〉 and |0, 1〉.

Moving up the ladder, additional excitations enhance the couplings by
√
m where m =

n+ q is the number of excitations for each state in the rung. Here we have assumed that

adding a resonator excitation or adding a transmon excitation are equivalent from the

standpoint of coupling strength. However, the transmon is not completely harmonic so

the
√
q scaling of the charge matrix element is only an approximation.

The effect of each coupling is to pairwise repel each state’s energy by the square of
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the coupling strength divided by the detuning between the states. For example, in the

single excitation rung of the JC ladder, the detuning is

E|1,0〉 − E|0,1〉 = ωq − ωr = ∆. (2.101)

Therefore, each state is repelled by

E|0,1〉 − E|0,1〉 = −
(
E|1,0〉 − E|1,0〉

)
=
g2

∆
, (2.102)

where the overbar indicates that the energy is an eigenenergy, as distinguished from bare

energies which do not take the coupling into account. Equation 2.102 is also known as

the Lamb shift [73].

In the two excitation rung, we gain a
√

2 factor in coupling strength so the repulsion

appears to be doubled. However, we must also take into account the repulsion due to

|2, 0〉. To first order, we can independently add these repulsions to find the eigenenergy

for |1, 1〉

E|1,1〉 − E|1, 1〉 =
2g2

∆
− 2g2

∆ + η
(2.103)

(2.104)

where the minus sign is due to the fact that |2, 0〉 is below |1, 0〉 and thus repels in the

opposite direction compared to |0, 1〉.

We now have all of the tools to compute the quantities of interest in our system. The
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dispersive shift is the difference in resonator frequency conditional on the qubit state,

2χ = ω|1〉r − ω|0〉r (2.105)

=
(
E|1,1〉 − E|1,0〉

)
−
(
E|0,1〉 − E|0,0〉

)
(2.106)

=

(
ωr −

g2

∆
+

2g2

∆
− 2g2

∆ + η

)
−
(
ωr +

g2

∆

)
(2.107)

=
2g2

∆
− 2g2

∆ + η
(2.108)

=
−2g2η

∆2(1 + η/∆)
. (2.109)

In the limit of η →∞, we have χ→ −g2/∆ giving us our two level formula, while η → 0

yields χ→ 0, matching our intuition for two coupled oscillators.

We can also compute the AC Stark shift, which is the shift in qubit frequency when

one resonator photon is added

AC Stark shift =
(
E|1,1〉 − E|0,1〉

)
−
(
E|1,0〉 − E|0,0〉

)
(2.110)

=

(
ωq −

g2

∆
− 2g2

∆
+

2g2

∆ + η

)
−
(
ωq −

g2

∆

)
(2.111)

=
2g2

∆
− 2g2

∆ + η
(2.112)

= 2χ. (2.113)

As before, we find that the AC Stark shift is equivalent to the dispersive shift. Further-

more, since increasing the resonator photon number increases the coupling strength by

√
n, the AC Stark shift of the qubit should be linear with the photon number to first
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order.

2.4.3 Qubit-Qubit Coupling

Using Eqn. 2.93 again, we can now replace both sets of ladder operators with Pauli

operators to get the Hamiltonian for qubit-qubit coupling

Hg = ~g(σ+
1 − σ−1 )(σ−2 − σ+

2 ) (2.114)

= ~gσy1 ⊗ σy2 (2.115)

Next, we move to the rotating frame, which we saw how to do for σy in Eqn. 2.64

Hg = −~g
(
eiω1tσ+

1 − e−iω1tσ−1
) (
eiω2tσ+

2 − e−iω2tσ−2
)

(2.116)

= −~g
(
ei(ω1+ω2)tσ+

1 σ
+
2 + e−i(ω1+ω2)tσ−1 σ

−
2 − ei(ω1−ω2)tσ+

1 σ
−
2 − ei(ω2+ω1)tσ−1 σ

+
2

)
(2.117)

Assuming ω1 and ω2 are relatively close, we again use RWA to ignore the high frequency

ω1 + ω2 terms to obtain

Hg = ~g
(
ei(ω1−ω2)tσ+

1 σ
−
2 + ei(ω2+ω1)tσ−1 σ

+
2

)
(2.118)
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and finally, if ω1 = ω2, we have

Hg = ~g
(
σ+

1 σ
−
2 + σ−1 σ

+
2

)
(2.119)

which is often written as

Hg = ~g (σx ⊗ σx + σy ⊗ σy) . (2.120)

To understand the effect of the Hamiltonian in Eqn. 2.120, we write it in matrix form

with basis states ordered as |00〉, |01〉, |10〉, |11〉.

Hg/~ = g



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


. (2.121)

We see that on-resonance coupling results in a Hamiltonian which swaps the |01〉 and |10〉

states. In othe words, Hg swaps excitations between the two qubits. Note that within

the |01〉, |10〉 subspace, the coupling Hamiltonian resembles to σx and is analogous to the

driven single qubit Hamiltonian in Eqn. 2.68 with φ = 0 and Ω/2 → g. Thus, without

having to do any more work, we see that the frequency of swapping is g/4π.
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2.5 Frequency Control

We will see in Chapter 8 that being able to tune the frequency of the transmon is

crucial for executing the type of entangling gate used in the UCSB Xmon scheme. We

saw in Eqn. 2.35 that the energy of the qubit transition in the transmon is determined

by the parameters EC and EJ . To dynamically change the transition energy, we must

dynamically change either the capacitance or Josephson inductance of the transmon

circuit. Fortunately, the Josephson inductance can be tuned by using a superconducting

quantum interference device (SQUID).

A SQUID consists of two Josesphson junctions in parallel inside a superconduct-

ing loop. For simplicity, suppose the two junctions have the same critical current and

Josephson energy, EJ . Then, the energy in the two junctions is

U = −EJ(cosφ1 + cosφ2) (2.122)

= −2EJ cos
φ1 + φ2

2
cos

φ1 − φ2

2
(2.123)

where φ1 and φ2 are the phase differences across the two junctions. When the SQUID

is threaded by an external flux Φext, a screening current will flow to cancel this flux,

because the integrated phase around a superconducting loop must be an integer multiple

of the flux quantum, Φ0. The screening current creates a difference in the phases across

the two junctions, which must obey

φ2 − φ1 = 2πn+
2πΦext

Φ0

. (2.124)
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where n is an integer. Substituting back into Eqn. 2.123, we have

U = −2EJ | cos
πΦext

Φ0

| cosφ (2.125)

(2.126)

where φ = (φ1 + φ2)/2 is the effective phase difference across the SQUID. The absolute

value is a result of the fact that if |Φext| > Φ0/2, the screening current will prefer to flow

in the opposite direction, reversing the phase difference. Thus, we see that the energy of

the SQUID is effectively the energy of a single junction with a tunable EJ that goes as

the cosine of the external flux. As a function of the external flux, the transmon |0〉 → |1〉

frequency is

~ω10 =

√
8ECEJ,max| cos

πΦext

Φ0

| − EC . (2.127)

2.6 Typical Transmon Parameters

In this section we will enumerate the typical parameters used in the UCSB Xmons. Before

we do so, we first go over some of the design considerations when choosing transmon

parameters.
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2.6.1 Frequency

The frequency of the transmon must be high enough to avoid thermally populating the

qubit. The excited state population is given by the usual Boltzmann formula

Pthermal =
e−~ω10/kbT

1 + e−~ω10/kbT
(2.128)

where we have ignored the presence of the higher states of the transmon. Typical

measurements have found that despite a 10 mK environment in the dilution refrigerator,

qubits tend to thermalize instead to 30 mK. To attain a population of 0.1%, the frequency

should be at least 4 GHz. On the other end of the spectrum, the transmon frequency

should lie comfortably within the available range of off-the-shelf microwave components,

so transmons are typically operated in the 4-8 GHz range.

2.6.2 Control Coupling

When coupling the capacitive drive line and SQUID bias line to the qubit, we want as

strong a coupling as possible without damping the qubit. For the capacitive drive line,

the loaded quality factor of the qubit due to coupling to the drive is given by [68]

Q =
C

RC2
dω

(2.129)

where R is the impedance of the drive line and is always 50 Ohms, Cd is the coupling

capacitance, and ω is the frequency of the qubit.

For the SQUID bias, we are primarily concerned with electrical noise in the SQUID

dephasing the qubit 2. We express noise as a single sided power spectral density SV which

2Asymmetry in the SQUID’s junctions can also cause damping, though this effect is usually small.
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has units of V2/Hz. The flux noise in the SQUID due to voltage noise on the bias line is

SΦ(ω) = SV (ω) (M/R)2 (2.130)

where SΦ is typically expressed in units of Φ2
0/Hz and R is the impedance of the bias

line. We can then convert this flux fluctation to a frequency fluctuation of the qubit

Sω10 =

(
dω10

dΦ

)2

SΦ(ω). (2.131)

The conversion from Sω10 to a dephasing time depends on the shape of the SV spectrum.

Assuming white noise so that Sω10 = S0, the dephasing time is given by T ∗2 = 4/S0,

yielding

1

T ∗2
=

1

4

(
dω10

dΦ

M

R

)2

SV (2.132)

2.6.3 Readout Coupling

For readout, there are three important parameters: the coupling of the readout resonator

to its drive, which is commonly denoted by κ; the detuning of the readout resonator from

the qubit, ∆; and the coupling between the qubit and the resonator gres. The resonator-

drive coupling determines the readout speed, which we want as fast as possible to mitigate

any T1 decay during the readout. However, this coupling can also lead to damping of the

qubit through the Purcell effect. The Purcell decay is given by

ΓPurcell = κ
(gres

∆

)2

. (2.133)
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This qubit decay rate can be suppressed by introducing a bandpass filter between the

resonator and drive line [74].

The qubit-resonator coupling and detuning factor into both the Purcell decay rate

and as we saw earlier, the dispersive shift of the resonator. To get the largest difference in

resonator response between the |0〉 and |1〉 qubit states, the dispersive shift should match

the linewidth of the resonator, and assuming the linewidth of the resonator is dominated

by the drive coupling, we have

χ ≈ κ. (2.134)

In principle, the resonator frequency may be placed either above or below the qubit. We

will more carefully examine the consequences of this choice in Chapter 9.

2.6.4 Qubit-Qubit Coupling

The qubit-qubit coupling determines the speed at which entangling interactions can occur

between qubits. However, in a fixed coupling system like our capacitively coupled trans-

mons, the only way to turn off the interaction is to detune the qubits apart. Typically,

this means that some qubits must be operated in a region of high flux sensitivity and

increased dephasing. Therefore, the coupling is bounded by the maximum qubit-qubit

detuning that we can tolerate in our system.

2.6.5 Summary
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Table 2.1: Typical UCSB Xmon Parameters

Parameter Common Symbol Typical Value

Qubit capacitance C 80 fF
Charging energy EC 240 MHz
Junction critical current (combined for SQUID) IC 40 nA
Josephson inductance LJ 8 nH
Josephson energy EJ 20 GHz
Impedance Z 320 Ω
Charge zero point flucutaion Qzpf 2.5 e
Phase zero point fluctuation Φzpf 0.06 φ0

Qubit drive coupling capacitance Cc 30 aF
Qubit bias mutual inductance M 2 pH
Qubit frequency f10 5-7 GHz
Anharmonicity η 240 MHz
Resonator-Qubit coupling gres 100 MHz
Resonator-Qubit detuning ∆ 1 GHz
Resonator decay rate κ 2π / 30 ns
Qubit-Qubit coupling g 15 MHz
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Chapter 3

Superconducting Qubit Fabrication

In this chapter, we will briefly review the techniques used to fabricate our transmon

qubits, then discuss more specifically how we fabricate 3 dimensional wiring for super-

conducting circuits.

3.1 Basic Superconducting Qubit Fabrication

As we discussed in Chapter 1, one of the appeals of superconducting qubits is that they

can be fabricated using techniques developed for integrated semiconductor circuits. How-

ever, traditional IC techniques cannot be simply transferred to superconducting qubits,

because superconducting qubits must exist in a low loss microwave environment in order

for the qubits to maintain coherence. Typically, semiconductor ICs processes use amor-

phous oxides such as silicon dioxide as an insulator and dielectric, but these oxides have

loss tangents of order 10−3 [75, 76]. At qubit frequencies of 4−6 GHz, prevalent use these
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oxides would suppress the coherence times to only a few hundred nanoseconds, far too

short for high fidelity operation. Hence, modern superconducting qubits are typically

fabricated in a geometry where the electric energy of the capacitor is concentrated in

either vacuum or a low loss intrinsic semiconductor substrate.

The geometry typically used in the UCSB devices is the co-planar waveguide (CPW)

geometry [77], where a conductive center trace is surrounded by two ground planes.

In this geometry, most of the electric field energy is stored in either the high quality

crystalline substrate, or vacuum. However, even in this geometry we are not completely

protected from the effects of lossy, amorphous materials. Wenner et. al. [78] showed

through simulation that up to 1% of the electric energy resides in the interfaces between

the metal film, substrate, and vacuum, and these interfaces tend to be dominated by

native surface oxides and residues leftover from fabrication. Experiments have also found

that superconducting microwave devices with larger areas and volumes have lower loss

[79, 80, 81] which is consistent with a model where thin interfaces are the dominant source

of loss in these devices. Thus, ensuring clean interfaces throughout the fabrication process

is the critical challenge in fabricating superconducting qubits.

As devices become more complex, process development in superconducting qubits has

also become focused on reliability and scalability. At times, scalability, reliability, and

coherence are conflicting requirements, and a fabrication process will inevitably have to

compromise between these requirements.

58



3.1.1 Thin Film Deposition

The first step in fabricating superconducting qubits is selecting a superconducting film

and a semiconducting substrate. The traditional film used for superconducting devices is

aluminum, because aluminum can be easily and controllably oxidized to form the insu-

lator for a Josephson junction. In addition, superconducting resonators fabricated from

aluminum on both sapphire [80] and silicon substrates have been demonstrated to have

low loss. Other materials systems that have shown promise include titanium nitride (TiN)

[82, 81] and niobium titanium nitride (NbTiN) [83]. The current standard at UCSB is to

use aluminum on silicon, which has been demonstrated to have high coherence without

requiring the use of a complex molecular beam epitaxy (MBE) system. In addition, un-

like sapphire, silicon can be easily micromachined, which opens up possibilities for using

the third dimension in routing circuit elements.

Having selected our film and substrate, we next turn to the deposition method. As we

discussed earlier, the interface between the aluminum film and silicon substrate should

be as clean as possible for low loss. Prior to deposition, we clean the silicon substrate by

sonicating it in acetone and isopropanol, followed by dipping in heated piranha solution

(a mixture of sulfuric acid and hydrogen peroxide) to clean off any organic residue, and

finally by dipping in hydrofluoric acid to remove the native oxide of silicon. We then

immediately transfer the substrate to our deposition chamber, a high vacuum electron

beam evaporation system. E-beam evaporation is a physical vapor deposition technique

in which a target of high purity material is bombarded with high energy electrons (typi-
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cally 10 keV) in high vacuum (typically 10−7 torr in our system). Under these conditions,

the target material melts then evaporates into a gaseous phase and coats the entire cham-

ber including the substrate. We typically deposit 100 nm of aluminum at 1 nm/s.

3.1.2 Patterning

After depositing a thin film on our substrate, we pattern the metal film with the design

of our desired circuit. As in a standard IC fabrication process, patterning is typically

done using a technique called photolithography. First, we layout our design in a CAD

program, and have the design etched into a chrome coated plate of quartz known as a

photomask. In the cleanroom, we spin an even coating of organic material known as

photoresist onto our metal film, sometimes preceded by a primer such as hexamethyl

disulfide (HMDS) which promotes adhesion of the photoresist. Next, the resist is baked

to drive off solvents in the resist to improve adhesion and prevent bubbling in subsequent

processes. The resist is then exposed to ultraviolet light through the photomask. If

the photoresist is positive, exposed regions of the resist are broken down and become

susceptible to dissolution in developer. On the other hand, negative resist becomes more

strongly bonded when exposed, with the unexposed regions susceptible to developer.

Due to the higher resolution of positive resists and that fact that we need to etch small

regions of the metal film, we typically use a common positive resist available in the UCSB

cleanroom, SPR-955.

After exposure, the resist is baked again to stabilize the resist. The final step in
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photolithography is to develop away the exposed regions of the positive resist. The most

common developer for SPR-955 is AZ 300 MIF, a developer based on tetramethylam-

monium hydroxide (TMAH). However, aluminum is easily attacked by many developer

solutions, and we found that aluminum on intrinsic silicon in particular can be etched

by AZ 300 MIF in the time it takes to develop the photoresist. To prevent undesired

etching, a substitute developer AZ DEV 1:1 can be used, which only slightly roughens

the aluminum.

We note here that patterning may also be done prior to deposition, using a process

called liftoff. After performing photolithography on a bare substrate, metal is deposited

and will adhere to the substrate where the resist was developed away. The resist is then

placed in a solvent solution which dissolves the remaining photoresist and peels away

the metal on top of undeveloped resist. Liftoff is more compatible with e-beam written

resists, which often do not have good etch resistance. Additionally, Josephson junctions

are almost always fabricated using an e-beam written liftoff process, so the remainder

of the transmon design can thus be patterned simultaneously in liftoff. However, by

performing photolithography on bare substrate, we leave organic residues which can not

be cleaned as aggressively for fear of damaging the resist pattern [84]. The result is that

liftoff devices can be lossier unless special techniques are used.

61



3.1.3 Etching

After photolithography, we now have a resist mask with holes exposing regions of the

metal that we want to remove. Etching of the metal can be done in two ways, either by

exposure to a chemical solution (known as wet etching) or by bombardment with atoms,

or ions from a reactive gas (known as dry etching). Dry etching of aluminum is typically

performed using an inductively coupled plasma (ICP) tool, which strikes a plasma in

a reactive gas via inductively coupled radio frequency waves. The plasma can then be

biased towards the sample by applying a voltage on a set of capacitive plates, leading

to an anisotropic (directional) etch. Aluminum can be ICP etched at a high rate using

BCL3Cl2, however remanents of the reactive gas will remain after completion of the etch

which can lead to undesired etching of the film. Therefore, the chlorine etch is followed

by a quench in a fluorine compound such as CF4 or SF6, and then immediate rinsing in

deionized water after removal from the ICP chamber. Introducing fluorine into the etch

chamber has the side effect of etching the silicon substrate, which may be desireable since

it reduces the amount of electric field energy in the aluminum-silicon interface. However,

such a process must be carefully developed so that the silicon etch is reproducible and

is not too deep as to interfere with subsequent fabrication steps. Following the etch,

the photoresist mask is removed by sonicating in heated N-methyl-2-pyrrolidone then in

acetone and isopropyl alchol.

Wet etching of aluminum is also possible, and two wet etch processes are used in

the UCSB cleanroom. The standard process uses Transene Aluminum Etchant Type

62



A [85], which contains a mixture of nitric, phosphoric, and acetic acids and will etch

100 nm of aluminum in a few minutes. As noted before, aluminum on silicon can also

be etched by developing the photoresist pattern in a TMAH based developer, combining

etching and patterning into a single step. Somewhat surprisingly, the developer etching

method has been shown to have reasonably low loss and has successfully been used in

qubit devices. Wet etching has a few advantages over dry etching. First, wet etching is

less damaging to photoresist and is less likely to leave photoresist residue upon stripping.

Second, typical aluminum wet etchants will not etch silicon, which makes it easier to hit

target frequencies and impedances. However, wet etching is an isotropic process which is

not suitable for small features such as skinny wires for control lines. Because wet etching

and dry etching are useful in different contexts, they can both be used in the fabrication

process for different parts of the device, with each etch requiring a different patterning

step.

3.1.4 Junction Fabrication

After patterning and etching the wiring and capacitor, the final step is to fabricate

the Josephson junction. Because the junction consists of a thin dielectric bounded by

two conducting metals, it has a high capacitance per area, and we want as small an

area as possible to avoid having a significant amount of the transmon’s electrostatic

energy located in the amourphous junction dielectric. Hence, Josephson junctions for

superconducting qubits are typically made using electron beam lithography at the 100 nm
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scale using a technique known as the Dolan bridge [86]. First, two layers of positive e-

beam resist, methylacrylic acid (MAA) and poly(methyl methylacrylate) (PMMA) are

spun on the sample and baked. Next, the resist is exposed in a dosage pattern such that

in certain regions, the MAA is exposed enough to be developed away but the PMMA is

not. Upon development in a mixture of methyl isobutyl ketone (MIBK) and IPA, we are

left with a suspended “bridge” of PMMA. The Josephson junction is then deposited in

an e-beam evaporator in four steps. First, the base aluminum film is milled using high

energy argon ions to remove the native oxide to allow for galvanic contact. Next, the

aluminum is deposited at an angle perpendicular to the surface, with the PMMA bridge

masking a region which creates a break between two metal leads. Then, the deposited

aluminum is oxidized in-situ by introducing oxygen into the chamber at a few mTorr for

about an hour. Finally, a second layer of aluminum is deposited at an angle that allows

for aluminum to be deposited underneath the PMMA bridge, connecting the two metal

leads through a Josephson junction. The excess aluminum is then lifted off in NMP,

completing the device.

