
UNIVERSITY of CALIFORNIA
Santa Barbara

Computing prime factors using a Josephson phase-qubit architecture:
15 = 3× 5

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

by

Erik Anthony Lucero

Committee in charge:

Professor John M. Martinis, Chair
Professor David D. Awschalom

Professor Wim van Dam

June 2012

The dissertation of Erik Anthony Lucero is approved:

Professor David D. Awschalom

Professor Wim van Dam

Professor John M. Martinis, Chair

June 2012

Computing prime factors using a Josephson phase-qubit architecture:
15 = 3× 5

Copyright c© 2012
by Erik Anthony Lucero

iii

To my parents: Mary and Anthony. My sisters: Michele and
Sheila, and mi familia: Offs and Luceros.

iv

Acknowledgements

First and foremost I would like to thank Professor John Martinis for providing me
a creative environment complete with outstanding people, project, location, and
what felt like an infinite supply of resources. I feel fortunate to have come through
the lab during a time when the group was small -just beginning to grow- and John
spent a good portion of his time in the laboratory. This overlap with “in-the-lab-
John” was key to learning when to be an engineer, when to be a physicist, and
when it is time to lead a climb. In John’s words, “you just do it” and “it will
be like an afternoon’s worth of work” is a good sign that you have encapsulated
an experiment with “nice data” right around the corner. It would be a laundry
list of items if I were to list all of the skills, knowledge, soldering and climbing
techniques that John has imparted to me so instead I’ll say that after six years I
still love doing physics, I have climbed some epic routes, I know how to negotiate
a free oscilloscope, and most importantly, I know “how to make things”. Thank
you John.

Next, of course, I would like to thank my parents, Anthony and Mary Lucero.
Dad, it was your dedication to finishing projects (saying that you will do something
and then doing it, both with class and modesty) and always including me in their
execution that I have carried with me throughout my life and applied in my
career. Against my delicate constitution my dad convinced me to get up early on
Saturday mornings to get to the lumber yard so we would have a full weekend to
crank on our latest project. I don’t know how many weekends (and it is probably
best not to reveal so as not to scare any of the new graduate students) I drew on
those experiences to get into the lab and push through my experiments. Mom, it
was your endless supply of supportive letters and good, no excuse me, great-will
towards everyone you have ever met that has helped teach me to treat every person
with respect and approach all of my situations in life with a positive attitude.

And my sisters, Sheila and Michele. Sheila, thank you for your insistence that
I come out to Santa Barbara. I will never forget our road-trip. I have always
looked up to you and your professionalism. It was your home-cooked meals at
Jax that forever changed my life and gastronomical expectations. “Spoiled”, I
have heard others say. And I would agree. Our connection through food, music,
and our careers have helped me stay grounded, cook when I needed to, focus on
the job, and excel at what I am committed to. By the way, the results are in
on our ongoing competition of who can can work the longest work week...week
after week after week . . . you win. I am so proud of you and lucky to have you
as one of my best friends and sister. If Sheila is my yang, than Michele is my
yin. Michele has provided the feminine balance to my otherwise very testosterone
driven life. Michele your maternal tendencies (timely care-packages) helped me

v

push through countless finals weeks, tests, presentations, and any other stressful
career milestone. Your dedication to the family is the glue that keeps all of us
close and your stress is what fuels all of our ambitions and achievements. I love
you both and I would not be half-the-man or scientist without you two.

My departure from the UCSB Quantum Computing group marks the end of a
paradigm. I joined the team with the first set of graduate students and I will be
the last one who will have overlapped with all (except Ken Cooper) of the then
Post-Docs that came to work with John and Andrew and who are now Professors
or group leaders elsewhere in the world. Therefore, I would like to take this
opportunity to thank all of the people that I have had the pleasure of learning
from and without which I would not have been able to even propose, let alone
accomplish what I have done.

Robert McDermott. Robert’s professionalism in the laboratory, and ability to
hack together a key experiment in an afternoon has been and will continue to be
something that I strive to emulate. And I will never forget his endless supply of
missions that were always in need of more warm bodies. And of course, I hope
to some day be able to evoke a profound superconductivity theory mid group
meeting to explain an experimental mystery, which he so often raddled of with
ease.