One issue with the “standard” fabrication process described above is damaging of

the substrate during the ion mill step. Reference [87] showed that the loss due to argon

milling on a silicon substrate is significant, and the concentration of electric fields around

the skinny Josephson junction wires exacerbates the problem. One solution is to make

galvanic contact after the fabrication of Josephson junction. The technique developed in

Ref. [87] does so by adding a patterning, ion milling, then lifting off a patch of aluminum
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metal on top of the Josephson junction and connecting leads, in effect “bandaging”

the two regions of aluminum together. Using this technique introduces an additional

lithography and deposition step, and care must be taken to avoid passing too much

ion current through the Josephson junction during the ion mill. However, use of the

bandaging technique has proven to be crucial to making high coherence aluminum on

silicon devices.

3.2 Fabricating Superconducting Airbridges

So far, we have described a basic fabrication procedure which can be used to make planar

devices. However, using a purely planar geometry limits the complexity of the device we

can make since we cannot cross wires over each other in two dimensions. Additionally,

the co-planar waveguide geometry used in our devices ideally supports a symmetric [88]

mode where the ground planes on either side of the center trace are held to the same

voltage. However, asymmetries and discontinuities in the microwave circuitry can lead

to the excitation of parasitic slotline modes [89]. These modes can couple to elements of

the circuit such as qubits, and they represent a source of radiation loss and decoherence

[90, 91]. In order to suppress these modes and to allow for more complex wiring, we

require 3 dimensional wiring such as crossovers or superconducting vias.

In this section, we will illustrate the fabrication and use of superconducting airbridge

crossovers. To motivate our use of airbirdges, we observe that in past work with super-

conducting circuits, connections between the different ground planes have been typically
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Figure 3.1: (Inset) (a) The slotline mode of a CPW is modelled by removing the center
trace. A crossover wire is used to tie together the two planes so that the slotline mode may
not propagate. (b) Equivalent transmission line model for the slotline mode shunted by
crossovers with an inductance LS. We obtained a capacitance and inductance per length
of C=140 fF/mm and L=450 pH/m from numerical simulation of a 20µm gap slotline,
giving an impedance of 56 Ω which is matched by the load. The wirebond and airbridge
have an LS of 1 nH and 10 pH respectively, and are placed at intervals of length `. Main
panel: SPICE simulations for 1 mm of the transmission line model, showing that the
attenuation due to a single airbridge is more than 20 dB greater than for a wirebond.
Ten airbridges per mm can be simply fabricated and gives an attenuation of -150 dB (not
shown)
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been made using wirebonds. However, with a wire diameter of 25µm and a typical length

of 1 mm, wirebonds have an inductance of order 1 nH and an impedance of 40 Ω at 6 GHz,

making them an ineffective shunt [92] . In comparison, airbridges have 100 times less

inductance due to their small size. In order to understand the effect of the crossover

impedance on slotline attenuation, we studied a simple transmission line model [93] for

the slotline with evenly spaced inductive shunts to ground as shown in Fig. 3.1(a). We

simulated in SPICE 1 mm of a transmission line with a terminated load, and varied the

number of inductive shunts. As seen in Fig. 3.1, the attenuation per millimeter of the

slotline propagation for a single airbridge is two orders of magnitude greater than for

one or two wirebonds. This result can be easily understood if we consider only the in-

ductances in the model, which is valid below the cutoff frequency [93] . The inductance

of 0.5 mm of the slotline is 0.23 nH, which is smaller than the wirebond inductance but

much larger than the inductance of an airbridge. Therefore, in the case of wirebonds,

signal will continue propagating down the line rather than flow to ground. Furthermore,

while increasing the wirebond density can be difficult and unreliable, increasing the air-

bridge density can be done by simply copying the structure in the design file. With 10

airbridges per mm, we simulated the attenuation to be -150 dB, implying that the slotline

mode does not exist. Recent measurements on qubits built in a CPW architecture also

suggest that crossovers are necessary to eliminate slotline modes as a source of loss and

crosstalk.

The fabrication process we used for the airbridges follows from earlier work done on
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Figure 3.2: (a-f) Fabrication process for superconducting airbridges, with substrate shown
in blue, resist in dark red and aluminum in gray. In order, the fabrication steps are: (a)
fabrication of CPW base layer, (b) patterning and reflow of photoresist, (c) deposition
of aluminum, (d) definition of the bridge using lithography, (e) wet etching of excess
aluminum and, (f) release of airbridge. (g) SEM image of airbridges connecting the
ground planes of a CPW line and (h) SEM image of airbridges linking together two
CPW lines.
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kinetic inductance detectors [94], with modifications to adapt the process for an aluminum

base layer. We show the process flow and resulting structures in Fig. 3.2. First, we formed

the scaffold for the bridge from a 3µm thick positive photoresist (Megaposit SPR-220-3).

The height of the bridge is set by the resist thickness, and photolithography determines

the placement and span of the bridge. Throughout the process we used a developer (AZ

Dev 1:1) designed to minimize aluminum etching. Away from the bridge area, we did

not expose the resist so that it remained as a protective layer and etch stop. Next, we

reflowed the resist at 140◦C for 3 minutes to form an arch for mechanical stability. We

then deposited 300 nm of aluminum in a high vacuum electron beam evaporator to form

the bridge layer. Prior to the deposition, we used an in-situ argon ion mill calibrated

to remove the native oxide of the base aluminum in order for the bridges to make good

electrical contact [79]. The ion mill was operated for 3.5 minutes in 1×10−4 mbar of

argon, with beam voltage 400V, beam current 21 mA, and beam width 3.2”. Using a

second layer of patterned 3µm resist as a mask, we then wet etched (Transene Aluminum

Etchant Type A at 30◦C) the excess deposited aluminum that is not used to form the

bridge. We terminated the etch by visual inspection. When the top layer of aluminum

was etched away, the wafer went through a clear change in reflectance from aluminum to

the underlying resist layer; the typical etch time was 5 minutes. We continued immersing

the wafer in the etchant for 5 seconds after this transition, then immersed the wafer in

water for 3 minutes. The termination of the etch is a critical step because the regions

around the pads of the bridge are not protected by photoresist during the etch, and can
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potentially be etched through, breaking the ground plane. Finally, we stripped both

layers of resist in an 80◦C heated bath of NMP to release the airbridges.

In developing the process, we initially found a large amount of residual resist remained

from the scaffolding layer after stripping in solvents. This residual resist decreased the

reliability of our bridges by loading and deforming the bridge arches, and would have

contributed a large amount of loss to our circuit. We deduced that the residue consisted of

resist cross-linked by ion implantation from the argon ion mill step, a well known problem

in semiconductor processing.[95] We were able to mitigate the problem by stripping the

resist layers in a downstream oxygen plasma at 150◦C for 5 minutes prior to stripping in

a solvent bath. The low temperature oxygen plasma acts to burn off the damaged layer

of resist.

With this additional cleaning step, we have reliably fabricated bridges over a range of

spans from 2µm to 50µm. The main sources of bridge failure are factors other than their

structural stability such as lithographic errors, and the failure rate is less than 0.1%. We

have also tested the bridges in a variety of postprocessing steps, including wafer dicing

and fabricating aluminum junctions with a bilayer electron beam resist process; bridges

spanning up to 40µm have been found to survive these steps reliably. We note here that

the airbridges generally do not survive sonication.

Having developed a stable airbridge process, we next tested the electrical properties

of the airbridges at DC and microwave frequencies. We found that the critical current of

the airbridges was of order milliamps and that the microwave loss due to each airbridge
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was of order 10−8. For more details on these measurements, see Appendix A.

3.3 Contributions

The second half of this chapter is an adaptation of Ref. [96], for which I fabricated the

devices, acquired the data, and wrote the text. Anthony Megrant and Julian Kelly also

contributed to the project.
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Chapter 4

Experimental Infrastructure for

Superconducting Qubits

In this chapter, we describe the infrastructure required to run a multiqubit system in

three parts: hardware inside the cryostat, hardware outside the cryostat, and software.

4.1 Cryogenic

4.1.1 Cyrostat

The most important tool in the lab is the cryostat used to cool samples to superconducting

temperatures. Superconducting Xmon devices are cooled down in a dilution refrigerator

(DR) [97] to a nominal temperature of 15 mK. In brief, a dilution refrigerator works as

follows:
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Figure 4.1: Overview of qubit operation hardware, showing the necessary equipment
to operate a single qubit. At room temperature, custom DAC boards generate control
waveforms, some of which are upconverted to the qubit frequency via an IQ mixer and
microwave source. The waveforms are sent down to the fridge through heavy filtering and
attenuation. On the righthand side, readout waveforms are generated in a similar fashion
and reflected off the sample. The output signal is amplified by a reflective, impedance
matched parametric amplifier, a HEMT, and room temperature amplifiers, and finally
detected by a custom ADC. Circulators protect the qubit from the reflected signal and
noise coming from the amplifiers. Not shown: bias and pump for the paramp, additional
filters and attenuators at room temperature.
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• The refrigerator is first cooled to 3K by a pulse tube cryocooler.

• We then begin to circulate and pump on our working fluid, a mixture of two isotpoes

of helium, He-3 and He-4. This circulation results in some evaporative cooling down

to below 1K.

• At 870 mK, the mixture separates into two phases, a He-3 concentrated phase which

is nearly 100% He-3, and a dilute phase, which contains at least 6.6% He-3. In the

concentrated phase, the He-3 behaves as a Fermi liquid, but in the dilute phase,

the He-3 can be thought as behaving like a Fermi gas in an inert background of

He-4 superfluid. He-3 in the dilute phase has higher enthalpy, and moving He-3

from the concentrated to the dilute phase results in cooling, much like evaporative

cooling.

• Cooling occurs in the mixing chamber, where the lighter concentrated phase sits

on top of the heavier dilute phase. A tube connects the dilute phase to a chamber

called the still at 0.7K, where we pump on the mixture to vaporize and pull He-3

from the mixing chamber.

• The pumped He-3 is cleaned through a LN2 cold trap, then cooled and recon-

densed by the pulse tube and by exchanging heat with He-3 traveling from the

mixing chamber to the still. Finally, it is introduced back into the mixing chamber,

completing the cycle.
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Figure 4.2: Aluminum sample mount with wirebonded sample. Signal lines are bonded
to copper PCB inserts and the the sample ground is bonded to the mount itself. Picture
credit: Michael Fang.

4.1.2 Sample Mounting

After a sample is fabricated, it is verified by visual inspection for fidelity of the control

lines. We also probe the resistance of test structures to ensure that the resistances of the

Josephson junctions are the expected values. After passing inspection, the samples are

mounted in a connectorized package so that it can wired for control and measurement.

Over the years, we have empirically found that it is crucial for the package to have

a superconducting ground. Otherwise, the low frequency pulses we use for flux control

suffer from long time constant settling behavior which makes high fidelity Z-control nearly

impossible. Thus, we can rule out traditional printed circuit boards (PCBs) which use

copper traces and ground planes. The standard solution at UCSB has been to use a

machined aluminum box which forms a superconducting ground and has been shown

to have much shorter time constants. The box has tunnels milled out at even intervals

around the perimeter, through which we insert strips of PCB dielectric coated with copper

and soldered at one end with an SMA connector. The free end of the copper coated PCB
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is wired bonded with aluminum wire to the signal lines of the sample, connecting the

sample to the outside world. Additionally, the ground plane of the sample is densely

bonded to the aluminum box to prevent any resonant modes from forming in the gap

between the chip and the box. Finally, the box itself is placed within an enclosure made

of mu-metal to shield the sample from magnetic fields which can induce vortex loss.

4.1.3 Wiring

From the package, the qubit is connected to room temperature controls through a series

of co-axial cables. Cabling occurs in three main stages: copper-nickel cables from room

temperature to 3K, niobium-titanium cables 3K to 20 mK, and a variety of cables at

the 20 mK stage to the sample. Cables connecting stages at different temperatures are

chosen to have low thermal conductivity. Niobium titanium is a supercondcutor which

does not conduct heat well, while copper-nickel also has poor thermal conductivity due

to being an alloy. Cables are further thermalized at intermediate stages using copper

clamps.

Shielding the qubit from thermal electronic noise is an important consideration when

designing the wiring system. Well above the temperature corresponding the qubit tran-

sition (6 GHz corresponds to roughly 300 mK), the thermal noise follows the Johnson-

Nyquist formula

SV,Thermal = 2kbTR, (4.1)

where SV is the double-sided power spectral density with units volts squared per hertz.
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Since the power is linear in temperature, to eliminate the effect of room temperature

noise, we place a 20 dB (factor of 100) attenuator at 3K. The Johnson noise in our line

is now dominated by 3K noise, which is roughly 8 pV2/
√

Hz for a 50 Ω resistor.

At the 10 mK mixing chamber stage, we more carefully consider the effects of noise

on the qubits. For the XY microwave drive line, the primary concern is voltage noise

driving the |0〉 → |1〉 transition and populating our qubit 1. Following a similar argument

to Fermi’s Golden Rule, the upwards transition rate due to nelectrical oise is [98]

Γ↑ = g2SV (−ω10) (4.2)

where g is a conversion from voltage to Rabi frequency, and SV (−ω10) is the double

sided power spectral density of voltage noise at the qubit frequency. From Eqn. 2.54, the

equation for Rabi frequency Ω is

Ω =
CdV0Qzpf

~(C + Cd)
(4.3)

= gV0 (4.4)

and plugging in Cd = 30 aF, C = 80 fF and Qzpf = 2.5 e, we find that g = 2π×230 GHz/V.

To get an upward transition rate corresponding to one jump every 500µs, we require

SV (−ω10) = 1 × 10−3 nV2/Hz, so we need an additional 40 dB of attenuation at mix

plate.

For the Z frequency bias line, we are primarily concerned with dephasing. Equation

1Electrical noise can also damp the qubit, but our qubit damping is primarily dominated by other
mechanisms.
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2.132 tells us how to compute the limit on T ∗2 given a voltage noise level 2. Plugging in our

typical bias mutual of 2 pH, a standard transmon flux sensitivity of 2π×10 GHz/Φ0, and

3K noise, we find a limit on T ∗2 of over 300µs, significantly above the current dephasing

times of transmon. Thus, we do not need any additional attenuation at the mix plate

for our frequency control lines.

4.1.4 Readout Chain

The input to the readout chain is a microwave line similar to the qubit XY drive line,

but more heavily attenuated. The extra attenuation is necessary because the resonator is

more strongly coupled to its drive line, and thermal fluctuations in the readout resonators

can cause dephasing in the qubit. Signal coming down the input line passes through a

circulator and onto the qubit chip, where it scatters off of the bandpass filter and readout

resonator. The reflected signal passes through the same circulator but now onto the

output readout line. After passing through a second circulator for isolation, the output

signal goes through three stages of amplification: an impedance matched parametric

amplifier (IMPA) [99] at the mix plate, a high electron mobility transistor (HEMT) at

3K, and room temperature amplifiers, before reaching the detection electronics.
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Figure 4.3: Electronics to operate a qubit. Custom GHz DACs are used as arbitrary
waveform generators (AWGs). For microwave XY control, the two channels of the DAC
are combined and upconverted to the qubit frequency using an IQ mixer. Flux bias Z con-
trol requires only a single channel of the DAC without upconversion. More information
can be found at http://web.physics.ucsb.edu/ martinisgroup/electronics.shtml.
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4.2 Room Temperature Electronics

Control waveforms for the Xmons comes in two flavors: shaped pulses of high frequency

(4-7 GHz) microwaves to drive the qubit transitions and readout resonators, and “low

frequency” bandwidth ( 100 MHz) waveforms to control the frequency of the Xmon. Both

types of control are achieved using a custom arbitrary waveform generator (AWG), which

we will refer to as the GHz DAC. The GHz DAC has the following features:

• The DAC itself is a 14 bit, 1 gigasample/second DAC capable of synthesizing wave-

forms up to 500 MHz.

• Each GHz DAC has two DACs with differential outputs. Each differential output

is sent to a differential amplifier, which zeros out the common mode voltage and

provides some gain. The diff-amp has two differential outputs, one of which is used

to drive the desired signal, while the other acts as a monitor for the output which

can hook up to an oscilloscope.

• The FPGA can play 15 µs of memory, but additionally has programmable logic

which allow us to loop over pieces of memory and play longer sequences.

• Waveforms are uploaded over ethernet at 100 MBit/s.

• Multiple GHz DAC boards are synchronized by running them all on the same 10

MHz reference clock, and daisy chaining the boards with ethernet connections to

trigger waveform playback.

2But note that Equation 2.132 uses the single sided spectrum, whereas here we have used the double
sided spectrum.
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4.2.1 High Frequency Control

To generate pulsed microwaves for XY control, we connect the two outputs of a GHz

DAC to an IQ mixer. The IQ mixer takes two inputs, a local oscillator (LO), and an

in-phase (I) and quadrature (Q) input. We drive the local oscillator with a continuous

wave sinusoidal tone at a carrier frequency ωc. The output of the mixer is then

f(t) = I(t) cosωct+Q(t) sinωct (4.5)

= R
[
(I(t)− iQ(t))eiωct

]
(4.6)

In a homodyne mixing scheme, we would set ωc to be equal to the qubit transition

frequency. Then, turning on I and Q would correspond to rotating about the X and Y

axis of the Bloch sphere. While this scheme is simple, it is difficult to scale because we

would require a unique carrier for each qubit in the system.

Instead, we use a heterodyne mixing scheme, where the carrier frequency is differ-

ent from the qubit frequency. Suppose ωc is different from the qubit transition ω10 by

an amount ωsb = ω10 − ωc, the sideband frequency. We ultimately want the signal

X(t) cosω10t+ Y (t) sinω10t. Then, comparing with Eqn. 4.6, we have 3

(X(t)− iY (t))eiωsbt = I(t)− iQ(t), (4.7)

3In practice, the sign of the sideband frequency might be reversed depending on the mixer convention.
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from which we can get expressions for I(t) and Q(t)

I(t) = X(t) cosωsbt+ Y (t) sinωsbt (4.8)

Q(t) = Y (t) cosωsbt−X(t) sinωsbt. (4.9)

(4.10)

We have shown that even if the carrier frequency is different from the qubit frequency, we

can still output a signal at the qubit frequency with full in-phase and quadrature control.

This scheme is also called single sideband mixing, because we have multiplied the carrier

signal by another sinusoidal tone and output a tone with the sum of the two frequencies

but not their difference. The difference frequency corresponds to the image sideband and

is undesirable. By using single sideband mixing, we can mix a single carrier to multiple

frequencies to control multiple qubits, as long as the sideband frequencies are within the

bandwidth of the GHz DAC.

While Eqn. 4.6 and Eqn. 4.6 describe the behavior of an ideal mixer, in practice we

have to carefully calibrate for two effects. First, even if I and Q are zero, we may still get

signal coming out of the mixer which is known as carrier bleedthrough. Second, if the I

and Q channels are not perfectly balanced in amplitude or if the phase difference between

the two inputs is not exactly 90◦, then Eqn. 4.10 will not hold and we will have some

image sideband in our signal. To calibrate for these two errors, we connect the output

of our GHz DAC and mixer system to a spectrum analyzer. We first measure the signal

power at the carrier frequency, and adjust the DC levels of the I and Q inputs until the
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carrier bleedthrough is minimized. Next, we pick a sideband frequency and adjust the

relative amplitude and phases of the I and Q inputs until the image sideband signal is

minimized. We repeat this procedure for a range of carrier and sideband frequencies, and

use the results to adjust our I and Q waveforms prior to sending them to the DACs.

4.2.2 Readout

Signal generation for readout is identical to qubit XY control. After scattering off the

readout chain, the output signal from the amplifiers is first sent through the RF port

of a mixer with the same LO as the input signal. This usage of the mixer is reversed

compared to the signal generation case, and produces downconverted signals on the I

and Q ports at the sideband frequency. The I and Q signals are then sent to a custom

built GHz ADC, where they are digitized, and integrated after downconverting from the

sideband frequency to DC in the ADC. The result is that for each pulse sent down from

the readout DAC, we obtain a single complex value I + iQ in two dimensional phase

space which represents the scattering of the pulse off of our readout chain.

4.2.3 Low Frequency Flux Control

For low frequency Z control, we simply use the output of the GHz DACs without up- or

down-conversion.

83



4.3 Software

4.3.1 LabRAD

As the complexity of the hardware grows with the number of qubits, maintaining sensi-

ble, flexible, and well documented software is crucial. The backbone of our software is a

system called LabRAD (where RAD stands for Rapid Application Development), devel-

oped by Markus Ansmann and Matthew Neeley. LabRAB is essentially a platform for

distributing and managing control software. The central piece of software is the LabRAD

manager, which dispatches commands from client modules run by the experimenter, and

server modules which control the hardware. Each server is typically in charge of one

piece of hardware, but servers may utilize other servers - for example, one server may

facilitate communication over ethernet while another uses the ethernet server to send

packets to the GHz DACs. Client modules then have access to specific server functions

called settings, which each server must register with the LabRAD manager and forms the

server’s outward facing interface. Importantly, servers and clients can be written in any

programming language as long as an Application Programming Interface (API) exists for

that language. The APIs convert language specific data into binary packets as laid out

by the LabRAD protocol, and these packets are then used to communicate between dif-

ferent modules via the manager. Furthermore, servers and clients may exist on different

machines on the same network, and these machines may be running different operating

systems. By using LabRAD, the various stacks of our experiment are abstracted away
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from each other, so that modifications to one aspect of the experiment generally do not

require modifications to the entire code base.

In addition to the control platform, two systems are integrated into LabRAD which are

crucial for running experiments: the registry and the data vault. The registry is a central

directory which contains all of the relevant configuration information for the system, and

is typically accessed in Python using dictionary calls. Configuration information might

include low level data such as the available DACs on the system, or high level calibrated

parameters such as the mapping between qubit frequency and voltage for a certain qubit.

Likewise, the data vault is a central directory which permanently stores all of the data

obtained in any experiment. Each data vault file consists of a 2D array of values sorted

into independent and dependent columns, as well as a snapshot of the relevant registry

configuration which can be used for data analysis or reconstruction of the experiment.

4.3.2 Hardware Servers

With these concepts in mind, we now take a brief survey of the software stack used

to run our superconducting qubit system. At the lowest level are the servers used to

run the hardware. The primary modes of communication are ethernet for the GHz

DACs and GPIB for most other instruments such as microwave sources, oscilloscopes,

and network analyzers. Serial communication using RS-232 is also occasionally used for

instruments connectecd over USB. Each mode of communication has an associated server,

and servers for specific instruments make calls to these communciation servers. Certain
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servers also use additional layers of abstraction to facilitate code resuse. For example,

GPIB communication to oscilloscopes is relatively standardized, and rather than writing

a server for every type of oscilloscope, we write a general oscilloscope server which can

execute common read and write commands. Commands specific to a certain oscilloscope

are then kept in device wrappers which can be applied upon identification of a connected

instrument.

4.3.3 Sequencer

Moving up the stack, we next have a server called the sequencer. A client makes a re-

quest to the sequencer which specifies what waveforms should be run on each channel for

each qubit. The sequencer first determines (or is given) the mapping between the qubit

channels and specific hardware devices. The sequencer then sends the waveforms to a

correction server, where the waveforms are corrected for hardware specific calibrations

such as IQ balancing. Finally, the waveforms are sent onto the DACs, and other relevant

instruments such as microwave sources are set to the desired configurations. Upon com-

pletion of the waveform sequence, the ADC’s IQ results are sent back to the sequencer

then onto the client in a client-specified data format. Notably, as with any LabRAD

server, the sequencer allows multiple clients to send sequence requests to it at the same

timeframe. Thus, experiments from multiple users can be interleaved without any extra

work.
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4.3.4 Gates and Experiments

Continuing our journey up the software stack, we now move onto client code, which

is entirely written in Python. To specify the waveforms to send to the sequencer, we

use objects internally called Gates. A Gate object contains the machinery to generate

waveforms for the channels of a qubit given a few input parameters. A Gate object often

corresponds to a quantum gate. For example, a Pi gate corresponds to either an X or

Y gate depending on what phase the user specifies. We construct the Pi gate with a

reference to a specific qubit, and at runtime, the gate object looks up the qubit specific

π pulse parameters in the registry and constructs a waveform. Multiple gates acting on

any number of qubits are then combined into a gate sequence, which can also contain

gate-like objects which correspond to FPGA jump table commands, such as looping over

a set of gates a number of times.

The gate sequences are further encapsulated in objects called experiment classes.

Experiment classes contain one commonly used gate sequence, as well as hooks to pa-

rameterize the gate sequence in a useful way. For example, a Rabi experiment class

generates a simple pi pulse then measure sequence, but has parameters for controlling

the amplitude and length of the pi pulse. In addition, the experiment class takes care of

loading the device configuration from the registry, as well as processing and labelling the

data received from the sequencer and saving it to the datavault.
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4.3.5 Automated Calibrations

At the top of the stack is a system for calling data acquisition functions to calibrate a

qubit from scratch. A data acquisition function and its associated analysis function are

organized into a node. Multiple nodes are then organized into a calibration tree. Starting

at the root of the tree, the calibration system acquires data and determines whether

the data is valid. If it is, the calibration system updates the registry based on the

acquired data, and continues to traverse the tree. If the data is not valid, the automated

system attempts to recover the system by traversing the tree backwards and fixing earlier

calibrations if possible, or throws an informative exception to the user. This system is

also used to check if calibration parameters have drifted over time, and to recalibrate the

system if necessary.
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Chapter 5

Single Qubit Calibration

In this chapter, we describe how to calibrate the control of a single superconducting

transmon qubit. We start with the task of finding the frequencies of the qubit and its

associated readout resonator. Next, we describe how to calibrate microwave control to

achieve π and π/2 rotations of the qubit state, as well as fine tune the readout of the

qubit. Finally, we describe how to calibrate the response of the qubit frequency to flux

bias.

5.1 Introduction

In this chapter we will assume that we are operating a single qubit in isolation. While

our device actually consists of an array of coupled qubits, we can effectively isolate one

qubit by tuning its neighbors to near zero frequency. We have three inputs to the qubit

that must be calibrated:
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1. Z control: static or dynamic voltages on our DAC which tune the frequency of the

qubit by flux biasing the SQUID. When we tune the frequency of the qubit, we

also slightly tune the frequency of the resonator due to the Lamb shift.

2. XY control: pulsed microwaves produced by mixing two DAC outputs with a pro-

grammable local oscillator. When on resonance with the qubit, XY pulses will drive

Rabi oscillations.

3. Readout: pulsed microwaves on a different local oscillator coupled to the readout

resonator.

To characterize the system, we have a single output: the integrated in-phase (I) and

quadrature (Q) amplitudes of the signal coming out of the readout chain at the readout

drive frequency, as measured by our ADC. In other words, we measure the complex

scattering of microwaves off of the readout resonator and amplifiers.

We have the following end goals for our calibration procedure:

1. Calibrated curves for the readout resonator frequency and qubit frequency vs flux

bias.

2. Accurate discrimination between the |0〉 and |1〉 states.

3. High fidelity π and π/2 pulses.

For the remainder of this chapter, we will generally refer to control voltages in units

of ”DAC amplitudes”, where ±1 DAC amp is the full range of our DAC. Similarly, we
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will refer to measured amplitudes in units of ”ADC amplitudes”, where one ADC amp is

one bit on the ADC. While we can calibrate the correspondence between DAC and ADC

amplitudes in terms of physical units, in practice it is not necessary to do so other than

to estimate control couplings, which we will not address in this chapter. Additionally,

for each configuration of the controls, we repeat the experiment a few hundred times and

unless otherwise noted, the plotted values will be the average signal from all shots of

the experiment. Since the measured signals are complex, we will refer to the measured

signals either in terms of the average I (in phase) and Q (quadrature) amplitudes, or

in terms of the total magnitude |I + iQ| and phase ∠(I + iQ) of the averaged signal.

Finally, in the pulse sequence plots below, we will generally show microwave pulses prior

to up-conversion to the qubit or resonator frequency, to emphasize the envelope of the

pulse.

5.2 Resonator Spectroscopy

To begin, we know from our circuit design the expected frequency band where the res-

onator for our qubit lies. We would like to verify the frequency of the resonator and

confirm that it is coupled to the qubit as expected. Due to their relatively strong cou-

pling, if we tune the qubit’s frequency by flux biasing the qubit’s SQUID, we should also

observe shifts in the resonator’s frequency. We observe this effect by performing spec-

troscopy on the readout resonator: we pulse the readout chain with microwaves, while

varying the frequency of the microwaves and the flux bias applied to our qubit. The
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Figure 5.1: Resonator spectroscopy versus flux bias. (a) Pulse sequence. We dynamically
bias the qubit and microwave drive the readout line. The bias is padded in front of the
microwave pulse to allow the bias to settle to its intended value, and slightly padded in
the back to account for possible timing differences between the flux bias and microwave
channels. We sweep the bias amplitude and the frequency of the readout microwave
pulse. (b) Measured total magnitude from the ADC. Distinct dips in the transmission
can be seen for five resonators, with one resonator shifting with the flux bias. (c) Gra-
dient of phase with respect to drive frequency, more clearly showing the positions of the
resonators. Dashed lines indicate bias levels of interest as discussed in the text, and the
cyan dot is our chosen operating bias and frequency for the next calibration.
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pulse sequence and typical results are shown in Fig. 5.1.

Because we couple to our readout resonators in reflection, we can best infer the

positions of the resonators by looking for regions where the gradient of the signal phase

vs readout frequency is large. Based on the positions of the resonators as a function

of flux bias, we can already learn a great deal about our system. First, if a resonator

moves as a function of flux bias, we know that our flux biasing line works and we also

learn which readout resonator and qubit this flux bias line is connected to. Typically, the

resonator to qubit correspondence is known beforehand from the circuit design, but this

scan acts as a sanity check. Second, if the other resonators in the band do not move, then

we know that on a coarse level, flux crosstalk between the qubits is small. Finally, we

can infer the resonator frequency as a function of flux bias, which is a periodic function

due to the qubit SQUID’s Φ0 periodicity.

The resonator frequency vs. flux bias curve has three points of interest. Where the

frequency vs. flux curve is flat, the qubit is at its maximum frequency, which is also

know as the flux insensitive point. In theory, this point occurs when the flux bias is zero

but due to the stray magnetic fields, the flux insensitive point may be offset. Halfway

between insensitive points, the flux bias at the SQUID is φ0/2, and the qubit is near zero

frequency. This point is important because in order to isolate a qubit from its neighbors,

we tune the neighbors to near zero frequency. Therefore, we perform this resonator vs

flux bias calibration on all qubits prior to moving forward with single qubit calibrations.

In between the maximum and minimum frequency points, the qubit and the resonator
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frequencies meet, as evidenced by the large avoided level crossing. Because the resonator

is designed to have strong coupling to the outside environment for measurement, we can

make use of this crossing point in order to quickly reset the qubit state.

5.3 Qubit Spectroscopy

Now that we have a readout frequency vs flux curve, we pick a readout frequency and

static flux bias to operate temporarily. We additionally pick a qubit transition frequency

that we expect will be in the tunable band of qubit frequencies but above the resonator

crossing point 1. We then dynamically bias the qubit in a range of flux biases from the flux

insensitive point to the resonator crossing point. At each bias level, we drive the qubit’s

XY control line with a microwave pulse which is fixed at our desired qubit frequency but

with variable amplitude. Finally we bias back to our temporary operating point to drive

the readout resonator and measure its response. When the dynamic bias places the qubit

on resonance with our microwave pulse, the qubit undergoes Rabi oscillations, cycling

between the |0〉 and |1〉 states as we increase the drive amplitude. Because the resonator

frequency is different for the two qubit states, we will observe oscillations in the resonator

response as a function of drive amplitude. To characterize these oscillations, we measure

the resonator response when we do nothing to the qubit and compute how much the

resonator is displaced in IQ space for each bias and drive amplitude. The results of this

1When choosing readout and qubit frequencies, we take into account the designed readout coupling
parameters and choose frequencies where we expect the state discrimination between qubit states to be
reasonably good.
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Figure 5.2: Fixed frequency qubit spectroscopy. (a) Pulse sequence. From Fig. 5.1, we
pick a static bias and readout frequency (cyan dot). We then microwave drive the qubit
at a fixed frequency and dynamically bias the qubit SQUID, while varying the bias level
and drive amplitude. As in Fig. 5.1, we pad the dynamic bias to account for bias settling
and possible timing offsets. Finally, we drive the resonator and measure its response. (b)
Spectroscopy data. We first perform a control experiment with no microwave drive or
bias to establish a baseline IQ response. Then, at each drive amplitude and bias level, we
take the measured signal and subtract it from the baseline signal, and plot the magnitude
of this difference. When the bias level brings the qubit on resonance with the drive, we
observe oscillations in the resonator response corresponding to Rabi driving of the qubit.
Transitions to higher states are also visible as smaller chevrons.
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experiment are shown in Fig. 5.2.

As expected, we see the classic Rabi chevron pattern when the bias level brings our

qubit on resonance with the microwave drive, and we set our static operating bias to this

value. However, note that we also see other high signal displacement chevrons and peaks

at other flux biases. These signals correspond to transitions from the ground state to

higher levels. While the frequency for the |0〉 → |2〉 transition is of order 10 GHz and

there is theoretically no charge matrix element which connects the two state, a transition

may still occur if the transmon is driven sufficiently hard at ω20/2 by first populating

a virtual state between |0〉 and |2〉. Such a transition is also known as a two photon

transition, and the mechanism also extends to the higher states. We will ignore these

transitions for now and assume that the anharmonicity is what we designed, but we will

return to the problem of finding the |1〉 → |2〉 transition later.

5.4 Rabi

Having found the operating flux bias for our qubit transition, we set our new readout

frequency according to our resonator frequency vs. flux calibration, and proceed to tune

up microwave control of the qubit. For our discrete microwave pulse amplitudes, we will

use cosine-shaped pulses, which are described by

X(t) =
A

2

(
1− cos

2πt

τ

)
, (5.1)

where A is the peak pulse amplitude and τ is the pulse length. Compared to square

or Gaussian shaped envelopes, cosine envelopes have the nice property that their value
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Figure 5.3: π pulse amplitude calibration. (a) Pulse sequence. We drive the qubit with
a fixed length cosine envelope and measure the resonator response, while varying the
pulse amplitude. (b) Measured I and Q response of the resonator as a function of pulse
amplitude. We observe Rabi oscillations between the |0〉 and |1〉 states, and choose the
first half period as the amplitude for a π pulse.
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and first derivative go to zero at the pulse boundaries. In addition to the in-phase cosine

envelope, we also add a weighted quadrature correction [100] which is the derivative of

cosine envelope

Y (t) = −A
2

α

η
sin

2πt

τ
(5.2)

where α is weighting factor typically between 0 and 1.5, and η = f21 − f10 is the

anharmonicity. This correction is known as the Derivative Reduction by Adiabatic Gate

(DRAG) correction, and is used to correct for errors due to the presence of the |2〉 state.

We will address this correction in detail in Chapter 6, but for now we simply set α = 1.0.

To calibrate our cosine pulses, we choose a fixed pulse length τ , typically between

15 ns and 25 ns to be sufficiently long compared to the timescale of the anharmonicity,

1/η = 5 ns. We then vary the amplitude and again observe Rabi oscillations in the

measured resonator response, as shown in Fig. 5.3. We pick the amplitude corresponding

to the first half period of the oscillation as the amplitude for a π pulse which brings the

qubit from |0〉 to |1〉. We also choose exactly half this amplitude as the amplitude for a

π/2 pulse which brings the qubit from |0〉 to an equal superposition state.

5.5 Readout Frequency

Up until now, we have used the frequency of the resonator when the qubit is in |0〉 as

the frequency at which we measure the resonator’s response. However, this frequency is

not necessarily the optimal frequency for distinguishing between the |0〉 or |1〉 states. In

order to calibrate the readout frequency, we prepare the qubit in either |0〉 or |1〉 then
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Figure 5.4: Readout frequency calibration (a) Pulse sequence. We prepare the qubit in
either |0〉 or |1〉 and measure the resonator’s response while sweeping the readout drive
frequency. (b) Measured I and Q response of the resonator in either qubit state. (c)
Signal to noise ratio inferred from the distance between the IQ responses when the qubit
is in |0〉 or |1〉. We choose the maximal SNR point as our new readout frequency.
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measure the resonator’s response. For each state preparation, we record the average and

standard deviation of the complex response, and compute the signal to noise ratio (SNR)

[68]

SNR =
(x0 − x1)2

2σ2
(5.3)

where x0 and x1 are the average positions of the IQ response when the qubit is in |0〉

and |1〉, respectively, and σ is the standard deviation of the measured signal 2. The

readout frequency is optimized when the SNR is maximal, and this frequency is typically

somewhere between the resonator frequencies corresponding to the qubit being in |0〉 or

|1〉.

5.6 Readout Amplitude

The next step in calibrating the readout of the qubit is to calibrate the readout am-

plitude. If the amplitude is too small, we do not collect enough microwave photons in

our readout chain to accurately discriminate the qubit states. If the amplitude is too

high, then we induce transitions between various levels of the transmon. In Chapter 9,

we will thoroughly explore the physics of readout induced transitions. For the purposes

of calibration, we use the fact that these transitions take the qubit outside of the 0-1

subspace and that the turn-on for the transitions is sudden.

As in the readout frequency calibration, we again prepare the qubit in either |0〉 or |1〉.
2We skipped over some technical details of how exactly this quantity is computed from the data,

which can be found in Daniel Sank’s thesis [68]. We also assumed σ is the same for both qubit states,
which is true in most cases
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Prepare
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(d)

(e)

Prepare

Figure 5.5: Readout amplitude calibration. The pulse sequence is the same as in Fig.
5.4, except we vary the drive amplitude instead of frequency. (a-c) Raw IQ response
after preparing the |0〉 state (blue) or |1〉 state (red) for (a) low amplitude, (b) optimal
amplitude, and (c) high amplitude. When the amplitude is too low, the separation
between |0〉 and |1〉 is insufficient for state discrimination, and when the amplitude is
too high, the transmon is driven to higher states. (d-e) Discriminated state probabilities
when preparing the (d) |0〉 state and (e) |1〉 state. In addition to distinguishing between
the two states, we also determine the probability that an IQ point is an outlier from the
distribution for either state.
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We then readout the qubit while varying the amplitude of the readout drive. For each

readout amplitude and state preparation, we record the probability that the qubit was

measured either in |0〉, |1〉, or was an outlier from the IQ cloud of either state. Outliers

indicate that the qubit is driven to a higher state then what we can measure, and are

undesirable. We choose the readout amplitude which maximizes measuring the expected

prepared states for all state preparations after excluding for outliers.

5.7 Ramsey

Having calibrated the state discrimination of our qubit, we will now work in terms of

measured state probabilities rather than IQ amplitudes for the remainder of the cali-

brations. Previously, we determined the qubit frequency spectroscopically. We now fine

tune this frequency using a Ramsey fringe. In the rotating frame, if the qubit is prepared

along the X axis of the Bloch sphere with a Y/2 pulse, it should remain stationary and if

we execute a second Y/2 rotation some time later, we should always measure |1〉. If our

knowledge of the qubit frequency is faulty and our assumed frame does not match the

qubit’s rotation frame, then the measured qubit state after a Y/2 rotation will appear to

precess at the difference frequency ∆ω between the assumed frame and the actual qubit

frequency. Thus, if we perform this Y/2 - delay - Y/2 sequence with variable delay, we

should be able to calibrate the qubit frequency by observing the resulting oscillations.

The above procedure works in theory, but has two practical drawbacks. First, if

the error frequency is of order the phase decoherence rate of the qubit, the intended
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Figure 5.6: Frequency calibration using a Ramsey fringe. (a) Pulse sequence. We perform
a π/2 a pulse, then wait a variable amount of time τ , followed by a second π/2 pulse. The
phase of second π/2 pulse is chosen to be ∆ωτ where ∆ω is the desired fringe frequency.
(b) Results with an expected fringe frequency of 25 MHz. The actual measured fringe
oscillates at 31 MHz, indicating that the qubit frequency is 6 MHz less than what we
expected.
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oscillations would be difficult to distinguish from the effects of decoherence. Second,

there is an ambiguity between positive and negative frequencies, and while the sign can

be determined by looking at the phase of the oscillation fringe, we would like to use a

more robust procedure. To overcome these drawbacks, we intentionally choose a frame

which is detuned from the qubit frequency so that we observe oscillations even if our

frequency is perfectly calibrated. An error in our qubit frequency would result in a

difference from the expected oscillation frequency, as shown in Fig. 5.6. Essentially, we

have upconverted our signal to a frequency of 10s of MHz to suppress the presence of

low frequency dephasing effects in our data.

5.8 Pulse Corrections

As we alluded to in Eqn. 5.2, our microwave pulses use a quadrature derivative correction

to correct for the effects of the second excited state. The weighting parameter for the

correction depends on the anharmonicity of the qubit, so we now calibrate the second

transition frequency f21. We first prepare the qubit in |1〉, then excite it with a second

low amplitude microwave pulse. We sweep the frequency of this second pulse in the

region where we expect f21 to be. When the second pulse is on resonance with f21, we

obtain maximal transfer of |1〉 to |2〉. Because we have not explicitly calibrated readout

of the |2〉 state, we add a third pulse which brings |1〉, but not |2〉, back to |0〉. The

total effect of this sequence is that we should find a peak in the |1〉 probability when the

second pulse is on resonance with f21, as shown in Fig 5.7.
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Figure 5.7: Calibration of f21 (a) Pulse sequence. We prepare |1〉 with a π pulse, then
drive a microwave pulse while sweeping its frequency around the expected f21 frequency.
Finally, we depopulate |1〉 back to |0〉 with a second π pulse. (b) When the second pulse
is on resonance with f21, we move |1〉 to |2〉 and the depopulation pulse has no effect.
We measure a peak in the final |1〉 state probability, since |2〉 appears as |1〉.
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Figure 5.8: Correcting for phase errors due to the weak nonlinearity (a) Pulse sequence.
We perform two consecutive (π, −π) sequences, which should give |0〉 when there are
no phase errors. We sweep the frequency of a detuning on the π pulses. (b) When the
detuning fully corrects for the phase error, we see a peak in the |0〉 population.
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With a calibrated anharmonicity, we can now correctly weight the quadrature correc-

tion in Eqn. 5.2 to minimize leakage out of the 0-1 subspace due to our microwave pulses.