Matthias Steffan. I have always been impressed with Matthias’ cool demeanor
even in the face of all kinds of challenges political and scientific. I am more than
fortunate to have a mentor and friend like Matthias on my side reminding me to
enjoy the good things in life, like “bits-bits-bits”. I can’t wait to see what we pull
off together at IBM.

Eva Weig. It was your cleanroom ethos that carried through the group project
after project even after you departed. We learned to never give up, but persevere
even in the face of all kinds of experimental obstacles.

Nadav Katz. I admire Nadav’s courage and ability to jump fields and prove
himself all over again. And as much as I prefer the experiment over any simulation
it was Nadav who taught me the importance of doing both.

Although success does bring new titles, like Professor, I am honored to have
worked with Haohua Wang when he was known affectionately as “The Doctor”.
I am (along with everyone in UCSB QC-group) forever indebted to Professor
Haohua Wang’s cleanroom skills and all of the devices that Haohua fabricated. I
am fortunate to have learned even just a small fraction of these skills from one of
the cleanroom masters.

Max Hofheinz. T-Crack will remain as legendary as the time we overlapped
both on the crags and in the lab. I owe Max a number of serious climbs out in the
Colorado wilderness to repay him for my improved microwave engineering skills
and mantle moves. Not to worry, I will be sure that the climb is “6.4 J-tree” level

vi

crack climb.
Martin Wiedes. You are a lucky man. You managed to live in the two best

places in the world, Santa Barbara, California and Boulder, Colorado. Well done.
Thank you for the social outlet, volleyball on the beach, group beer moments, and
for supporting a starving artist, eh graduate student.

Yi Yin. Thank you for the camaraderie, as we fabricated qubits through the
many nights in the cleanroom together. Those back-to-back overnight fabribaction
sessions were important to building both of our characters and devices. I imagine
that we will both look back on that experience fondly (particularly when we are
sharing it with those who are going in to the cleanroom to do the battle for us).

Yu Chen. Thanks to our favorite liquid helium vendor, every Thursday Yu
was forced to warm up the fridge and start his experiments all over again. I think
I would have derailed. However, it was your level-headedness that prevailed and
what I would pull from when my 1k-pot plugged over and over in Jules. It was
a pleasure sharing the lab with you and learning to keep a positive perspective
despite all of the uncontrollable setbacks we suffered in the laboratory.

Matteo Mariantoni. I appreciate you carving out the time in your over booked
schedule to help with the phase calibrations, a.k.a “the cows”. I especially look
forward to reconnecting and partaking in some of your home-cooked Italian food.

Rami Barneds. By any measure we had the best office. Whether it was
the low amounts of infrared radiation, or absence of magnetic field, either way
we were able to hash out some politically correct discussions in our light-tight
magnetically shielded room. I really appreciated the life after PhD discussions.
Here is to submitting a paper, boarding a flight, and dilutionary refrigerators in
closets.

There are such wonderful and unique opportunities in one’s PhD and being a
RIKEN fellow in Japan marked one of those for me. I will never forget Professor
Franco Nori and his “pointed” questions (literally he sat in the front row with his
own LASER pointer, his green, mine red). Franco asked question after question
in rapid fire succession that stretched a one hour talk into four. Great training
for any physicist.

It was in Japan where I first met Tsuyoshi Yamamoto, while visiting Yasunobo
Nakamura’s group at NEC. Later I would learn that it was this trip and our
discussion of our custom electronics that would be the catalyst for his one year
visit to the Martinis group. It was quite an honor to have Tsuyoshi out in Santa
Barbara and I hope that I will someday be as scientifically organized as Yamamoto-
san.

Sahel Ashab. Together we proved that even a theorist can make stuff with
their own bare hands: a barge in the shape of a catamaran with custom shaped
coolers by Markus, Sahel, and Erik. Of course it didn’t sink and Markus and I

vii

couldn’t have done it without you. Your visits were like clockwork, every summer I
could count on you showing up at our doorstep (Madrid house, The Mesa House,
and Broida) ready to discuss physics. And what an amazing experience to be
invited out to RIKEN in Japan? Thank you for being such an accommodating
host, reliable friend, novice boat-maker, and great scientist. Pieter de Groot and
I still need to get back to Japan for a focused conference on qubits and Japanese
culture.

Professor Martin Huber. I would not even be a physicist if it were not for
Martin. Whenever I even think that I am busy I remember that Martin is some-
where, somehow juggling a larger and more complex Hilbert space than anyone
I know and doing it with class. Strapped for resources and still making amazing
contributions to science, Martin you are an inspiring scientist and human.