However, as we will see in Chapter 6, we are still susceptible to phase errors caused by

the the coupling of the |1〉 and |2〉 states. To compensate for these phase errors, we apply

a second correction which detunes the microwave pulse. We calibrate the detuning by

executing multiple π and −π sequences while sweeping the pulse detuning. When the

phase error is minimized, this sequence is equivalent to the identity and we maximize the

probability of measuring the |0〉 state, as shown in Fig 5.8.

5.9 Rabi, Revisited

After calibrating the qubit frequency and pulse corrections, we fine tune the amplitudes

of our π and π/2 pulses. To increase our sensitivity to the pulse amplitude, we execute

many π rotations in series, which should have the same effect as a single π rotation if

the amplitude is correct and the number of rotations is odd. Additionally, while we

previously assumed that the π/2 amplitude was exactly half that of the π amplitude, we

now calibrate the π/2 amplitude separately by concatenating two π/2 rotations into a π

rotation. This extra step is necessary to account for any nonlinearities with respect to

amplitude that may be present in the electronics or any other part of the system.
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Figure 5.9: Calibrating the timing between the XY and Z channels. (a) Pulse sequence.
We perform a π pulse and a flattop Z detune, while varying the timing between the
two. (b) When the π pulse and detune are aligned, the qubit detuned sufficiently far off
resonance that the π pulse has no effect, leaving the qubit in |0〉.
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5.10 XY-Z Timing

With fully calibrated microwave rotations, we next turn to frequency control calibra-

tions. We first calibrate the timing difference between the microwave drive and flux bias

channels. In general, the timing difference exists due to differences in cable lengths or

delays in the electronics. To measure the timing difference, we drive the XY channel of

the qubit with a π pulse, and the Z channel with a flattop detuning pulse. When the

centers of the π pulse and detuning pulse are aligned, the detuning pulse will bring the

qubit far enough off resonance that the π pulse will have no effect on the qubit. We vary

the timing between the π pulse and detuning pulse, and the correct timing difference is

found when the measured |1〉 state population is minimized, as shown in Fig. 5.9. This

timing difference is subsequently compensated for in future runs of the hardware.

5.11 Bias Amplitude to Frequency Function

The final calibration is determining the function that maps DAC voltages on the Z channel

to the frequency of the qubit. Essentially, we perform the qubit spectroscopy experiment

described in Fig. 5.2 earlier while sweeping both qubit frequency and bias amplitude.

However, repeating this experiment over the full frequency range of the qubit would be

time consuming. Instead, we perform the experiment adaptively. We know the qubit

frequency at the present bias amplitude. We then move a small distance away in bias

amplitude, and determine the qubit transition frequency using microwave spectroscopy,
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(a)

(b)

Figure 5.10: Determining the mapping from flux bias amplitude to qubit frequency. The
pulse sequence is the same as in Fig. 5.2, except we now discriminate to qubit states
rather than recording IQ averages. (a) Qubit spectroscopy vs bias amplitude. We adap-
tively choose bias amplitudes and drive frequencies, with the spacing between amplitudes
increasing as we move further away from the initial point. (b) For each bias amplitude,
we fit the peak of P (|1〉) vs frequency to determine the qubit’s frequency at that bias.
Then, we fit the bias to qubit frequency curve to a model.
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but only in a narrow frequency region around the known frequency point. We repeat

this procedure, and as we measure more frequency vs bias amplitude points, we use this

knowledge to determine the next amplitude and frequency sweeps. For example, we know

that the amplitude to frequency curve should roughly follow Eqn. 2.127, and we can fit

the data points as we go along to this equation to predict where the next amplitude to

frequency point will be. Alternatively, if we do not want to restrict ourselves to a model,

we can use the fact that that amplitude to frequency curve is relatively smooth in the

region of interest and extrapolate the next amplitude and frequency points using the

local slope and curvature. The resulting data is shown in Fig. 5.10, where a relatively

low density of scans nevertheless allows us to determine and fit the full curve.
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Chapter 6

Single Qubit Benchmarking

Having established how to calibrate single qubit control, we will now benchmark the

performance of our single qubit gates. We first review the technique of Clifford-based

randomized benchmarking, then apply it to our qubits to estimate the total gate fidelity.

Next, we will use an extension of randomized benchmarking called purity benchmarking

to estimate the contribution of decoherence to gate errors. Finally, we compare our purity

benchmarking results to standard relaxation and dephasing measurements.

6.1 A Brief Review of Randomized Benchmarking

Given a unitary operation that we have implemented on our hardware, we want to mea-

sure how well our implementation corresponds to the ideal unitary. Errors in our im-

plementation may be due to miscalibration of microwave pulse parameters, or due to

noise in the environment leading to decoherence. To formally characterize the actual
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action of our hardware, the standard method is to use quantum process tomography

(QPT) [9, 101]. Given the Hilbert space spanned by our qubits, we would prepare an

ensemble of input states which span the Hilbert space, apply our unitary to each of the

input states, then perform quantum state tomography (QST) to reconstruct the output

density matrix corresponding to each input states. From this mapping between inputs

and outputs, we can determine a process matrix (typically through maximum likelihood

estimation [102, 103]) and compare it to our ideal unitary.

The QPT protocol has a few drawbacks which hinder experimental usage. First, the

number of state preparations and measurements scales exponentially in the number of

qubits, so it can only be used for a relatively small number of qubits. Second, QPT relies

on high fidelity single qubit gates for initialization and tomographic rotations which

can lead to a self consistency problem when trying to use QPT to measure only the

gate fidelity. Finally, in order to measure the average fidelity of our system, the QPT

procedure would have to be applied to a sufficiently representative sample of the unitaries

that can be implemented in the hardware.

To overcome these drawbacks, Ref. [104] proposed using random unitaries to obtain

the average gate fidelity. Their key insight was that when an error process is averaged

over the uniform space of unitaries, called the Haar measure, the result is a depolarizing

channel, which maps any pure state to the maximally mixed state 1. The average induced

error is proportional to the probability of depolarization, and in order to measure this

1The depolarizing property assumes the error process does not lead to leakage out of the Hilbert
space. We will see in the next chapter how to use randomized benchmarking to measure leakage.
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probability, Ref. [104] proposed drawing random unitaries U and constructing motion

reversal operations UU †. If we start from the ground state in the computational basis,

then the probability of measuring the system in the ground state after the motion reversal

operation is related to the strength of the error. A full protocol to experimentally estimate

the fidelity is as follows:

1. Randomly choose m unitaries, U1, U2, . . . , Um.

2. Construct their motion reversal operations, U1U
†
1 , U2U

†
2 , . . . , UmU

†
m.

3. Concatenate the motion reversal operations, apply them to the ground state, then

measure the resulting ground state population.

4. Repeat steps 1-3 many times, and for many lengths m.

As the length of the sequences increases, the transformation of gate errors to a depolar-

izing channel leads to an exponential decay of the ground state population towards the

maximally mixed state, where the rate of decay is a measure of the average gate fidelity.

By using the decay rate to extract fidelity, we also become insensitive to initialization

and measurement errors.

The most inefficient step in the above procedure is randomly choosing unitaries from

the Haar measure, then implementing them with the gate primitives that are available on

the quantum hardware. To address this inefficiency, Ref. [105] proposed restricting the

unitaries to the Clifford group instead of the full Haar measure. Formally, the Clifford

group consists of all unitary rotations which map the group of Pauli operators (or in
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higher dimensions, their tensor products) back onto the Pauli operators but possibly

with permutations [6, 7]. Equivalently, any gate in the Clifford group can be generated

by the single qubit Hadamard, π/2 rotations about the Z axis 2, and the two-qubit

control-NOT gate. For the purpose of benchmarking gates, the Clifford group has a few

important properties:

1. For a given Hilbert space size, there are only finitely many Cliffords. Thus, ran-

domly drawing and implementing Cliffords is easier than implementing an arbitrary

unitary.

2. The Cliffords form a mathematical group, so their inverse can always be found

within the Clifford group.

3. Averaging an error process over the Clifford group is equivalent to averaging the

error over the Haar measure. More formally, the Clifford group is a unitary 2-

design [106], which means that any quantity averaged over the Clifford group up

to polynomial degree 2 is equivalent to averaging over the entire Haar measure. By

contrast, the Pauli group is a unitary 1-design.

2Note that this is sometimes confusingly called the π/4 phase gate.
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6.2 Clifford Based Randomized Benchmarking of Xmon

Qubits

We now describe the protocol used to benchmark single qubit Clifford gates, which largely

follows from Ref. [107].

1. Initialize the qubit in the ground state.

2. Apply a sequence of m Cliffords to the qubit.

3. Apply an additional (m + 1)th gate which inverts the whole sequence. As we

established above, this inverse can be found in the Clifford group.

4. Measure the resulting ground state probability.

5. Repeat this procedure k times.

6. Repeat for multiple lengths m to build up an exponential decay.

This procedure is similar to the one used for motion reversal, except we only invert the

sequence at the end since the inverse of any sequence of Cliffords can be efficiently found

within the Clifford group.

To implement this procedure, we must establish how to perform Clifford rotations

in our qubits. We begin by enumerating the single qubit Clifford group, which consists

of all rotations on the Bloch sphere which map each of the six axial states (i.e. the

six eigenvectors of the Pauli matrices) to one another while preserving their orthogonal
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Table 6.1: Single Qubit Cliffords

Rotation angle Axis direction (x, y, z) Decomposition

None None I
π (1, 0, 0) X
π (0, 1, 0) Y
π (0, 0, 1) Y, X

π/2 (1, 0, 0) X/2
π/2 (-1, 0, 0) -X/2
π/2 (0, 1, 0) Y/2
π/2 (0, -1, 0) -Y/2
π/2 (0, 0, 1) -X/2, Y/2, X/2
π/2 (0, 0, -1) -X/2, -Y/2, X/2

π (1, 0, 1) X, -Y/2,
π (-1, 0, 1) X, Y/2,
π (0, 1, 1) Y, X/2,
π (0, -1, 1) Y, -X/2,
π (1, 1, 0) X/2, Y/2, X/2
π (1, -1, 0) -X/2, Y/2, -X/2

2π/3 (1, 1, 1) Y/2, X/2,
2π/3 (-1, 1, 1) Y/2, -X/2,
2π/3 (1, -1, 1) -Y/2, X/2,
2π/3 (-1, -1, 1) -Y/2, -X/2,
−2π/3 (1, 1, 1) -X/2, -Y/2,
−2π/3 (-1, 1, 1) X/2, -Y/2,
−2π/3 (1, -1, 1) -X/2, Y/2,
−2π/3 (-1, -1, 1) X/2, Y/2,

structure. Without loss of generality, consider only the +Z vector. After a Clifford

rotation, there are six possible orientations of the vector, including staying in +Z. For

each of these possibilities, there are four possible orientations for +X, since the rotated

+X must remain orthogonal to +Z. Therefore, there are 24 possible rotations, as listed

in the first two columns of Table 6.1.
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The single qubit Cliffords fall into four general categories: the Pauli operators I, X,

Y, and Z; π/2 rotations about the X, Y, and Z axes; Hadamard rotations, where the

most well known Hadamard rotates +Z to +X, and all Hadamards produce the identity

when applied twice; and 2π/3 rotations, for example the rotation which cycles between

the +Z, +X, and +Y states.

Next, we discuss how to implement these rotations in a superconducting qubit. Be-

cause we are primarily concerned with benchmarking microwave gates, we will only have

access to π and π/2 rotations about the X and Y axes. Fortunately, all of the single qubit

Cliffords can be generated using at most three of these elementary gates [64]. For exam-

ple, the rotation axis for a standard Hadamard contains a Z component, but is equivalent

to an X gate followed by a Y/2 gate. The decompositions for all of the Clifford rotations

are listed in the third column of Table 6.1. On average, a Clifford contains 1.5 π/2 gates

and 0.375 π gates, for a total of 1.875 physical gates.

Now that we have established how to implement the single qubit Clifford gates, we

can perform Clifford based RB. Figure 6.1 shows the results of randomized benchmarking

with π and π/2 pulses which are 14 ns in length, calibrated using the procedure described

in Chapter 5. As expected, the average sequence fidelity decays exponentially with the

number of Clifford gates in the sequence. We fit the average sequence fidelity F to the

equation

F (m) = Apm +B (6.1)
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0 1C1 C2 C3
... Cm Cr

Figure 6.1: Results from randomized benchmarking of single qubit microwave gates on
a transmon. For each sequence length m, we choose thirty different random Clifford se-
quences C1, C2, . . . Cm which are inverted by appending the appropriate recovery Clifford
Cr. The fidelity of each sequence is simply the probability of measuring |0〉, and the
fidelity for each sequence is shown in the small dots. The larger dots are the averages at
each sequence length. Also shown is an exponential fit to the averaged data.
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where 1 − p is the rate of depolarization, and the parameters A and B capture state

preparation and measurement errors [107]. The quantity p is related to the average error

per Clifford rClifford by

rClifford = (1− p)(1− 1/d) (6.2)

where d = 2n is the dimensionality of the Hilbert space3. For the dataset above, we

find that A = 0.469 ± 0.007, B = 0.522 ± 0.007, 1 − p = 1.30 ± 0.03 × 10−3, and

rClifford = 6.5 ± 0.15 × 10−4. We can further estimate the error per gate by dividing

the Clifford error by the number of physical gates per Clifford, 1.875, and obtaining

rgate = 3.5± 0.1× 10−4.

6.3 Purity Benchmarking

Given the measured fidelity in Fig. 6.1, we would now like understand the source of errors.

At the very least, we would like to distinguish between coherent errors due to mistakes

in our calibration, versus incoherent errors due to noise in the qubit’s environment.

The disadvantage of randomized benchmarking is that it only provides one num-

ber, the total error rate per gate. However, in 2015, Ref. [108] proposed an extension

of randomized benchmarking called purity benchmarking (PB) which measures only the

incoherent contribution to gate error. As in standard RB, we initialize our qubit in

|0〉 and apply random sequences of Clifford gates of varying lengths. However, rather

than appending an inversion gate which brings the qubit back to |0〉, we instead perform

3Intuitively, if the n qubits are fully depolarized, there is still a 1− 1/2n probability of measuring the
expected outcome.
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Figure 6.2: Results from purity benchmarking the same Clifford sequences as in Fig. 6.1.

quantum state tomography (QST) to determine the state of the qubit after the random

sequence. While randomized benchmarking measures the fidelity with which the random

Clifford sequence prepared the expected state, purity benchmarking measures the fidelity

with which the sequence prepared any pure state. In other words, purity benchmarking

does not penalize the Clifford sequence preparing the incorrect state due to miscalibra-

tions in our pulses, since we would prepare the same incorrect state from run to run of

the experiment.

To perform purity benchmarking, we must first define the purity of a quantum state.

The standard definition of quantum state purity is

P = tr
(
ρ2
)

(6.3)
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where ρ is the density matrix [9]. The quantity P ranges from 1, for a completely pure

state ρpure = |ψ〉〈ψ|, to 1/d for the maximally mixed state. In Ref. [108], the purity is

rescaled so that it ranges from 0 to 1:

Pnormalized =
d

d− 1

(
P − 1

d

)
. (6.4)

In subsequent text, we will refer to Pnormalized as the purity of the state. For a single

qubit, this definition of purity is equivalent to the square of the Bloch vector length,

which can be measured as

Pnormalized = 〈σx〉2 + 〈σy〉2 + 〈σz〉2. (6.5)

where 〈σx〉 is the expectation value of the Pauli X operator.

In Fig. 6.2, we show the measured purity for the same random sequences which were

benchmarked in Fig. 6.1. The average purity also decays exponentially as a function of

sequence length, and we fit this decay to

P (m) = A′um−1 +B′ (6.6)

where u is the unitarity [108]. The unitarity can then be used to estimate the incoherent

error per Clifford [109]

rincoherent, Clifford =
d− 1

d

(
1−
√
u
)
. (6.7)

For the dataset in Fig. 6.2, we find A = 0.900 ± 0.004, B = 0.012 ± 0.003, 1 − u =

2.22 ± 0.04 × 10−3, and rincoherent, Clifford = 5.6 ± 0.09 × 10−4. As with standard RB, we

estimate the incoherent error per gate by dividing by 1.875 to obtain rincoherent, gate =

2.99± 0.05× 10−4. We see that for the 14 ns gates, 85% of the total gate error is due to
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decoherence.

6.4 Benchmarking Errors vs Pulse Length

Having established that our calibration procedure produces high fidelity 14 ns gates, we

proceed to test our calibration more stringently by measuring total and incoherent error

as a function of pulse length. We choose a range of pulse lengths between 10 ns and

100 ns, with the length of the π pulses always equal to the length of π/2 pulses. After

calibrating pulses at a given length using the procedure described in Chapter 5, we

perform randomized benchmarking and purity benchmarking to measure the total and

incoherent error. We repeat the calibration and benchmarking for each pulse length five

times. Collecting the results for all pulse lengths took approximately 10 hours, and the

results are shown in Fig. 6.3.

In the averaged data shown in Fig. 6.3, we see two important trends. First, the total

error tracks well with the incoherent error, indicating that our calibration procedure is

valid over a wide range of pulse lengths. Second, the incoherent error scales linearly with

pulse length, and by fitting the data, we find the following empirical equation

Incoherent error per gate =
tgate

Terror

, (6.8)

where Terror = 49.8± 0.5µs.
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Figure 6.3: Error benchmarking for different microwave pulse lengths. (a) Error due
to decoherence as measured by purity benchmarking versus the length of π and π/2
pulses. Benchmarking was repeated 5 times and each color represents a different run of
the measurement. (b) Total error as measured by standard randomized benchmarking,
for the same measurement runs as in (a). (c) Averages of the total (red) and decoherence
(black) errors. The black dashed line is a linear fit to the incoherent error vs pulse length,
and represents an incoherent error rate of one every 50 µs.
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Figure 6.4: Measurement of energy relaxation in a superconducting transmon. As a
function of the delay time between state preparation and measurement, the population
of the qubit decays exponentially with characteristic time T1 = 27.2± 0.3µs
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6.5 Coherence Measurements

To understand our measured error time scale Terror, we now turn to more traditional

measures of decoherence. Like many other quantum systems, superconducting qubits

are susceptible to two types of decoherence: energy relaxation and dephasing. Energy

relaxation in superconducting qubits manifests itself as a loss of population in the ex-

cited state over time. This loss typically occurs at a quasi-constant rate, leading to an

exponential decay with a characteristic time constant T1. Figure 6.4 shows a typical T1

measurement, from which we find T1 = 27.2± 0.3µs. In the UCSB Xmons, T1 is conjec-

tured to be primarily dominated by coupling to lossy defects in the substrate, especially

in the region near the Josephson junctions [110, 78, 80, 111].

Dephasing occurs when the frequency of the qubit is unstable. Since the qubit fre-

quency determines the phase evolution of the qubit when it is in a superposition state,

dephasing will manifest itself as uncontrolled variance in the qubit phase. As seen in

Fig. 6.5, dephasing can be measured by preparing the qubit in a superposition, allowing

the qubit to evolve for a time τ , then measuring phase coherence using state tomography.

In the basic Ramsey sequence [112], the qubit is allowed to evolve freely, and we find

that the phase coherence decays on a time scale of a few microseconds.

During the free evolution of the Ramsey sequence, the qubit is sensitive to frequency

noise from the quasi-static regime up to the inverse of the evolution time 1/τ [113].

Quasi-static noise can be thought of as the qubit having a different but static frequency

on every shot of the experiment. Each shot will result in a different phase of the qubit,
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Figure 6.5: Measurement of dephasing in a superconducting transmon. (a) For each
measurement, we begin by preparing the qubit in a superposition state. In a traditional
Ramsey experiment, the qubit state freely evolves for a time τ . Echo pulses are inserted
in the evolution to suppress quasi-static and low frequency noise. Note that the phases
of the echo pulses are randomized in our measurement. Each measurement is repeated
four times with a different final π/2 pulse phase to characterize phase coherence. (b)
Phase coherence versus total evolution time for Ramsey and echo sequences. Each curve
is fit to a model which accounts for white noise (exponential decay) and correlated noise
(Gaussian decay).
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and larger shot to shot variation in the frequency will lead to increased phase variance

and decreased phase coherence. To mitigate this effect, we introduce echo π pulses,

also known as refocusing pulses. For example, a single π pulse inserted at the center

of the evolution time inverts the qubit’s frame of reference, and any phase accumulated

due to a spurious frequency offset in the first half of the sequence will be reversed in

the second half. This single echo sequence is called a spin echo (or in NMR literature

a Hahn echo [114, 115]), and as evidenced by the higher phase coherence in Fig. 6.5,

this sequence suppresses quasi-static and other low frequency noise. Adding more echo

pulses, for example in a Carr-Purcell-Meiboom-Gill (CPMG) sequence [116], suppresses

low frequency noise to higher order and further increases phase coherence.

In order to fit our phase coherence data, we must consider three sources of dephas-

ing: energy relaxation, white frequency noise, and correlated frequency noise. Energy

relaxation contributes to exponential decay of phase coherence with a time scale of 2T1
4.

White frequency noise also leads to an exponential decay, with characteristic time Tφ1 .

Correlated frequency noise often manifests itself as 1/f noise, which has been found to

be ubiquitous in SQUIDs and is thought to be caused by fluctuating paramagnetic spins

coupled to the SQUID [117, 113, 118, 119]. A 1/f noise spectrum will lead to Gaussian

decay of the phase coherence with characteristic time Tφ2 [113, 120]. Our total model for

the phase coherence C is

C(τ) = Ae−τ/Texp−(τ/Tφ2)
2

+B (6.9)

4The factor of 2 comes from the fact that T1 is a timescale for probability decay, while phase coherence
is a measure of amplitude.
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Figure 6.6: (a) Extracted white noise (Tφ1) and correlated noise (Tφ2) dephasing times
for the data in Fig. 6.5. Note that we have subtracted the effect of T1 to obtain a pure
dephasing time for Tφ1. (b) Estimated time scale for incoherent errors in randomized
benchmarking based on decoherence times. The estimate includes the effect of Tφ1 and
T1, but not Tφ2. The dashed black line indicates the time scale measured using purity
benchmarking, and agrees with the results of spin echo.
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where A and B are again parameters related to state preparation and measurement, and

Texp is defined as

1

Texp

=
1

Tφ1
+

1

2T1

. (6.10)

The results of fitting Eqn.6.9 are shown in Fig. 6.6(a), where we see a few general trends.

For the white noise component, Tφ1 increases slightly with more echo pulses, but saturates

to a value of 60µs. On the other hand, Tφ2 rapidly increases with the number of echo

pulses due to suppression of the 1/f part of the spectrum, and would presumably keep

increasing if we added more echoes.

Armed with our decoherence measurements, we can now try to make sense of our

results from purity benchmarking. Reference [120] gives us a prescription for converting

decoherence times to benchmarking error rates:

εT1 =
1

3

tgate

T1

(6.11)

εTφ1 =
1

3

tgate

Tφ1
(6.12)

εTφ2 =
1

3

(
tgate

Tφ2

)2

, (6.13)

where the factors of 3 come from considering how each of six axial Bloch states are

affected by the various forms of decoherence. The linearity of the data in Fig. 6.3 indicates

that the effect of Tφ2 is negligible.5 Therefore, we estimate the expected timescale for

5For tgate = 100 ns and Tφ2
= 3.6µs as measured by the Ramsey experiment, εTφ2

= 2.5 × 10−4.
While this error value is small, it would have been resolved in the purity benchmarking. The absence
of any quadratic trend in the data indicates that some of the correlated noise is likely echoed during
randomized benchmarking.
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benchmarking errors to be

1

Terror

=
1

3

(
1

T1

+
1

Tφ1

)
(6.14)

In Fig. 6.6(b), we plot Terror as estimated from the dephasing times extracted for each

measurement sequence. We find that Terror estimated from the spin echo experiment

agrees well with the time scale for errors measured using purity benchmarking.

6.6 Conclusion

In this chapter, we reviewed the technique of randomized benchmarking (RB), then used

RB to measure the fidelity of our gates. We found that the average gate fidelity for

a 14 ns gate was 3.5 ± 0.1 × 10−4, and by using purity benchmarking, we determined

that 85% of the infidelity was due to decoherence. Our calibration procedure continued

to produce high fidelity gates over a range of gate times ranging from 10 ns to 100 ns.

Finally, we found that the time scale of randomized benchmarking errors is accurately

explained by measurements of energy relaxation and phase decoherence. In particular,

the dominant source of error for our gates is energy relaxation.

The single qubit gate fidelities we have measured compare favorably to other results in

superconducting qubits [121, 122]. Increasing T1 appears to be the most straightforward

path to improving our gate fidelities. However, the source of white noise dephasing is

still an outstanding issue in the UCSB Xmons. Possible culprits include electronics noise

on the bias line, resonator shot noise, thermal effects, or fluctuations in two-level system

defects. Future experiments in benchmarking should focus on probing the noise spectrum
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at different qubit frequencies and across different qubits to look for possible trends in the

noise.

6.7 Contributions

Randomized benchmarking of single qubit gates was first performed in our group by

Julian Kelly and Rami Barends. Theory support for purity benchmarking was provided

by Steve Flammia and Chris Granade. I acquired all of the data presented in this chapter,

and also performed all of the analysis. The device was fabricated by the Google Quantum

Hardware group.
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Chapter 7

Measuring and Calibrating for Two

State Errors

In this chapter, we will apply the technique of randomized benchmarking to a specific

problem: minimizing leakage and phase errors when operating gates on a superconducting

transmon qubits.

7.1 Gate Errors Due to Non-Computational Energy

Levels

As we saw in Chapter 2, the transmon has a weakly anharmonic potential which supports

a ladder of energy levels, as shown in Fig.7.1. The two lowest levels form our qubit,

and the primary non-computational level is the |2〉 state. In the rotating frame, the
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Figure 7.1: Weakly anharmonic potential of a transmon. When driving |0〉 to |1〉, direct
excitation to |2〉 (red arrow) causes leakage errors, while AC Stark repulsion of the
|1〉 ↔ |2〉 transition (dashed lines) leads to phase errors.

Hamiltonian of the lowest three levels while undergoing a microwave drive resonant with

the 0-1 transition is approximately

H(η,Ω) =

0 Ω 0

Ω 0
√

2Ω

0
√

2Ω η

 (7.1)

where η = f21−f10 is the anharmonicity and Ω is the Rabi frequency, which characterizes

the strength of the microwave drive. We see that when driving the 0-1 transition, we

also off-resonantly drive the 1-2 transition, which leads to two different types of errors.

First, leakage errors occur when the qubit state is directly excited from the |1〉 state to

the |2〉 state. Note that leakage can occur even if the qubit begins in the |0〉 state, for

example when driving a π pulse from |0〉 to |1〉, because the qubit will occupy |1〉 for a

significant fraction of the trajectory.

The second type of error is a phase error due to AC Stark shifting of the 1↔2 transition

[123]. To understand the AC Stark shift, we truncate the Hamiltonian to the 1-2 subspace

H12(η,Ω) =

(
0

√
2Ω√

2Ω η

)
(7.2)
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then diagonalize and compute the eigenenergies in the limit Ω << η

E± =
η ±

√
η2 + 8Ω

2
(7.3)

E+ ≈ η +
2Ω2

η
(7.4)

E− ≈ −
2Ω2

η
(7.5)

∆12 = E+ − E− ≈
4Ω2

η
(7.6)

We find that in the presence of the microwave drive, the |1〉 and |2〉 energy levels repel,

with the repulsion proportional to the square of the drive strength. As a consequence,

the f10 transition frequency changes as we drive the transmon, and the |0〉 and |1〉 states

accumulate a relative phase at a rate proportional to the drive strength. In the Bloch

sphere picture, the AC Stark shift means that when attempting to drive microwave

rotations about an equator axis, the actual rotation axis will tilt away from the equator

towards one of the poles, giving a rotation about the Z axis and phase accumulation.

Previous experimental work [124, 125] on superconducting qubits has focused on re-

ducing phase errors, because they were the dominant source of total gate infidelity. These

experiments used a technique called Derivative Reduction by Adiabatic Gate (DRAG)

pulse shaping [100] to compensate for the effect of the AC Stark shift, which helped push

single qubit gate fidelity in superconducting qubits to over 99.9% [126, 64]. However,

gate fidelity is not the only metric that determines the viability of fault tolerant quan-

tum error correction, because certain errors are more deleterious than others. Specifically,
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leakage errors are highly detrimental for error correcting codes such as the surface code,

because interactions with a qubit in a leakage state have a randomizing effect on the in-

teracting qubits [127]. Moreover, leakage states can be as long-lived as the qubit states,

leading to time-correlated errors which further degrade performance [128]. These con-

cepts were recently demonstrated in a 9 qubit repetition code [67], where single leakage

events persisted for multiple error detection cycles and propagated errors to neighboring

qubits. Understanding and reducing leakage is of critical importance for realizing an

error corrected quantum processor.

In this chapter, we will show that previous experimental implementations of the

DRAG protocol have a tradeoff between leakage and phase errors. To overcome this

tradeoff, we will apply an additional pulse shaping technique and obtain single qubit

gates that have both low leakage and low phase error.

7.2 Test Device

For our testbed, we use a single Xmon transmon qubit [79, 63] (Q7) from the 9 qubit

chain described in Ref. [67]. We operate the qubit at a frequency f10 of 5.3 GHz, and the

anharmonicity η = ω21 − ω10 is 2π × −212 MHz. The T1 of the device at the operating

frequency is 22 µs, while a Ramsey experiment shows two characteristic decay times

[120], an exponential decay time Tφ1 of 8µs and a Gaussian decay time Tφ2 of 1.8µs. We

note that as an alternative, leakage can be suppressed by engineering qubits with larger

anharmonicities such as flux qubits, which have recently also achieved high coherence
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Figure 7.2: (a) Simple DRAG correction, which adds the derivative of the envelope to the
quadrature component of the envelope. Three different DRAG weightings (α) are shown.
(b) Exponential decay of sequence fidelity from randomized benchmarking, shown for the
three values of α. Each point is the average of 75 different random sequences. Fidelity
is highest for α = 0.5 (c) |2〉 state population vs sequence length, showing accumulation
of leakage with sequence length. Leakage is lowest for α = 1.0.

[129].

7.3 Measuring Total Gate Error and Leakage Error

In order to measure the effect of leakage and phase errors, we will be using the Clifford

based randomized benchmarking discussed in Chapter 6. We begin by measuring how

the DRAG protocol suppresses leakage and phase errors. We use the simplified version

of DRAG described in Refs. [124, 125]. Given a control envelope Ω(t), we add the time
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derivative Ω̇(t) to the quadrature component:

Ω′(t) = Ω(t)− iα Ω̇(t)

∆
(7.7)

where α is a weighting parameter. Fourier analysis [123, 130] shows that the DRAG

correction suppresses the spectral weight of the control pulse at the |1〉 ↔ |2〉 transition

if α = 1.0, thus minimizing leakage errors. However, the optimal value to compensate

the AC Stark shift and correct for phase errors is α = 0.5 [123, 124].

We confirm these concepts by performing Clifford based RB using 10 ns microwave

pulses shaped with three different values of α (0, 0.5, and 1.0), as shown in Fig. 7.2(a).

Figure 7.2(b) shows sequence fidelity decay curves for the three values of α. As expected,

using α = 0.5 yields higher fidelities than α = 0.0 or α = 1.0. Using the sequence fidelity

decay curves, we fit for the average gate fidelity using Eqn.6.1. For α = 0.5, we obtain

an error per Clifford of 9.6± 0.1× 10−4, while for α = 0.0 and α = 1.0 we obtain errors

of 6.3± 0.2× 10−3 and 1.20± 0.01× 10−2 per Clifford, respectively.

Simultaneously, we characterize leakage errors in our gateset from the dynamics of

the |2〉 state measured while performing RB, as shown in Fig. 7.2(c). For all three values

of α, the |2〉 state population shows an exponential approach to a saturation population.

Without correction, this saturation population is significant at about 10%, but decreases

by a factor of 3 for α = 0.5 and by a factor of 10 for α = 1.0. To quantify the leakage

rate per Clifford, we fit the |2〉 state dynamics to a simple rate equation that takes into

account leakage from the computational subspace into the |2〉 state and decay from |2〉
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back into the subspace.

p|2〉(m) = p∞
(
1− e−Γm

)
+ p0e

−Γm (7.8)

Γ = γ↑ + γ↓ p∞ = γ↑/Γ (7.9)

where p|2〉(m) is the |2〉 state population as a function of sequence length m, γ↑ and γ↓

are the leakage and decay rates per Clifford, and p0 is the initial |2〉 state population.

Using Eqn. 7.9, we extract leakage rates of 3.92 ± 0.08 × 10−4, 1.02 ± 0.02 × 10−4, and

2.18± 0.08× 10−5 for α =0, 0.5 and 1.0. The results from RB confirm the theory behind

simple DRAG: we can minimize either phase error or leakage error, but not both.

7.4 Pulse Detuning to Minimize Phase Error

To simultaneously optimize for both errors, we would like to minimize leakage using

simple DRAG, then separately compensate the AC Stark shift. In the original DRAG

theory, the Stark shift was compensated using a time dependent detuning of the qubit

[100]. As noted in Refs. [123, 131, 132], a constant detuning should also be able to

compensate the shift 1. Given an envelope Ω′, which may have a quadrature correction,

we generate a new envelope

Ω′′(t) = Ω′(t)e2πi δf t (7.10)

1A unitary rotation in a two-level system is parameterized by three values, so by setting amplitude,
detuning, and phase we can in principle can generate any rotation and reduce phase errors to zero [123],
with the only error being leakage.
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Figure 7.3: (a) Control envelopes with simple DRAG with (right) and without (left)
detuning of the pulse. The detuning is exaggerated for illustration. (b) We sweep over
the detuning δf while performing the pseudo-identity sequence shown in the inset. The
sequence maps back to |0〉 when detuning is optimized. Repeating the sequence increases
the sensitivity of the measurement. (c) Quantum state trajectories plotted on projections
of the Bloch sphere, with (bottom) and without (top) optimal detuning. The data is
obtained by performing quantum state tomography (QST) after applying a variable X
rotation, with the rotation angle ranging from 0 to π.
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Figure 7.4: (a) Dependence of the optimal π pulse detuning on α, the DRAG weighting.
Three different pulse lengths are shown. The dashed lines are linear fits. (b) The slopes
from the linear fits as shown in (a), for a range of pulse lengths. The dashed line is a fit
to the inverse square of the pulse length, as expected from the AC Stark shift.

where δf is the detuning of the pulse from the qubit frequency. We also redefine the

anharmonicity parameter in Eqn. 7.7 to be η = ω21 − (ω10 + 2π δf), so that leakage

suppression still occurs at the 1↔ 2 frequency. An example of a detuned pulse is shown

in Fig. 7.3(a).

To optimize the detuning parameter δf , we sweep the detuning of a π-pulse while

performing the pseudo-identity operation of a π-pulse followed by a −π-pulse along the

same rotation axis [124, 133]. As shown in Fig. 7.3(b), the detuning is optimized when the

|0〉 state population is maximized, and the pseudo-identity can be repeated to increase

the resolution of the measurement. To verify that the detuning has suppressed phase

errors, we perform quantum state tomography after applying a control pulse to our qubit

while ramping the amplitude of the pulse, as shown in Fig. 7.3(c). The Bloch vector only

reaches the opposite pole when the detuning is optimized.

To better understand the parameter space for optimizing our pulses, we repeat the
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experiment shown in Fig. 7.3 for different π pulse lengths and values of the DRAG weight,

α. In Fig. 7.4(a) we show the dependence of the optimal pulse detuning on α for three

different lengths. For each pulse length, the pulse detuning is linear with α, and the slope

becomes more shallow with longer pulse length. In Fig. 7.4(b), we plot the dependence of

this slope on pulse length. We find that the slope between optimal detuning and DRAG

is proportional to the inverse square of the pulse length. Equivalently, the slope depends

quadratically on the microwave drive strength, which matches the intuition we developed

in 7.6, where we found that the AC Stark shift scales quadratically with the microwave

drive strength.

7.5 Optimized Microwave Pulses

We now explore in more detail the dependence of fidelity and leakage on α. In Fig. 7.5,

we show parameters extracted from RB with 10 ns pulses while varying α between 0.0

and 1.5. Without detuning the pulses, we find the minimum error per Clifford to be

7.9 ± 3 × 10−4 when α = 0.4. We note that the optimal α deviates slightly from the

expected optimal value of α = 0.5, and the actual optimal value can vary between 0 and 1

for different qubits and operating frequencies. We attribute this deviation to distortions

or reflections of the pulse between the waveform generator and the qubit [133]. Away

from the optimal α, the error increases rapidly.

Next, we optimize the detuning of the pulses for each value of α using the method

described in Fig. 7.3. We find that for π and π/2 pulses with the same length, the
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Figure 7.5: Total gate fidelity and leakage rates versus DRAG weighting α, measured
using RB. (a) Without using pulse detunings, we require different values of α to minimize
overall error versus leakage errors. (b) By optimizing our pulses using detunings, we
obtain high fidelity for any α, and are free to choose α to minimize leakage.
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same detuning for both pulses yields the best results. After calibrating the detuning,

we recalibrate the pulse amplitudes, then run a short Nelder-Mead optimization on the

RB fidelity to get final adjustments to pulse parameters [134]. With these optimizations,

we find that the average error per Clifford for all values of α to be 9.1 × 10−4, with a

standard deviation of 1 × 10−4. In other words, we can tune up high fidelity gates for

any value of α.

With gate fidelity now independent of α, we are free to implement DRAG solely to

minimize leakage. Without detuning, the minimum leakage rate is 1.82 ± 0.07 × 10−5

for α = 1.1. After detuning the pulses for optimal fidelity, we see shifts in the leakage

rates. For α > 0.4, we detune the pulses towards the |1〉 ↔ |2〉 transition which tends to

increase the leakage rate. Nevertheless, we can still suppress leakage to the same level as

the undetuned pulses by increasing α to 1.4. Using these parameters, we achieve both

high fidelity (8.7± 0.4× 10−4 error per Clifford) and low leakage (1.2± 0.1× 10−5).

7.6 Leakage vs Pulse Length

Having characterized 10 ns pulses in detail, we now examine the dependence of leakage

on pulse length. As noted previously, pulse detuning can affect the leakage rate; for

simplicity we set the detuning to zero for the following measurements. We initially set α =

0.0 and measure the leakage rate while varying the length of our pulses between 8 ns and

50 ns and calibrating the pulse amplitudes accordingly. We then repeat this measurement

with α = 1.1 where we previously minimized leakage in Fig. 3(a). The results are shown
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Figure 7.6: (a) Leakage rate per Clifford extracted from RB versus pulse length, with
α = 0.0 and α = 1.1. The dashed line is the lower bound on leakage calculated from the
heating rate. (b) Heating of the qubit from |1〉 to |2〉. We prepare the qubit in |1〉, wait
for time t, then measure the qubit state. Inset: Dynamics of all three states, primarily
showing T1 decay of |1〉 to |0〉. Main figure: Zoom in of the |2〉 state dynamics, showing
an increase in population due to heating before relaxing back to zero. The data has been
corrected for readout visibility. The dashed line is a rate equation fit, from which we
extract the heating rate plotted in (a).
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in Fig. 7.6(a). For short pulses, we observe that the leakage rate decreases exponentially

with increasing pulse length, and that DRAG correction suppresses leakage by an order

of magnitude or more. However, as the pulse length increases past 15 ns, the leakage rate

begins to level off and even begins to increase. Furthermore, DRAG no longer seems to

suppress leakage for pulses longer than 20 ns. These results suggest that for long pulses,

leakage is due to incoherent processes such as thermal excitations or noise at the |1〉 ↔ |2〉

transition, rather than coherent control errors.

To measure the incoherent leakage rate, we prepare the qubit in the |1〉 state and

measure the qubit’s dynamics, as shown in Fig. 7.6(b). We see that the |2〉 state popu-

lation initially rises over 20µs, corresponding to heating from |1〉 to |2〉. Then, the |2〉

population slowly decays to zero as both excited states relax due to T1 processes. We

model the |2〉 population using a rate equation with three rates: decay from |2〉 to |1〉,

decay from |1〉 to |0〉, and heating from |1〉 to |2〉. We ignore nonsequential transitions

since they are suppressed in the nearly harmonic transmon potential [135], as well as

heating from |0〉 to |1〉 since we assume the initial state is |1〉. We extract the two decay

rates from T1 measurements, which give T
|1〉
1 = 22µs and T

|2〉
1 = 18µs 2. We then fit the

|1〉 → |2〉 heating rate to be 1/(2.2 ms).

We convert this heating rate to a leakage rate per Clifford using the prescription in

Ref. [120]. The resulting lower bound on leakage is shown in the dashed line in Fig. 7.6(a).

For pulses longer than 15 ns, we find that the leakage rate is within a factor of 2 of this

2T
|1〉
1 is not 2T

|2〉
1 as might be expected because the transitions are at different frequencies, and T1 in

our system is frequency dependent [79]
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lower bound, confirming that even at these relatively short timescales, we are being

limited by incoherent processes. We note that the heating rate and T1 decay rate are

consistent with an equilibrium population of 0.8% for the |1〉 state. In other works, equi-

librium populations closer to 0.1% have been achieved [136], suggesting that incoherent

leakage can be reduced through improved thermalization.