Mark Howard. There is no way I would have survived the first two years at
UCSB, let alone all six if it weren’t for Mark. From pasta-bakes for homework
sessions that stretched through the night and on until the next day, to sleeping
in the desert for Daft-Punk and Tool, to late-night pickups of the Irish boys and
the know-how to properly close a pub. I can always count on Mark for the correct
perspective to any problem (physics or life) and reliably avant-garde media to
consume.

Markus Ansmann: The catamaran project and all our associated mis-adventures
with Chuck Barfoot, Shirley-Joy-Vivian-Ms. Hall. We always improved upon our
“method” related to our wild-projects, which from what I can measure culminates
in earning a ”wizard-degree”. You enabled the entire group to produce amazing
experiments with LabRAD. And I am fortunate to have such a stand-up friend
and goto genius on my side, especially one with such a keen set of taste-buds and
class.

Matthew Neeley: Everything Matthew touches turns into a python program,
an elegant well written one at that. Every time I look at Matthew’s code I learn
something after unpacking the one- or two-liners. Matthews’ code serves as a
stand-alone guide on how to program, eh, how to think. Matthew and Markus
birthed LabRAD a versatile code base that has lived beyond their times in the
lab. Its impact reverberates within the group as each new student or post-doc
finds themselves adding to the ever growing “Pyle” repository and reaping the
benefits from all the alums. Our group’s success is a testament to both of your
minds and ability. Legendary. I am honored to be considered one of Matthew’s
peers. Thank you for all the support while you were here in California (Madrid
and Mesa house) and from afar. I’ll never forget the (barefoot!) runs (March
Meeting, Montecito Peak, and Jesus-its-a-fire) the rides (AIDS Lifecycle), and
important life discussions.

Daniel Staudigel: To an amazing friend, incredibly mature and balanced hu-

viii

man being who is full of life, integrity, intellect, and wild-crazy physical ability.
So many, alright probably all, of my boundaries have been pushed thanks to Dan
especially gastronomically. I would be honored to cook with and in Dan’s kitchen
any day, anywhere in the world. Dan brought a balance to my graduate life via
excess hedonistic endeavors in food and exercise through great coffee, countless
over-indulgent meals (cave-man chicken, “light-heavy-cream sauces”, home-made
smoked pork-belly, and the menu goes on and on . . . Let’s Get Fat!).

Radek Bialzack: Doctor, Doctor. PhD, MD! I wish your unwavering hard-
work ethic could rub off a little on everyone in the world. Humankind would be
in a better place because of it. Radek’s devote altruistic motives and hard-work
never ceased to amaze me. I look forward to your success in synthesizing physics
and medicine and you saving the world.

Aaron O’Connell: I knew Aaron back when...back when we both were pushing
each other to stay through the night in the cleanroom to complete our fabrication.
I applaud you for going after what you want and then continuing to tack against
the winds to success.

Daniel Sank: You have come a long way my friend and I am impressed to see
the wizard-skills solidifying within you. I am looking forward to discussing the
tasting notes of your custom ales. Seriously Daniel, it was great training you in
the cleanroom, working with you in the lab, and performing electronics sorcery
abroad.

Jim Wenner: I remember the first time you uttered the coveted Martinis-lab
colloquialism as we ventured out and about during your first March meeting. At
that point it was clear you were integral to the lab . I think it is safe to say that I
have never met anyone quite like James Wenner before -the man with an endless
supply of puns. The success of the lab (or any lab that is lucky enough to hire
you next) hinges on your keen attention to detail and your finger on the pulse of
the lab (and the plumbing that plumbs it).

Mike Lenander: Don’t let Bacula (or the Physics PhD) suck the life out of
you.

Julian Kelly:“Pain is temporary, but failure is forever.” I imagine that a su-
perstar like you may never even feel the pain. You are a talented individual Julian
and I am thrilled (for everyone’s sake) that you stayed in Santa Barbara. I am
looking forward to 30µs T1.

Ted White: Thanks for stepping up and keeping the Fastbias’ up-to-date and
right on time.

Peter O’Malley: Peter, although we did not overlap on projects it is good
to know that you will be leading the quantum revolution along with Pedram
Roushan.