7.7 Conclusions

In this chapter, we used single qubit randomized benchmarking to study leakage errors

in a superconducting qubit. We showed that simple DRAG correction alone cannot

minimize leakage and total gate error simultaneously, but by detuning our pulses, we

obtain gates with both high fidelity and low leakage. We also measured the dependence

of leakage on pulse length, and found that heating of the qubit is a significant source of

leakage in our system. Currently, leakage is not a significant part of the total gate error

for single qubit gates. However, as qubit coherence and gate fidelities continue to be

improved, leakage will become a more significant component of gate errors. To further

suppress leakage, qubit thermalization will need to be improved to mitigate incoherent

leakage, and further pulse correction techniques such as higher-order DRAG [131] or

Fourier corrections [123] will be needed to suppress coherent leakage.
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7.8 Contributions

This chapter is an adaptation of Ref. [137], for which I acquired the data and wrote

the text. The devices used in this experiment were fabricated by Chris Quintana and

Julian Kelly. Julian also contributed the initial idea of using randomized benchmarking

to measure leakage, while Alexander Kortkov provided theoretical support.
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Chapter 8

Two Qubit Calibration and

Benchmarking

In previous chapters, we have detailed the calibration and benchmarking of high fidelity

single qubit gates. We now turn our attention to our two qubit entangling gate, the

control-Z (CZ). We will first review the theoretical underpinnings behind the control Z

between two capcitively coupled transmons, which takes advantage of frequency control

and the higher levels of the transmon. We will also discuss a parameterization of the

control trajectory which will enable fast, high fidelity control Z gates. With the theo-

retical background established, we will turn to experimentally calibrating a high fidelity

control Z gate on two qubits. Finally, we will benchmark this control Z gate using simple

extensions of the techniques that we established for single qubit gates. We note that the

CZ gate described in this chapter was first described in Ref. [138], and has previously
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been experimentally demonstrated in Refs. [139, 140, 64].

8.1 The Controlled Phase Interaction in Coupled Trans-

mons

The desired unitary for a control-Z in the computational basis is

UCZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (8.1)

where the two qubit states are ordered as |00〉, |01〉, |10〉, and |11〉. The name ”control-Z”

implies, by analogy to the ”control-NOT”, that one qubit (the ”target”) should acquire

a π phase shift conditional on the other qubit (the ”control”) occupying |1〉. However,

Eqn. 8.1 implies that the unitary is symmetric with respect to qubit order, i.e. neither

qubit is the control or target. Instead, we want to produce an interaction which occurs

if the joint state is |11〉.

In Chapter 2, we saw that the Hamiltonian for two capacitively coupled tranmons in

the rotating frame of one of the qubits is

H/~ =



0 0 0 0

0 0 g 0

0 g δ 0

0 0 0 ∆


, (8.2)
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where g is the coupling strength, and ∆ is the detuning between the qubits. Using the

same ordering as in Eqn. 8.1, we will assume for the remainder of this chapter that the

ket |10〉 corresponds to the higher qubit in frequency space occupying the |1〉, and that

we are in the rotating frame of the lower qubit. This Hamiltonian offers a swap between

|01〉 and |10〉 if δ = 0, but not our desired |11〉 interaction.

However, to derive Eqn. 8.2, we truncated the total Hamiltonian down to two levels

for each qubit. We now add back the third levels of each qubit but ignore any joint states

which contain more than three excitations, and obtain the following 6 x 6 Hamiltonian

H/~ =



0 0 0 0 0 0

0 0 g 0 0 0

0 g ∆ 0 0 0

0 0 0 ∆ g2 g2

0 0 0 g2 η 0

0 0 0 g2 0 2∆ + η



, (8.3)

where η = ω10 − ω12 is the anharmonicity which is assumed to be the same for both

qubits, g2 ≈
√

2g is the |1〉 → |2〉 charge coupling, and the states are ordered as |00〉,

|01〉, |10〉, |11〉, |02〉, and |20〉. We see now that in the two excitation manifold, |11〉

couples to |02〉 and |20〉. As ∆ approaches −η, the repulsion and mixing between the

|11〉 and |20〉 states increases and leads to an avoided level crossing when ∆ = −η, as

shown in Fig 8.1. Slightly away from this crossing point, |11〉 still experiences a shift in
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Figure 8.1: Energy levels for |11〉 and |20〉, as a function of the detuning between the two
qubits. In the absence of any coupling between the two qubits, the energy levels follow
the dashed lines. With coupling on, as the detuning approaches the anharmonicity η,
the two levels show an avoided level crossing, with the splitting given by the coupling
strength g2. The difference between the blue curve and the dashed blue line gives a
frequency difference conditional on both qubits occupying |11〉.
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its eigenenergy due to the coupling to |20〉. This shift gives us a path to implementing a

control-Z, since a frequency shift in |11〉 will impart a phase shift over time, conditional

on both qubits being in |1〉, which is precisely the desired action of a control-Z.

Implementing the control-Z comes with a few caveats. First, since we want to apply

control-Z gates at discrete times, we must be able to turn the interaction off when desired.

In a fixed coupling system, turning off the control-Z can only be achieved by detuning

the qubits so that ∆� η. In this regime, we can approximate the frequency shift on |11〉

as due to independent dispersive repulsions from |02〉 and |20〉 which we sum together to

obtain [120]

ωzz =
g2

2

∆− η
− g2

2

∆ + η
(8.4)

=
−2ηg2

2

∆2 − η2
. (8.5)

In a standard UCSB Xmon where g = 15 MHz and η = −220 MHz, to obtain an |11〉

shift less than 0.2 MHz during normal operation, we require ∆ > 1 GHz. To execute the

control Z, we must then be able to accurately tune our qubits in and out of the region

where |11〉 and |02〉 strongly interact.

Second, by deliberately using interactions with the third level of the qubit, we expose

ourselves to far more leakage than in the single qubit case. As we discussed in Chapter 6,

minimizing leakage is crucial for eventually performing quantum error correction. Ideally,

in moving |11〉 near |02〉 and back, we would like to do so adiabatically to ensure that

we remain the |11〉 state at the end of the trajectory. Thus, the fundamental challenge
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of executing a control Z is as follows: starting from an idling position where two qubits

are far detuned, we must bring the |0〉 ↔ |1〉 transition of the lower qubit near resonance

with the |1〉 ↔ |2〉 transition of the higher qubit, then back to the idling position to

continue performing single qubit gates. We want this trajectory to be fast to mitigate

the effects of decoherence, but do not want the |11〉 state to leak into the |02〉 state.

A parameterization for obtaining such a trajectory is given in Ref. [123]. In brief,

the authors suggest parameterizing the time trajectory of the control Hamiltonian using

Fourier parameters

θ − θinitial =
k∑

n=1

λn [1− cos (2πnt/tp)] (8.6)

where θ = arctan(2g2/(∆ + η)) is the control angle between the |11〉 and |02〉 states,

and tp is the total time of the pulse. In particular, it was found that using only the

first three Fourier coefficients (m = 3), an experimentally achievable trajectory could be

found which would give the expected unitary and leakage below the 10−4 level.

8.2 Calibrating Non-Idealities in Qubit Flux Control

Prior to calibrating our CZ, we must first calibrate flux bias control of the qubit frequency

to high precision.
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Figure 8.2: Measuring the transfer function for pulsed flux control. (a) We bring the
qubit into a superposition, pulse the flux bias of the qubit, then measure the phase of the
qubit using quantum state tomography (QST) as a function of time after the pulse. We
also perform the measurement without pulsing the flux bias as a control to subtract out
any phase drift due to a frequency offset. (b) Distortion of the pulse leads to a significant
drift in the phase over time. We fit this phase drift to infer the transfer function between
our AWG and the qubit. After deconvolving our pulse with this transfer function, we
obtain a much flatter phase response.
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8.2.1 Correcting for Flux Control Distortions

One of the main difficulties in executing a gate using flux control is distortions of the pulse

shape between our AWG and our qubit. The distortions may be due to dispersion in the

cables, reflections at the connections between components, or current redistribution in

the sample itself [64]. The exact nature of the distortions has been difficult to determine

and is subject of ongoing research. Nevertheless, we can still measure the effects of pulse

distortion and attempt to correct for them.

In Fig. 8.2, we show the pulse sequence for measuring the distortion of our flux control

pulses. We begin by initializing the qubit in a superposition state. Then, we apply a

flattop flux pulse with a known amplitude and width, which detunes the frequency of

the qubit. After the end of the flattop, we wait a variable amount of time, then perform

quantum state tomography (QST) to determine the qubit state, and in particular, the

phase of the superposition. The application of the flux pulse will cause the qubit to

accumulate some phase. If the flattop is not distorted, this phase should remain stable

after the pulse has completed. However, the uncorrected data in Fig. 8.2 shows that

upon completion of the flattop, the phase of the qubit drifts a significant amount over a

timescale of a few hundred nanoseconds.

From this data, we would like to infer the transfer function H that is distorting our

pulse, which we define in frequency space as:

X̃qubit(ω) = H(ω)X̃in(ω) (8.7)

where X̃in is the Fourier transform of our intended signal, and X̃qubit is the signal actually

156



seen by the qubit. In order to fit a transfer function H to our data, we use the following

procedure:

1. Parameterize an ansatz for the transfer function H.

2. Accurately simulate the voltage output of the AWG, then convolve it with our test

transfer function.

3. Convert the convolved voltage time trace to qubit frequency using a calibrated

mapping from voltage to frequency.

4. Integrate the difference between the dynamic qubit frequency and the static fre-

quency of our rotating frame to obtain qubit phase over time.

5. Compare this simulated qubit phase drift to our experimental data by computing

the mean square difference, which is our error function.

6. Minimize this error function using the parameters of our ansatz 1.

Of these steps, the most subjective is finding a proper ansatz to capture the behavior of

the system. Historically, the most common ansatz used in the UCSB group is:

H(ω) = 1 +
k∑
i=1

iαiω

iω + τi
(8.8)

which describes multiple overshoots (positive αi) or undershoots (negative αi) which

exponentially decay to the final value with time constants τi. This model does not have

a simple physical origin, but does successfully fit the data, as shown in Fig. 8.2. Upon

1To do so, we typically use scipy’s differential evolution with reasonable bounds on our ansatz pa-
rameters
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obtaining H, we correct our flux pulses by performing deconvolution, where we convolve

our desired flux pulse with the inverse of H

X̃corrected(ω) = H−1(ω)X̃in(ω) (8.9)

so that ideally, the pulse seen by the qubit is equivalent to the desired input. The cor-

rected data in Fig. 8.2 shows the results of repeating the phase response experiment after

deconvolution. We see that after deconvolution, the response is much flatter, enabling

us to perform the large, fast detunes necessary for the CZ.

8.2.2 Multiqubit Timing

Having corrected the flux control on a single qubit, we now correct for two non-idealities

in multiqubit flux control. First, similar to the case of single qubit XY and Z control,

the two Z control channels on our qubits of interest may have timing differences. To

measure this timing difference, we populate one of the qubits then bring the two qubits

on resonance with a short flux pulse on each qubit. We sweep the relative timing between

the short flux pulses, and when they are aligned, we find maximal swapping between the

two qubits, as shown in Fig 8.3. By aligning the Z channels of the two qubits, we also

align the XY channels since we have previously aligned the Z and XY channels of the

single qubits.
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Figure 8.3: Measurement of the timing difference between the flux bias channels of two
coupled qubits. (a) We populate one qubit, then bring both qubits on resonance with a
short flux bias pulse, while varying the relative timing of the two flux pulses. (b) When
the relative timing correctly accounts for the physical timing difference between the two
flux bias channels, we see a peak in the population swapping between the qubits.
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Figure 8.4: Measurement and correction of flux bias crosstalk. (a) We bring the tar-
get qubit into a superposition, then apply a fixed positive or negative flux bias to the
source qubit, while simultaneously applying a compensating flux bias on the target qubit.
Finally, we measure the phase accumulated by the target using quantum state tomogra-
phy. (b) When no compensation is applied, the flux bias on the source imparts a phase
shift on the target qubit, with the sign depending on the sign of the bias. The correct
compensation amplitude is found when the phase of the target qubit is zeroed, and we
average the compensation found with positive or negative source bias. (c) After applying
a calibrated correction to the flux bias waveforms, the target qubit sees no difference in
phase behavior for positive or negative source biases.
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8.2.3 Flux Crosstalk

A second non-ideality we must correct for is crosstalk in the flux biases of the two qubits,

where flux bias intentionally applied to one qubit can induce flux in other qubits. For

two qubits, this crosstalk can be expressed in terms of a 2 x 2 matrix M

Φ = MV (8.10)φ1

φ2

 =

M1 m12

m21 M2


V1

V2

 (8.11)

where the vector V is the voltage output of our DAC and the vector Φ is the flux biases at

the qubit SQUIDs. In the crosstalk matrix, M1 and M2 are the intended conversions from

DAC output to flux bias, and m12 and m21 are the crosstalk terms, which are generally

not equal to each other.

To correct for this crosstalk, our goal is find the compensation matrix C, such that

M(I + C) = M ′ (8.12)

M

 1 c12

c21 1

 =

M ′
1 0

0 M ′
2

 . (8.13)

Multiplying this expression through, we see that c12 = −m12/M1, and M ′
1 ≈ M1 and

M ′
2 ≈M2 as long as m12 and m21 are small. 2

2The expression 1 + C is a first order compensation matrix, and the nth order correction can be
computed as 1+C+C2 +C3 + . . . Cn, or alternatively, as the nth Taylor expansion of 1/(1−C). Higher
orders account for the effect of crosstalk acting on the corrections from lower orders, which is important
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In a crosstalk experiment, we label one of our qubits the ”source” which generates a

flux bias, and the other qubit the ”target”, which experiences a frequency shift due to

crosstalk. One way to determine the compensation matrix element is to measure M1 and

m12 and compute c12. Alternatively, we can also measure c12 directly. To do so, we first

prepare the target qubit in a superposition state. Then, we apply a flux pulse to the

source qubit and perform QST to measure the phase accumulated by the target. The

amount of phase acquired by the target qubit will be proportional to the crosstalk matrix

element and the amplitude of the flux pulse applied to the source. Simultaneously, we

apply a flux pulse to the target qubit with the same length as the source flux pulse, but

with a variable amplitude. When the amplitude of the target flux pulse cancels out the

effect of crosstalk from the source flux pulse, the target qubit accumulates zero phase.

We can then compute the compensation matrix element as

c12 =
Vsource

Vtarget

. (8.14)

8.3 Calibrating the Control Z

We will now move on to experimentally calibrating a control Z gate in two capacitively

coupled transmons. The general strategy is as follows

1. Choose a trajectory with starting parameters and modify its height until a π con-

when dealing with more than two qubits, and also helps the diagonal elements of the M matrix converge
to their desired values.
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Figure 8.5: (a) Energy level schematic for a CZ gate between two qubits, qA and qB. The
qubits are initially far detuned to turn off the ZZ interaction. The |0〉 → |1〉 transition
of qA is then brought near resonance with the |1〉 → |2〉 transition of qB to induce a
the conditional phase shift. Finally, qA is brought back to its initial position to resume
operating single qubit gates or for measurement. (b) The actual time domain trajectory
of qA’s frequency. The goal of the calibration procedure is to find the optimal trajectory
which induces a π conditional phase shift while minimizing leakage from |11〉 to |02〉.
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ditional phase shift is achieved.

2. Optimize the parameters of the trajectory to minimize leakage.

3. Iterate over 2 and 3 until we converge on a gate with low leakage and the π phase

shift.

4. Calibrate the phases used to compensate the effect of the trajectory on the qubits.

8.3.1 Conditional Phase

We first note that the actual unitary we will be calibrating is
1 0 0 0
0 eiφA 0 0
0 0 eiφB 0
0 0 0 ei(φA+φB+π)

 , (8.15)

which is identical to Eqn. 8.1 except for the single qubit phase shifts φA and φB. These

phase shifts are due to the frequency trajectory undertaken by the qubits, and are mostly

independent of the coupling physics which gives rise to the conditional π phase shift.

They can be accounted for by simply shifting the microwave frame of reference, such

that the total effect is identical to the standard CZ. However, the presence of the single

qubit phases means we must calibrate the conditional π phase shift using a differential

measurement.

We begin by choosing a gate length (typically 45 ns) and Fourier parameters which

produce a trajectory that is known from simulation to give low leakage. We prepare one

of the qubits in a superposition, execute the CZ trajectory, then measure the accumu-
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Figure 8.6: Calibrating the trajectory amplitude to obtain a π conditional phase shift.
(a) Starting with qB in either |0〉 or |1〉, we prepare a superposition in qA, execute the
CZ trajectory, then measure the resulting phase shift in qA. The conditional phase is the
difference in phase shift due to qB occupying either |0〉 or |1〉. Note that because the
CZ is symmetric, this experiment could also be performed by measuring the phase shift
in qB conditional on qA. (b) Measured conditional phase as a function of the maximum
detuning in the CZ trajectory.
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lated phase using quantum state tomography. We repeat this experiment but initialize

the other qubit in |1〉 rather than |0〉. If the CZ trajectory is correctly calibrated, the

difference in phase between the two experiments will be π. If it is not, we vary the total

amplitude of the trajectory until we find the amplitude which gives a π phase shift, as

shown in Fig 8.6.

8.3.2 Leakage

Next, we measure and minimize the leakage due to the CZ trajectory. Since the primary

error transition is |11〉 → |20〉, we prepare both qubits in |1〉, then execute the CZ and

measure the resulting |2〉 state population in the higher qubit. We use this measured

leakage as a cost function and minimize it by varying the Fourier parameters used to build

the shape of the trajectory. Typically, Nelder-Mead is used to perform this optimization.

After optimization, we typically find that the measured amount of leakage is limited by

measurement error at the 1% level.

8.3.3 Iteration and Phase Compensation

Since the leakage calibration modifies the shape of the trajectory, the amplitude must

be fine tuned again to achieve a π conditional phase. The conditional phase and leakage

calibrations are iterated typically 2 or 3 times until both the conditional π phase shift

and low leakage have been achieved. The final step of the CZ calibration is to calibrate

the single qubit phases φA and φB. This calibration is performed by separately preparing
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each qubit in a superposition and measuring the phase shift due to the CZ, while the

other qubit remains in |0〉.

8.4 Benchmarking the CZ Gate

We now turn to benchmarking the performance of our calibrated CZ gate. As with

single qubit gates, we will use Clifford based randomized benchmarking (RB) to estimate

the total fidelity of our gates. The procedure is nearly identical, except we will now

use the two qubit Clifford group and the final measurement is a joint measurement of

the probability of the qubits remaining in |00〉. The two qubit Clifford group contains

11520 unitaries, and the standard decomposition into CZs and single qubit microwave

gates is given in Ref. [64]. On average, a two qubit Clifford contains 1.5 CZs, and 33/4

single qubit gates split evenly between the two qubits. Standard RB results are shown

in Fig. 8.7(a), and as in the single qubit case, we fit the average sequence fidelity F to

F (m) = Apm +B, (8.16)

where m is the number of Cliffords in the sequence, A and B are parameters related

to state preparation and measurement, and 1 − p is the depolarization rate. For this

dataset, we find A = 0.696± 0.002, B = 0.247± 0.002, 1− p = 2.19± 0.03× 10−2, and

rClifford = 3
4
p = 1.64± 0.02× 10−2.

Unlike the single qubit case, we cannot simply estimate the CZ error from the error

per Clifford because two qubit Cliffords contain both single and two qubit gates. Instead,

we use interleaved randomized benchmarking, which is identical to standard RB except
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Figure 8.7: (a) Standard two qubit Clifford randomized benchmarking. (b) Randomized
benchmarking with CZs interleaved after every Clifford.
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Table 8.1: Error rates for single and two qubit benchmarking. The leakage rate was not
measured for qA but is assumed to be roughly the as same as for qB. For incoherent and
leakage errors, the error rate per CZ was found by simply subtracting the reference value
from the interleaved value, as there is presently no theory for a more accurate estimate
of interleaved purity or leakage values.

Total Error Incoherent Error Leakage Rate

Single qubit, qA 4.3± 0.1× 10−4 3.95± 0.04× 10−4

Single qubit, qB 4.8± 0.2× 10−4 3.70± 0.04× 10−4 1.5± 0.1× 10−5

Two Qubit Clifford 1.64± 0.02× 10−2 1.20± 0.04× 10−2 7.2± 0.3× 10−4

Two Qubit CZ 5.4± 0.4× 10−3 3.42± 0.05× 10−2 2.8± 0.4× 10−4

we insert a CZ after each two qubit Clifford. The results of interleaved RB are shown

in Fig. 8.7(b), and we fit the average sequence fidelity to 8.16, but interpret m as the

number of Cliffords and interleaved CZs. We infer the error per CZ by using the standard

RB result as a reference and computing

rCZ = (1− pinterleaved/preference)(d− 1)/d (8.17)

where d = 2n is the dimensionality of the Hilbert space. For the dataset in Fig. 8.7, we

find that rCZ = 5.4± 0.4× 10−3.