Amit Vainsencher: Thanks for taking the administrative lead (along with Pe-

ix

ter) on all the IT related projects in the lab. These are thankless jobs and will
land you the honor of being the scapegoat once Skynet becomes self-aware. All I
can say is good luck with that.

Anthony Megrant:“The Million-Q-Man”. Enough said...or maybe three more
papers worth. I’m looking forward to more MBE breakthroughs.

Jian Zhao: The man behind the bunny-suit endlessly servicing the Lesker so
that all of us lowly graduate students could muck it up again. Thank you Jian.
Thank you for all your hard work in the cleanroom and for being such a stand-up
guy.

Professor Andrew Cleland: Thank you for recruiting and helping to convince
John to come out to Santa Barbara. You two have created an amazing empire
together and it has been a pleasure learning from you both. Thank you for
attracting great people to work with and providing the resources necessary for
our group’s success. I appreciate your door literally always being open when I
needed it to be -clutch moments on the fridge- like when the 1K-pot had plugged
and I needed to consult on data before my experiment warmed up. Thank you
for enabling my scientific contributions.

My PhD Thesis committee: Professor David Awschalom and Professor Wim
van Dam. Thank you for setting aside time in your over booked schedules (even
four years ago when I proposed this thesis idea) to provide your professional
advisory support. I can’t thank you both enough for accommodating my ever
moving target end-date. And David, thank you for all of your hallway discussions,
which always seemed to offer the correct perspective on my career trajectories. It
was a pleasure observing how you can inspire new generations of scientists in and
out of the classroom and laboratory. I look forward to the day when I am capable
of doing the same.

The UCSB California Nanosystems Institute (CNSI) staff: Especially Holly
Woo for always providing the desperately needed encouragement throughout my
tenure. Thank you for your support of my scientific and (artistic) photographic
passions. Dan Daniels, Lynne Leininger, Eva Deloa, and Bob Hanson, and of
course the rest of the staff whose work behind the scenes made my graduate life
that much smoother.

Doctor Fiona Goodchild: What a pleasure it was to learn from you and teach
with you in the Practice of Science class. It was such an honor to be part of the
Dr. Goodchild and Professor Awschalom dream team. I look forward to applying
the teaching and mentoring skills I learned from both of you to continually excite
new generations of scientists.

The Physics department staff: Especially Dave Prine. Thank you for your
forever positive attitude and tireless negotiations with liquid Helium vendors to
secure “clean” liquid Helium so that I could execute my experiments. And every-

x

one in the Physics machine shop. Thank you for your timely and beautiful work.
Thank you Mike for having the patience to impart your knowledge to all of us
“green” graduate students year after year. And Jennifer Farrar, thank you for
always checking in with me about my ever-changing graduation date.

And I would like to express my appreciation to everyone on staff at the UCSB
cleanroom. I feel very fortunate to have learned and worked in such a world-class
facility with totally professional people that strived to make it that way. Thank
you all for your endless servicing, training, and development year after year, day
after day, and in most cases, night after night.

Stacie Furia: For the countless home-cooked-foodie meals that helped me (and
Matthew!) push through some long and drawn out laboratory nights and week-
ends. And for “discovering” the photographer in me -you were the first.

Stephanie Ma: Thank you for believing in me and sticking with me through
this stressful journey. I’m looking forward to “Our Rendezvouses”. Here is to
piñatas, succulents, epic sunsets, your relentless positive outlook on life, and you.

To all those who managed to come out and visit me in Santa Barbara through
the years, Omid Masihzadeh, Paul Nied, Buddy Jerome, NaYoung Pak, Sean,
Phil, and Patsy DeDycker. I know it was difficult making the time to come out
and I am beginning to understand how difficult it is to leave Santa Barbara.
Thank you all for the countless phone calls filled with support and great advice.
I am so fortunate to have a strong network of friends that are all family.