Purity and leakage benchmarking can also be performed with two qubit gates in a

manner analogous to single qubit gates, with results shown in Fig.8.8 and Fig.8.9. The

extracted incoherent error rates and leakage rates, along with benchmarks for the single

qubit gates for qA and qB, are collected in Table 8.1.
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Figure 8.8: (a) Two qubit purity benchmarking. (b) Purity benchmarking with CZs
interleaved after every Clifford.
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Figure 8.9: (a) Two qubit leakage benchmarking. The leakage population was only
measured for the higher of the two qubits (qB), since the dominant source of leakage
swaps excitation into qB’s |2〉 state. (b) Leakage benchmarking with CZs interleaved
after every Clifford.
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8.5 Conclusions

In this chapter, we described the CZ gate used in the UCSB Xmons for entangling

operations, and detailed how to calibrate it. Using randomized benchmarking, we found

that the fidelity of our CZ is 99.45%, which compares favorably with two qubit gates

in other systems [65, 141]. Leakage due to our CZ is an order of magnitude higher

than it is for single qubit gates, but is still not the dominant factor in gate infidelity.

Rather, decoherance contributes a slight majority (60%) to the CZ error with control

errors contributing most of the rest. Unlike the single qubit case, comparing incoherent

RB error to independent measures of decoherence is difficult because the qubit frequency

does not remain fixed during the CZ gate, and decoherence can be strongly frequency

dependent. Future research should focus on matching the spectrum decoherence times

in the CZ trajectory to the performance of the CZ. In addition, control errors are likely

dominated by phase drift of the qubit following each CZ, and decreasing this phase drift

through improved cabling and calibration software will be crucial to reaching higher

fidelities.

8.6 Contributions

Calibration and randomized benchmarking of the CZ gate were first performed in the

group by Julian Kelly and Rami Barends, while the flux control techniques presented here

were first pioneered by Charles Neill. I further refined the flux control and CZ calibration
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techniques and introduced two qubit purity (with help from Sergio Boixo, Steve Flamia,

and Chris Granade) and leakage benchmarking. I acquired all of the data presented in

this chapter, and also performed all of the analysis. The device was fabricated by the

Google Quantum Hardware group.
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Chapter 9

Readout Induced Qubit Transitions

Having calibrated high fidelity single and two qubit gates, we now return to qubit mea-

surement. In a textbook quantum system, after readout of the qubit state, the qubit

should remain in that state that was measured. In this chapter, we will explore two ways

this assumption can fail in superconducting transmons measured using dispersive readout

through a coupled readout resonator. First, we will review Sank, Chen, and Khezri et.

al. [142], where we find that a transmon can be driven to excited states through resonant

interactions within the Jaynes-Cummings (JC) ladder. Second, we will show preliminary

data for a similar phenomenon which occurs when the qubit is itself also driven.
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9.1 Measurement Induced State Transitions

9.1.1 Motivation

Holding all other parameters equal, the signal to noise ratio for dispersive measurement

should increase with higher input power and longer measurement time. Because mea-

surement time is constrained by the energy relaxation of the qubit, increasing the mea-

surement power is a key knob in calibrating high fidelity qubit readout. However, several

experiments with superconducting qubits have found that as the number of photons occu-

pying the resonator n̄ is increased past a certain point, the qubit suffers anomalous state

transitions [143, 144, 68, 74]. It was long suspected that these transitions were caused by

the breakdown of the dispersive approximation of the JC model as n̄ exceeds a critical

photon number nc, but recent theory showed that the transitions are not predicted by

the JC interaction even with very large n̄ [145].

9.1.2 Experimental Observations

To study these transitions, we tested a transmon qubit coupled to a resonator with

coupling strength g/2π ≈ 87 MHz, as illustrated in Fig. 9.1 (a). The transmon is biased

such that ω10/2π = 5.4 GHz with η/2π ≡ (ω21−ω10)/2π = −221 MHz, while the resonator

frequency is ωr/2π ≈ 6.78 GHz with a decay rate of κ ≈ 1/(37 ns) through a bandpass

Purcell filter [146, 74] to a 50 Ω output line and amplifiers.

We have previously seen that the transmon supports more than just the two qubit
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Figure 9.1: Transmon-resonator system. (a) Circuit and potential diagrams. The
transmon (violet) is capacitively coupled to the resonator (orange). The resonator is
inductively coupled to a bandpass Purcell filter with Q ≈ 30 [74]. The resonator is
driven by an arbitrary waveform generator connected to the filter, and the dispersed
photons are measured by a low noise, impedance matched parametric amplifier [99] also
connected to the filter. (b) In-phase and quadrature (IQ) components of the dispersed
signal measured with the transmon prepared in the first four states, with each state
forming an IQ “cloud”. The circles represent 3σ from fitting a Gaussian distribution to
each cloud’s projection onto lines connecting the clouds’ centers.
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levels. In this experiment, we will measure levels up to |3〉. In Fig. 9.1 (b), we plot the

complex scattering response (IQ points) of the resonator with the transmon prepared in

various states, which acts as our calibration for distinguishing the state of the transmon

in subsequent measurements. When the resonator-transmon detuning |∆| ≡ |ω10 − ωr|

is not more than 1.4 GHz, the resulting IQ points resolve up to the first four transmon

states, while at larger |∆| (relevant to most of our data) we can only resolve the first

three states due to the smaller dispersive shift.

To investigate the effect of resonator photons on the transmon state, we use the pulse

sequence illustrated in Fig. 9.2 (a). With the transmon initialized in |0〉, we first drive

the resonator with a 2µs long, variable power pulse. This “stimulation pulse” injects

a number of photons into the resonator that, when large enough, induces transitions in

the transmon state. We then wait 500 ns (13 decay time constants) for the resonator to

ring down. Finally, we drive the resonator again with a fixed low power pulse to measure

the transmon without inducing further transitions, and record the IQ response of the

resonator. Based on the calibration shown in Fig 9.1(d), we identify each IQ point as one

of the transmon states, or if the point is more than three standard deviations from any

of the calibrated distributions, we label it as an “outlier”.

The results are striking in two ways. First, as the stimulation pulse power is raised,

the transmon jumps from |0〉 not only to |1〉 but also to |2〉, |3〉 and even higher states,

as shown in Fig. 9.2 (b). Although we can resolve only up to |3〉, the characteristic arc

of the IQ points with increasing state index appears to continue to what we estimate
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Figure 9.2: (a) Control sequence for probing the effect of resonator photons on the
transmon. The spectroscopy pulse is used only in the AC Stark measurement. (b) IQ
data for drive powers 0.02, 0.2, and 0.8 (arbitrary units), with ω10 = 5.38 GHz. The
circles represent 3σ for the four resolvable transmon states as calibrated in Fig. 9.1b.
At high power, the transmon is clearly driven to states higher than |3〉. (c) Transmon
state probabilities versus stimulation power. In addition to the four calibrated transmon
states, we show the probability that the measurement was > 3σ from any of the resolved
states, labeled “outliers”. Note the two large resonance-like peaks labeled A and B. (d)
Stark shifted transmon frequency ω10 versus stimulation pulse power. We convert the
shifted ω10 to n̄ using a numerical theory (right vertical axis) [142].
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to be |5〉 or higher. Second, the probability of transitions is highly non-monotonic with

power, as was previously seen in Refs. [68, 144]. In particular, the shapes of the features

in probability versus power resemble resonance peaks, with large peaks in the outlier

probability at drive powers 0.7 (feature A) and 0.2 (feature B), a small peak in |1〉

near 0.15, another small peak in |2〉 near 0.05, and various other peaks at other powers.

The peaked structure rules out any process that would have monotonically increasing

transitions with increasing drive power, such as chip heating or dressed dephasing [147,

148], as the dominant mechanism.

In order to connect our results to theoretical models, we next convert stimulation pulse

power to photon number n̄. We cannot measure n̄ directly, but recall from our discussion

of the Jaynes-Cummings ladder in Chapter 2 that increasing photon occupation in the

resonator causes the qubit frequency to shift downwards due to the AC Stark shift [149].

Thus, we can map drive power to n̄ by measuring the AC Stark shifted qubit frequency

for each resonator drive power, then converting the frequency shift to n̄ using a numerical

model based on separately measured parameters g and ∆ [142]. To measure the AC Stark

shift, we repeat the previous experiment with the addition of a spectroscopic microwave

pulse on the transmon after the driven resonator has reached the steady state. At each

resonator drive power, we vary the frequency of the transmon pulse; the |1〉 probability

is maximized when the pulse is on resonance with the shifted transmon frequency.

We show the results of the AC Stark shift measurement with the computed photon

numbers in Fig. 9.2 (d) for the same drive powers as in Fig. 9.2 (c). Note that feature B
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(black dashed line) occurs at 170 . n̄ . 250, which is, interestingly, considerably larger

than the critical photon number nc ≡ (∆/g)2/4 ≈ 60 introduced in Ref. [150].

9.1.3 Theory of non-RWA Transitions

To understand the source of these transitions, we return the Jaynes-Cummings ladder

from Fig. 2.5, but consider rungs of the ladder with many more excitations. With more

available excitations in each rung, we must add in the higher states of the transmon.

Recall that the couplings within each rung repel the states, imparting an n-dependent

shift on the bare levels to produce eigenstates, two of which are shown as dashed lines

in Fig. 9.3. As indicated by the long horizontal arrow, at certain n the ladder contains

resonances between states where the qubit goes from |0〉 to higher levels such as |6〉.

This critical observation could explain both the resonance structure and the transitions

to higher transmon levels observed in the data.

However, according to the rotating wave approximation (RWA), levels that are not

in the same rung (i.e. do not conserve excitations) should not couple. In fact, the non-

RWA couplings of the Hamiltonian can be as large as the RWA couplings, but are usually

neglected on the grounds that they are more off resonant than the RWA couplings (in

our system the RWA pairs are ∼ 1 GHz off resonance, while the non-RWA pairs are

∼ 13 GHz off resonance). However, keeping the non-RWA terms in our Hamiltonian

reveals the essential reason for the unwanted state transitions. The non-RWA terms

couple next-nearest neighboring RWA strips (i.e., those differing by 2 in total excitation
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number) together, as shown in Fig. 9.3. Combined with normal intrastrip RWA coupling,

the non-RWA coupling allows multistep (i.e., higher order) processes to connect the

resonant levels. For example, non-RWA coupling carrier |0, n〉 to |1, n + 1〉 in another

RWA strip, and then RWA couplings carry the system within the strip to |6, n−4〉. Note

that although the full process conserves energy, the individual steps do not.

9.1.4 Comparing Theory to Experiment

To find the condition under which the resonances occur, we numerically compute the

frequencies ωk(n) ≡ E|k,n−k〉/~ − nωr (the overline indicates eigenstate) of the levels

within each RWA strip, as functions of n. As n increases, energy levels within each strip

repel each other more strongly and fan out, as illustrated by the solid lines in the “fan

diagram” in Fig. 9.4 (a). By superimposing fan diagrams of two next-nearest neighboring

RWA strips, as shown by the dashed lines, we see that they have multiple intersections,

meaning that the JC ladder contains multiple resonances. For example, the left red dot

in Fig. 9.4 (a) shows that the transmon-resonator state |0, n〉 can be brought on resonance

with |6, n − 4〉. The presence of crossings with higher transmon states agrees with the

experimental observation of transitions to states higher than |3〉.

Next, we compute the n at which interactions in the fan diagram occur as a function

of the qubit-resonator detuning ∆, yielding the lines in Fig. 9.4 (b). As |∆| increases, the

spacing between levels within an RWA strip also increases, as shown in Fig. 9.3. However,

the spacing between strips is fixed at ωr, so with increased |∆| fewer photons are required
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Figure 9.3: Jaynes-Cummings ladder for large values of n. Bare states are shown as solid
lines and two of the eigenstates are shown as dashed lines. Dark curved arrows indicate
coupling within an RWA strip with corresponding RWA coupling strengths shown below.
The ladder has an energy resonance between |0, n〉 and |6, n−4〉 (long black arrow). Non-
RWA couplings (short straight arrows) allow for interstrip transitions. The couplings to
|1, n+1〉 (red) and |3, n−1〉 (yellow), along with those within the RWA strip, mediate the
transition between the resonant levels. The coupling to |2, n−1〉 (green), which mediates
additional resonant transitions, requires a Hamiltonian term coupling transmon states of
equal parity; this is forbidden if the transmon potential is symmetric. Note the energy
spacing between states |k, n〉 and |k + 1, n− 1〉 is ∆ as indicated in the top left.
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Figure 9.4: (a) Fan diagram of the energy levels within an RWA strip. Solid: Frequencies
ωk(n) ≡ E|k,n−k〉/~−nωr versus photon number n for |∆| = 1.4 GHz. As n increases, the
levels repel more strongly and fan out. Dashed: Same frequencies shifted by 2ωr, which
represent the next-nearest neighboring RWA strip. The red dots show energy resonances
with the qubit state |0〉 occurring at specific values of n. The left dot corresponds to the
resonance shown in Fig. 9.3. (b) Photon number at level crossing versus ω10, comparing
experiment to theory. Black circles and blue squares show experimental features A and
B from Fig. 9.2 respectively, and the error bars represent the apparent widths of the
features. Solid red line is the theory prediction for level crossing between eigenlevels of
|0, n〉 and |6, n−4〉. Dashed blue line is the theory prediction for an asymmetric transmon
that breaks the selection rule by at least 1%, yielding level crossings between eigenlevels
of |0, n〉 and |3, n− 2〉.
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to bring |0, n〉 on resonance with states in higher strips and so the transitions occur at

lower n̄. Note that while we use n in the theory, the experiment drives the resonator

into a coherent state with mean photon number n̄ and fluctuations
√
n̄ < 0.1 n̄. Also,

although the n at which the energy resonance occurs is not related to nc, the effective

couplings between resonant levels are large enough to yield the experimental features

only when n & nc.

To confirm the theoretical prediction, we repeat the experiment shown in Fig. 9.2 for

several values of ω10 by biasing the transmon’s SQUID with magnetic flux. At each ω10,

we find the values of n̄ of features A and B, as shown in Fig. 9.2 (d)), and plot these

points in Fig. 9.4 (b). The experimental points for feature A (black circles) and feature B

(blue squares) are well fit by numerically computed curves for the transitions from |0, n〉

to |6, n− 4〉 and |3, n− 2〉, respectively. Note that the theory lines are calculated using

only the measured ωr, ω10, and g, with no free parameters fitted to the data.

However, the transition from |0, n〉 to |3, n−2〉 is actually unexpected. If the transmon

potential is symmetric, as is usually assumed [63], then gi,j is only nonzero when j − i is

odd. Therefore, the transmon-resonator coupling should only couple RWA strips where

the difference in total excitation number is even, so the transition to |3, n− 2〉 should be

forbidden. Nevertheless, the theory line for the |3, n − 2〉 transition fits the data well,

indicating a possible asymmetry in the transmon potential. We confirmed this asymmetry

by observing |0〉 → |2〉 Rabi oscillations when driving the transmon at ω01 + ω12 [142].

Through comparison with Rabi oscillations on the |0〉 → |1〉 transition, we experimentally
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estimate |〈0|Q|2〉/〈0|Q|1〉| ≈ 10−2 [142]. This matrix element is large enough to explain

the transitions to |3, n− 2〉, and so the level crossing theory appears to correctly predict

both of the largest resonance features observed in the data.

9.1.5 Summary

So far, we have found that strong dispersive measurement of a transmon induces tran-

sitions to states above |3〉. These transitions occur at specific values of the photon oc-

cupation in the measurement resonator, and are caused by energy resonances within the

qubit-resonator system. Coupling between the resonant levels is mediated by Hamilto-

nian terms usually dropped in the rotating wave approximation, and the most important

such term involves an unexpected broken symmetry in the transmon potential.

9.2 Induced Transitions in a Driven Qubit

We will now continue to explore the dynamics of dispersive readout in a system where

the resonator frequency is below that of the qubit rather than above. This frequency

arrangement gives us the ability to rapidly reset the qubit state by bringing the qubit on

resonance with the resonator, which can be a useful resource for algorithms. However,

we will see that the the dynamics of the qubit and resonator are more complicated in

this arrangement.
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Figure 9.5: AC Stark spectroscopy with the resonator below the qubit. (a) Pulse se-
quence. We ring the resonator up for 500 ns with a variable power drive tone, then probe
the qubit with a 50 ns microwave spectroscopy pulse once the resonator has reached
equilibrium. Finally, we measure the qubit with a calibrated pulse on the resonator. (b)
With a spectroscopy pulse sufficient to drive the usual |0〉 → |1〉 transition, we see that
the qubit frequency initially decreases, but then diverges and also curves upward. (c)
Increasing the spectroscopy amplitude reveals more features in the transmon spectrum,
including the two photon transition as well as unexpected resonances above the qubit
frequency. (d) If we sit at a fixed spectroscopy frequency and resonator drive power, and
vary the spectroscopy pulse length, we observe Rabi oscillations between |0〉 and a higher
excited state of the transmon, |2〉 or above.
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9.2.1 The AC Stark Effect with ωr < ωq

We begin by repeating the AC stark experiment from Fig. 9.2 in our device where the

resonator frequency is below that of the qubit. We place the qubit f10 at 5.305 GHz,

and the transmon’s |1〉 → |2〉 transition is f21 = 5.05 GHz. The resonator frequency

is at 4.6 GHz, and the qubit-resonator coupling is approximatley 100 MHz as measured

by the dispersive shift. As before, we ring up the resonator with variable power, and

drive the qubit with a variable frequency microwave spectroscopy pulse. The microwave

spectroscopy pulse is calibrated to drive the |0〉 → |1〉 transition when the pulse is on

resonance with the qubit and there are no photons in the resonator. After the microwave

spectroscopy pulse, we allow the resonator to ring down, then measure the excited state

population with a calibrated measurement pulse. The results are shown in Fig 9.5(a). As

in the previous AC Stark experiment in Fig.9.2, the qubit frequency initially decreases

with increasing resonator drive, but strangely increases at higher drive power and also

appears to split into two lines.

Next, we repeat the same experiment but drive the microwave spectroscopy pulse

with 4 times more amplitude, with the results shown in Fig 9.5(b). We expect to see

a transition appear below the qubit frequency at (f10 + f21)/2 due to the two photon

transition from |0〉 to |2〉. However, we also see additional excitations at frequencies

higher than the qubit frequency, and with a distinct curvature as a function of drive

power. These transitions cannot be explained by virtual transitions to higher states

which always occur below the qubit frequency due to the sign of the anharmonicity.
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Furthermore, the spurious transitions do not occur at zero resonator drive amplitude, so

they appear to be related to the dynamics of the resonator.

To further characterize these unexpected transitions, we choose a fixed resonator drive

power (0.06) and spectroscopy frequency (5.2 GHz) which lie in one of the transition

regions. Using these parameters, we repeat the AC Stark spectroscopy experiment but

vary the length of the spectroscopy pulse. We observe Rabi oscillations from the |0〉

state to |2〉 or possibly higher, indicating the higher states of the transmon are involved

in some manner.

9.2.2 Revisiting the JC Ladder

To explain the strange shape of the AC Stark shift and anomalous resonances, we return

to the JC ladder construction. In Fig. 9.6, we show two RWA strips in the JC ladder

for the resonator frequency placed below the qubit frequency. We notice an immediate

qualitative difference: within each RWA strip, the energies of the levels do not increase or

decrease monotonically with increasing qubit energy. Rather, each RWA strip curves back

on itself, due to flipping the sign of ∆, but not the sign of the qubit anharmonicity. As

the number of photons and the intrastrip level repulsions increase, energy level crossings

may occur within an RWA strip and lead to the AC Stark shifts which reverse sign. This

effect is demonstrated in the “fan diagram” for the resonator placed below the qubit,

shown in Fig. 9.7.

Next, we consider the effect of the microwave qubit drive that is present in our
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Spurious Driven 
Transitions

Figure 9.6: Jaynes Cummings ladder with the resonator frequency below the qubit fre-
quency. The RWA strips curve back on themselves because the transmon anharmonicity
and resonator-transmon detuning have the opposite sign. When the qubit is driven, the
two strips naturally couple and the transmon can be driven to higher states.
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Figure 9.7: Energy eigenlevels vs photon number within one RWA strip, for f10 =
5.305 GHz and fr = 4.6 GHz. Compare with Fig. 9.3.
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spectroscopy experiment. While the RWA forbids intra-strip couplings in a “static”

Hamiltonian, there is no such restriction when the qubit is driven since the drive can add

or remove excitations from the system. Therefore, we naturally have a mechanism for

coupling the state |0, n〉 to |1, n〉, as well as |2, n − 1〉 and higher since we have already

established that |0〉 → |2〉 couplings are possible due to broken symmetries.

Based on these observations, we conjecture the following: the ground state of the

transmon is being resonantly driven by the microwave drive to higher states of the trans-

mon in the next RWA strip. Coupling is mediated by a combination of the anomalous

|0〉 → |2〉 coupling and a
√
n enhancement in the coupling strength due to the photons

in the resonator. The states in the next RWA strip are not far detuned from each other

because the negative anharmonicity causes the strip to curve back on itself. There, these

anomalous transitions should be relatively close to f10, e.g. the transition to |2, n − 1〉

will occur at f10 + |∆|− |η|. Furthermore, these higher states of the transmon experience

repulsions due to the intra-strip couplings, which will lead to n-dependent behavior of

the resonance frequencies of these transitions.