All of you have been my giants.

xi

Curriculum Vitæ

Erik Anthony Lucero

Education

2012 (exp.) Doctor of Philosophy, Physics, University of California, Santa
Barbara

2008 Master of Arts, Physics, University of California, Santa Barbara

2005 Bachelor of Science, Applied Physics, Magna Cum Laude, Uni-
versity of Colorado

2005 Bachelor of Science, Electrical Engineering, with Honors, Uni-
versity of Colorado

Honors and Awards

2009 Best Student Presentation, jointly awarded by The Institute for
Quantum Computing, University of Waterloo and The American
Physics Society Quantum Information Topical Group

2006-2009 GAANN Fellow, University of California, Santa Barbara and US
Department of Education

2007 Digital Materials Laboratory Fellow, RIKEN, Wako, Japan

2005-2007 Broida Fellow, University of California, Santa Barbara

2005 Certificate of Merit Colorado Engineering Council, Finalist for
the Silver Medal

2004-2005 Ben Trujillo Scholar

2003-2005 McNair Scholar

2003-2004 Phyllis Weisheit Schultz Scholar

2002-2004 William R. Simmons Scholar

xii

2001-2004 National Institute of Standards and Technology, Professional Re-
search Experience Program Fellow, Boulder, Colorado

Publications

Erik Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P.
O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cle-
land, and John M. Martinis. Computing prime factors with a Josephson phase
qubit quantum processor. Submitted to Nature Physics, (2012).

A. Megrant, C. Neill, R. Barends, B. Chiaro, Yu Chen, L. Feigl, J. Kelly, Erik
Lucero, Matteo Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner,
T. C. White, Y. Yin, J. Zhao, C. J. Palmstrm, John M. Martinis, and A. N.
Cleland. Planar Superconducting Resonators with Internal Quality Factors above
One Million. Applied Physics Letters 100, 113510 (2012).

Daniel Sank, R. Barends, Radoslaw C. Bialczak, Yu Chen, J. Kelly, M. Lenander,
Erik Lucero, Matteo Mariantoni, M. Neeley, P. J. J. O’Malley, A. Vaisencher, H.
Wang, J. Wenner, T.C. White, T. Yamamoto, Yi Yin, A. N. Cleland, and John
M. Martinis. Surface spin fluctuations probed with flux noise and coherence in
Josephson phase qubits. Submitted to Physical Review Letters (2012).

Yi Yin, H. Wang, M. Mariantoni, Radoslaw C. Bialczak, R. Barends, Y. Chen,
M. Lenander, Erik Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J.
Wenner, T. Yamamoto, J. Zhao, A. N. Cleland, and John M. Martinis. Dynamic
quantum Kerr effect in circuit quantum electrodynamics. Physical Review A 85,
023826 (2012).

Matteo Mariantoni, H. Wang, T. Yamamoto, M. Neeley, Radoslaw C. Bialczak,
Y. Chen, M. Lenander, Erik Lucero, A. D. OConnell, D. Sank, M. Weides, J.
Wenner, Y. Yin, J. Zhao, A. N. Korotkov, A. N. Cleland, and John M. Martinis.
Implementing the Quantum von Neumann Architecture with Superconducting
Circuits. Science 334, 61 (2011).

J. Wenner, R. Barends, Radoslaw C. Bialczak, Y. Chen, J. Kelly, Erik Lucero, M.
Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, H. Wang, T. C.
White, Y. Yin, J. Zhao, A. N. Cleland, John M. Martinis. Surface loss simulations
of superconducting coplanar waveguide resonators. Applied Physics Letters 99,
113513 (2011).

xiii

R. Barends, J. Wenner, M. Lenander, Y. Chen, Radoslaw C. Bialczak, J. Kelly,
Erik Lucero, P. O’Malley, M. Mariantoni, D. Sank, H. Wang, T. C. White, Y.
Yin, J. Zhao, A. N. Cleland, John M. Martinis J. .J A. Baselmans. Minimizing
quasiparticle generation from stray infrared light in superconducting quantum
circuits. Applied Physics Letters 99, 113507 (2011).

M. Lenander, H. Wang, Radoslaw C. Bialczak, Erik Lucero, Matteo Mariantoni,
M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y.
Yin, J. Zhao, A. N. Cleland, John M. Martinis. Measurement of energy decay
in superconducting qubits from nonequilibrium quasiparticles. Physical Review B
84, 024501 (2011).

J. Wenner, M. Neeley, Radoslaw C. Bialczak, M. Lenander, Erik Lucero, A. D.
OConnell, D. Sank, H. Wang, M. Weides, A. N. Cleland, John M. Martinis. Wire-
bond crosstalk and cavity modes in large chip mounts for superconducting qubits.
Superconducting Science and Technology 24, 065001 (2011).

Matteo Mariantoni, H. Wang, Radoslaw C. Bialczak, M. Lenander, Erik Lucero,
M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y.
Yin, J. Zhao, John M. Martinis, A. N. Cleland. Photon shell game in three-
resonator circuit quantum electrodynamics Nature Physics 7, 287–293 (2011).