9.2.3 Comparison to Theory

To test our conjecture, we numerically solve for the eigenlevels of the transmon and

resonator. Then, for each photon number n, we compute the transition frequency to

move from |0, n〉 to the higher states in the next RWA strip, such as |1, n〉 (which gives

us the AC Stark shifted f10), |2, n−1〉, |3, n−2〉 and so on. Using the Stark shifted shape
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Figure 9.8: The strongly driven AC Stark spectroscopy data from Fig. 9.5(b), overlaid
with numerical theory lines from |0, n〉 to the states indicated in the legend. The only
parameters for the theory lines are f10, η, the qubit-resonator coupling g, and a linear
mapping from n̄ to resonator drive power.
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of the f10 transition in Fig. 9.5(b), we calibrate a simple linear mapping from resonator

drive amplitude to photon number. Finally, we overlay the transition frequencies as a

function of drive amplitude on top of Fig. 9.5(b) to produce Fig. 9.8.

We see that our predictions match remarkably well with the transitions seen in our AC

Stark experiment. The divergence in the f10 transition is in fact due to a level crossing

between |1, n−1〉 and |5, n−4〉 within the excited RWA strip 1. The two transitions above

f10 move |0, n〉 to |4, n− 3〉 and |2, n− 1〉, indicating again the importance of symmetry

breaking couplings in the transmon. Curiously, we do not observe the transition to

|3, n− 2〉 in the data.

To further test our theory, we repeat the AC Stark experiment with the qubit oper-

ating at f10 = 5.620 GHz, with the data and theory predictions shown in Fig 9.9. As we

move further away from the resonator, the increase in ∆ spreads out the RWA strips so

that the transition to |2, n − 1〉 occurs further away from f10. However, we also see the

appearance of a transitions to |6, n− 5〉.

Finally, we repeat the experiment with f10 = 5.90 GHz, as shown in Fig 9.10 The

transition to |2, n− 1〉 has moved even further away from f10 and it is the sole remaining

transition that we see in the spectrum. In all cases, our numerical predictions qualita-

tively match the resonances observed in the data.
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Figure 9.9: AC Stark spectroscopy with a strong qubit drive, overlaid with a numerical
theory, for f10 = 5.62 GHz and |∆| = 1 GHz.
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Figure 9.10: AC Stark spectroscopy with a strong qubit drive, overlaid with a numerical
theory for resonator-mediated qubit transitions, for f10 = 5.9,GHz and |∆| = 1.3 GHz.
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Figure 9.11: Multiqubit ”swap” spectroscopy. We initialize qB in |1〉, then drive qA’s
resonator with variable power while biasing qB to variable frequency and maintaining
qA’s frequency at 5.3 GHz, then measure qB’s population. Compare with Fig. 9.8.
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9.2.4 Multi Qubit Transitions

So far, we have established that simultaneously driving the qubit and resonator can

resonantly excite the qubit to higher excited states at frequencies near f10. In a typical

algorithm, the resonator drive is only used for measurement. Therefore, simultaneous

drive of the qubit and resonator seems to have little relevance for practical applications

However, microwave drive is not the only way to excite a qubit. A second qubit which is

in the excited state and coupled to the qubit being measured is also a potential source

of excitations.

To see the equivalence of these two cases, we return our qubit under test - which

we will refer to as qA - to operating at f10 = 5.305 GHz, and tune up a second qubit

which is coupled to qA and initially far detuned, which we will refer to as qB. We then

perform swap spectroscopy with qB: we populate qB in |1〉, dynamically bias it to a

variable frequency for 500 ns, then measure the resulting population. While qB is being

dynamically biased, we drive qA’s resonator with varible power. The results of this

experiment are shown in Fig. 9.11. By comparing the swap spectroscopy data with the

AC Stark experiment in Fig. 9.5, we clearly see that when qB is brought on resonance

with the resonator mediated transitions of qA, the excited state population of qB is

depleted. We also separately confirmed by measuring qA instead of qB at the end of the

swap spectroscopy experiment that qA is excited in the regions where qB is depleted.

1Note that labeling the eigenstates is nontrivial since the increased coupling at high photon numbers
mixes the states significantly, so these state labels should not interpreted as definitive.
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9.3 Conclusions

In this chapter, we have studied two interesting effects of dispersive readout on transmons.

In the first half of the chapter, we found that strong dispersive measurement can give rise

to resonance conditions in the resonator-transmon energy level structure, which induce

transitions in the transmon from |0〉 to higher states of the transmon. In the second

half, we found that dispersive readout can create additional transitions in the transmon

spectrum, again to higher states in the transmon well. Both effects can be understood

by carefully considering all of the levels in the Jaynes-Cummings ladder and by including

couplings that have previously been ignored. Note that while the first effect was studied

with a system where the resonator is placed above the qubit and the second effect was

studied with the opposite frequency placement, both effects can occur in both types of

systems.

These effects may be a discouraging sign for dispersive readout as they place a seri-

ous limit on readout fidelities, and complicate efforts to scale up the number of qubits.

However, knowing about these effects suggests a few areas for improvement and research:

1. Decreasing the number of photons required to read out the qubit state by increasing

quantum efficiency of the readout chain, since both readout transition effects are

amplified by the resonator photon occupation.

2. Strategically placing the resonator-qubit detunings to avoid resonances. For exam-

ple, in the case of the resonator placed above the qubit frequency, it is advantageous

to have a smaller ∆.
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3. Investigating the source of the unexpected |0〉 ↔ |2〉 coupling. So far, no physical

model has been found which explains the presence of this allowed transition.

9.4 Contributions

Daniel Sank, Mostafa Khezri, and Alexander Korotkov contributed significantly to the

data, text and figures of the first half of this chapter. I acquired the data and per-

formed the numerical analysis for the second half with the use of analysis code written

by Mostafa, which can be found at https://github.com/MostafaKhezri/JC-ladder.
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Chapter 10

Conclusion

In this thesis, we discussed in detail the calibration and benchmarking single and two

qubit gates in superconducting transmons. In the single qubit case, we reached a gate

fidelity of 99.96% and found that the remaining error is currently limited by energy

relaxation. We also carefully measured the contribution of leakage to single qubit gate

error, and found that leakage errors are currently at the 1×10−5 level and are dominated

by thermal excitation. For the two qubit CZ, we reached a gate fidelity of 99.45%, and

found that the error is a combination of dcoherence and control errors, though more

research is needed to determine the exact error contributions. These gate fidelities are

beyond the fault tolerance threshold for surface code error correction, and with some

improvement, are also sufficient to perform a random circuit experiment to demonstrate

quantum supremacy.

However, we also saw that the dispersive readout scheme in transmons is fraught with
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potential problems due to unexpected couplings within the Jaynes-Cummings ladder.

These effects emphasize the need for further research into understanding the energy level

structure of a transmon coupled to a resonator, as well as improving the efficiency of

the readout chain. Moving forward, readout fidelity, both at the single qubit level and

scaled up to multiple qubits, is likely the limiting factor in more complex experiments

with transmon qubits.
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Appendix A

Measurements of Airbridge Circuits

In this appendix we look at detailed measurements of circuits made using airbridges.

A.1 Resistance and Critical Current

After the initial development of the airbridge fabrication process, we initially confirmed

that the argon ion mill led to an Ohmic contact at the bridge pads by we fabricating 10

airbridges in series and measured them in a four terminal configuration. Each airbridge

had a width of 8µm, a length of 28µm, and a thickness of 300 nm. At room temperature,

we measured a resistance of 6 Ω. For a standard aluminum resistivity of 2.7×10−6 Ω-cm,

the expected resistance at room temperature is 3.15 Ω, which does not take into account

the curvature of the bridges and the distance between the pads of the bridges, which was

6 microns.

Next, we cooled down the airbridges in an adiabatic demagnetization refrigerator
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Figure A.1: (Color online): Inset: Ten airbridges fabricated in series for a four terminal
measurement of the resistance. Main panel: Critical current as a function of reduced
temperature T/Tc. The fit is to Eqn. 1, with I0 = 462 mA

(ADR) to look at the properties when superconducting. At 100 mK, we were limited to

10 mA of drive current, which was not enough to drive the airbridges normal. Instead, we

slowly cooled the sample through the critical temperature Tc and measured the critical

current Ic of the airbridges as a function of temperature just below Tc, with the results

shown in A.1. The critical temperatures for both the base wiring and the airbridge

layer were within 50 mK of each other, and were around 1.2 K. The critical current data

matches the expected Ginsburg-Landau behavior, which predicts the following relation

for the critical current of a thin superconducting wire [? ]

Ic = I0 (1− T/Tc)2/3 (A.1)

where I0 is the critical current at temperatures well below Tc. By fitting to this equation,

we extracted a low temperature critical current of 462 mA. However, this result does not

take into account the width of our airbridges. From previous works, we estimate that

there is a decrease in I0 by a factor of order 3 or 4 for an 8µm wire,[151, 152] giving a
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critical current of around 100 mA.

A.2 Resonators With Airbridge Groundplane Shunts

To measure the loss added by placing an airbridge over a CPW transmission line, we

constructed quarter wavelength CPW resonators with variable numbers of airbridges

connecting the ground planes. We fabricated the resonators from an aluminum film

deposited on a high-resistivity silicon subtrate and etched with a BCl3/Cl2 inductively

coupled plasma.[80] We have also used the process on a sapphire substrate with compara-

ble results. We designed the resonators with 10µm center traces and 5µm gaps to match

the dimensions of our typical feedlines, and designed the resonant frequencies to range

from 5 to 6 GHz. We designed the airbridges to have 4µm of clearance from the CPW

line for a total length of 28µm, and chose an airbridge width of 8µm to ensure mechani-

cal stability of the bridge. On eight of the resonators, we fabricated between 12 and 110

airbridges spanning the resonator center trace, evenly spaced in the number of bridges.

The resonators with the most airbridges had a density of one airbridge every 50µm, cov-

ering 16% of the length of the resonator. The remaining two resonators went through the

full fabrication process but were not designed with any airbridges spanning their center

traces. We used these witness resonators as a test of whether placing airbridges on a

CPW line adds loss to other circuit elements on the same wafer. We also fabricated a

separate chip of resonators from the same film that saw no airbridge processing, to act

as a control sample.
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Figure A.2: (Color online): (a) Resonant frequencies for resonators with variable numbers
of airbridges in red squares, compared with the frequencies of their corresponding controls
which are designed to have the same length. As the number of bridges increases, the
resonators shift lower in frequency compared to their controls. (b) Percent change in
LC, the product of the inductance per length and capacitance per length, as a function
of the percentage of the resonator covered by airbridges. The dashed blue line is a linear
fit to the data, with slope 12.7% and intercept 0.35%. The offset from the origin is within
normal chip to chip variations in our measured resonators. The red line is a prediction
based on the additional capacitance of the airbridge. The slopes differ due to the decrease
in inductance from the airbridge.

A.2.1 Shift in Resonant Frequency

Compared to more conventional crossovers which are supported by dielectrics, airbridges

have a much smaller impact on the capacitance of a CPW line. However, this addi-

tional capacitance due to an airbridge is not negligible and should be accounted for. For

example, in our experiment to test the microwave loss of airbridges using ten different

resonators, we designed the resonators such that the density of airbridges increased with

decreasing frequency, as shown in Fig. A.2(a). A higher density of airbridges increases

the capacitance of the resonator and decreases the resonant frequency. Thus, in our

experiment, the resonant frequencies shifted further apart rather than closer together,
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avoiding any frequency collisions. We note here that from our control data, we found no

significant correlation of the high or low power quality factor with the frequency of the

resonator over the range we considered, which validated this particular design choice.

If we assume the airbridge acts like a parallel plate capacitor between the center

trace and ground, we can estimate the additional capacitance per unit length due to the

airbridge as C = ε0w/d, where w is the width of the center trace and d is the height of

the airbridge. For the geometry in our experiment, w = 10µm and d = 3µm, giving

C = 29.5 pF/m. We can also numerically calculate the additional capacitance due to the

airbridge using COMSOL. We simulated the cross-section of a CPW line with a 10µm

center trace and 5µm gap with a substrate dielectric constant of 11.6, and found the

capacitance per length to be 175.25 pF/m. After adding an airbridge, the capacitance

increased to 204.03 pF/m giving an increase of 28.78 pF/m due to the airbridge, showing

remarkable agreement with the parallel plate estimate. From these values, we predict

that the capacitance of a resonator covered completely by airbridges should increase by

17%.

From the frequency data shown in Fig. A.2(a), we can determine the actual effect

of placing an airbridge over a CPW line. As the number of airbridges increased, the

frequency of the resonator shifted further below the frequency of its corresponding control.

Since each resonator and its control are designed to have the same wavelength, we can

interpret the change in frequency as a change in the phase velocity of light vp = 1/
√
LC,

where L and C are the inductance and capacitance per unit length. Given the total length
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of the resonator and the number of airbridges, we can also determine the percentage of

the line covered by airbridges. The percent coverage should be linearly related to the

change in the product of the inductance and capacitance per unit length, LC, which is

shown in Fig. A.2(b). The slope of the linear fit in Fig. A.2(b) indicates that the LC

product for a section of line covered by airbridge differs from the bare line by 12.7%.

The discrepancy between our prediction and our data is most likely due to changes

in the inductance of the resonator. Each airbridge adds additional pathways for current

to flow, which decreases the inductance of the CPW line and compensates in part for

the increase in capacitance. However, the inductance is not as easily modeled as the

capacitance since edge effects are important. In other words, a single, wide airbridge

that spanning a CPW line does not have the same effect as multiple narrower airbridges

because they contain different current paths.

A.2.2 Loss

In order to determine the internal quality factor Qi of the resonators, we measured the

transmission through a feedline that was capacitively coupled to each resonator (see Ref.

[80] for measurement details). We varied the drive power such that the photon population

〈np〉 in the resonator ranged from single photon levels up to 107 photons, at which point

the resonators became non-linear. A sample of representative quality factor data for some

of the resonators is shown in the main panel of Fig. A.3. As seen in previous work, the

quality factor of the resonators increases as a function of increasing drive power, which
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Figure A.3: (Color online) Main panel: Dependence of the internal quality factor Qi

on the average photon population in the resonator 〈np〉, shown for various numbers of
airbridges NB spanning the ground planes of the resonator. Data for a control resonator
and a witness resonator are also displayed. Lines are guides for the eye. Insets: (a) Total
loss tangent δ at single photon as a function of number of airbridges. The best fit line
has slope 1.2× 10−8 . (b) Loss at 〈np〉 = 5× 106, with slope 3.8× 10−9.

is consistent with the loss in the resonator being dominated by two-level states (TLS) at

the material interfaces.[80? , 110? ]

In general, we expect the dependence of the quality factor to show two plateaus, one

around single photon levels corresponding to loss being dominated by TLS, and one at

high power corresponding to saturation of TLS.[80? ] From our control chip, for which

a representative example is shown in black squares in Fig. A.3, we determined that

the nominal internal quality factor for our resonator geometry and material was around

7.0× 105 at single photon powers and 3.5× 106 at high power (5 million photons). Our

witness resonators, for which a representative example is shown in red circles in Fig. 3,

performed similarly, indicating that the additional processing on the chip did not add
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any loss. As we increased the number of bridges fabricated over the resonator, the quality

factor decreased at both low and high powers. Interestingly, the quality factor does not

appear to plateau as strongly at high power when airbridges are present.

To determine quantitatively the loss due to airbridges, we extracted the loss tangent

δ = 1/Qi at powers around a single photon and at 5 million photons. In Fig. A.3a

(A.3b), we plot the low power (high power) loss tangent as a function of number of

airbridges, along with lines of best fit. From the slopes, we estimate that each airbridge

adds 1.2× 10−8 to the loss tangent of the resonator at low power and 3.8× 10−9 at high

power. We can also estimate the loss per fraction of the resonator that is covered by the

resonator. If we assume that the loss also scales with the width of the airbridges, then

every one percent of the resonator covered by airbridges adds an additional 8.3 × 10−8

to the loss tangent at low power and 2.7× 10−8 at high power. We note that a resonator

completely covered by airbridges would be limited to an internal quality factor of order

120,000 at low power, which is more than five times lower than the uncovered device.

A.3 Participation Ratio of the Airbridge Interface

To understand this increase in the loss due to airbridges, we note that the change in

the loss at different drive powers suggests that the addition of an airbridge adds to the

TLS loss of the resonator. The interface underneath the airbridge is a potential source of

loss, since this is the interface at which we deposited aluminum on photoresist that has

been crosslinked by the argon ion mill. To understand the additional surface loss due to
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Figure A.4: (Color online): (a) Cross section of an airbridge spanning a CPW line. (b)
Close-up of the interface for which we calculate the participation ratio. This interface is
a possible source of loss because the layer of aluminum is deposited on photoresist that
has been crosslinked by an ion mill. The thickness and dielectric constant are variable.
(c) Participation ratio as a function of thickness for various dielectric constants at the
interface. We numerically calculate using COMSOL the participation ratio by setting
the potential of the center trace of the CPW to 1V, solving for the electric fields, then
numerically computing the integral in Eq. 1 in the interface region. We obtain the total
energy W by performing the same integral for all of the cross section.

210



this interface, we calculate the participation ratio of a lossy dielectric at this metal-air

interface following Ref [78]. We consider the resonator and airbridge structure in cross

section as shown in Fig. A.4(a). The participation ratio p of any isotropic region of space

in this cross-section is simply given by the ratio of energy stored in the region to the total

energy stored in the entire cross-section

p = W−1εrε0

∫∫
dA
|E|2

2
(A.2)

where W is the total energy in the cross-section which may be obtained by performing

the same integral over all space, and εr is the dielectric constant in the region. Assuming

that the region is thin, as it is in the case of our interface of interest, we can replace an

integral over the thickness by a product, turning the double integral into a line integral

over the boundary of the interface. We can also simplify the equation using the boundary

conditions on our interface. The metal boundary allows us to approximate the electric

field as normal to the metal, while the continuity of the displacement field at the air

interface gives us the relation εrEi⊥ = Ea⊥, where Ei is the electric field in the interface

and Ea is the electric field in air. Combining these simplifications we obtain

p = W−1tiε
−1
r ε0

∫
dS
|Ea⊥|2

2
(A.3)

where ti is the small thickness of the interface. Assuming the contribution to the total

energy W of the interface is small, the participation ratio is proportional to the thickness

and inversely proportional to the dielectric constant. We can estimate the value of the

line integral by again modeling the airbridge as a parallel plate. If we assume a 1 V

difference in potential between center trace and ground, then from the calculation of
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total capacitance above, we know the value of W = 1
2
CV 2. The electric field is given by

1 V divided by the separation distance of 3µm, and we may replace the integral with a

multiplication by the length, about 10µm. We then obtain the following approximate

formula:

p = 4.8× 10−5 nm−1 ti
εr

(A.4)

Alternatively, we can also numerically evaluate Eq. A.2. We constructed the geometry of

an airbridge spanning a CPW and included a thin dielectric interface on the underside of

the bridge as shown in Fig. A.4(b). After applying a potential of 1 V to the center trace,

we solved for the electric fields and numerically integrated Eq. A.2 to determine the total

energy in the cross-section and the energy in the interface, giving us the participation

ratio. We calculated participation ratio as a function of interface thickness and dielectric

constant, producing the plot shown in Fig. A.4(c). We see that the scaling follows the

expected scaling from Eqs. A.3 and A.4. Furthermore, we can more accurately determine

the coefficient in Eq. A.4 from the slopes of the lines, and we find that the coefficient is

6.34× 10−5 nm−1, which is within 30% of our parallel plate estimation.

Given the participation ratio, we can estimate the loss due to this interface. For the

dielectric constant, we estimate a dielectric constant of 4 based on data pertaining to

other photoresists [? ]. SEM images of the interface were inconclusive for determining

the thickness, but it is certainly upper bounded by 100 nm. Finally, there is little data

on the loss tangent of resist and cryogenic temperatures, so we estimate this to be 10−3

based on the measured loss tangents of amorphous oxides.[75] Using these numbers, we
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Figure A.5: (Color online): Insets: (a) Airbridges connecting together CPW lines within
a resonator. (b) A second style of airbridge connection, where the ground plane is
threaded underneath the airbridge. Main panel: Internal quality factor of resonators
as a function of average photon population for many different styles of resonators. We
show two witness resonators to demonstrate the typical spread in measured Qi. Lines
are guides for the eye.

obtain a participation ratio of 1.6× 10−3 and a loss due to airbridges of 1.6× 10−6, or a

Qi of 630,000.

A.3.1 Center Trace Airbridges

In addition to placing airbridges over CPW lines to connect the ground planes together,

we have also fabricated airbridges to connect two CPW center traces together. We tested

such a connection by fabricating quarter wavelength CPW resonators with intentional

breaks in the resonator, then reconnecting the lines with airbridges The resonators fab-

ricated using this method performed comparably to resonators fabricated with ground

plane airbridges, with each airbridge connection added to the center trace adding a loss
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of 1×10−7. These results indicate that airbridges can used be to carry microwave signals,

and for example, allowing for the crossing of two perpendicular superconducting CPW

lines.
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