M. Weides, R. C. Bialczak, M. Lenander, Erik Lucero, Matteo Mariantoni, M.
Neeley, A. D. OConnell, D. Sank, H. Wang, J. Wenner, T. Yamamoto, Y. Yin,
A. N. Cleland, J. M. Martinis. Phase qubits fabricated with trilayer junctions.
Superconducting Science and Technology 24, 055005 (2011).

R. C. Bialczak, M. Ansmann, M. Hofheinz, M. Lenander, Erik Lucero, M. Neeley,
A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, T. Yamamoto, A. N.
Cleland, J. M. Martinis. Fast tunable coupler for superconducting qubits. Physical
Review Letters 106, 060501 (2011).

H. Wang, Matteo Mariantoni, Radoslaw C. Bialczak, M. Lenander, Erik Lucero,
M. Neeley, A. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y.
Yin, J. Zhao, John M. Martinis, A. N. Cleland. Deterministic entanglement of
photons in two superconducting microwave resonators. Physical Review Letters
106, 060401 (2011).

T. Yamamoto, M. Neeley, Erik Lucero, R. C. Bialczak, J. Kelly, M. Lenander,
Matteo Mariantoni, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner,

xiv

Y. Yin, A. N. Cleland, John M. Martinis. Quantum process tomography of two-
qubit controlled-Z and controlled-NOT gates using superconducting phase qubits.
Physical Review B 82, 184515 (2010).

Erik Lucero, Julian Kelly, Radoslaw C. Bilaczak, Mike Lenander, Matteo Mariantoni,
Matthew Neeley, A. D. O’Connell, Daniel Sank, H. Wang, Martin Weides, James
Wenner, Tsuyoshi Yamamoto, A. N. Cleland, John M. Martinis. Reduced phase
error through optimized control of a superconducting qubit. Physical Review A
82, 042339 (2010).

M. Neeley, R. C. Bialczak, M. Lenander, Erik Lucero, M. Mariantoni, A. D.
O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto,
A. N. Cleland, J. M. Martinis. Generation of Three-Qubit Entangled States using
Superconducting Phase Qubits. Nature 467, 570–573 (2010).

B. A. Mazin, D. Sank, S. McHugh, Erik Lucero, A. Merrill, J. Gao, D. Pappas, D.
Moore, J. Zmuidzinas. Thin lm dielectric microstrip kinetic inductance detector.
Applied Physics Letters 96, 102504 (2010).

R. C. Bialczak, M. Ansmann, M. Hofheinz, Erik Lucero, M. Neeley, A. D. O’Connell,
D. Sank, H. Wang, J. Wenner, M. Steffen, A. N. Cleland, J. M. Martinis. Quantum
Process Tomography of a Universal Entangling Gate Implemented with Josephson
Phase Qubits. Nature Physics 6, 409–413 (2010).

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, Erik
Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis,
A. N. Cleland. Quantum ground state and single-phonon control of a mechanical
resonator. Nature 464, 697–703 (2010).

H. Wang, M. Hofheinz, M. Ansmann, R. C. Bialczak, Erik Lucero, M. Neeley,
A. D. O’Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, J. M. Martinis
Decoherence Dynamics of Complex Photon States in a Superconducting Circuit.
Physical Review Letters 103, 3200404 (2009).

H. Wang, M. Hofheinz, J. Wenner, M. Ansmann, R. C. Bialczak, M. Lenander,
Erik Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, A. N. Cleland,
J. M. Martinis. Improving the Coherence Time of Superconducting Coplanar
Resonators. Applied Physics Letters 95, 233508 (2009).

M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, Erik Lucero, M. Neeley,
A. D. O’Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, J. M. Martinis.

xv

Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506
(2009).

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, Erik Lucero, A. D. O’Connell,
D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, J. M. Martinis. Em-
ulation of a Quantum Spin with a Superconducting Phase Qudit. Science 325,
722 (2009).

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, Erik Lucero, M. Neeley,
A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis, A. N. Cleland. Synthesizing
arbitrary quantum states in a superconducting resonator. Nature 459, 546–549
(2009).

H. Wang, M. Hofheinz, M. Ansmann, R. C. Bialczak, Erik Lucero, M. Neeley,
A. D. O’Connell, D. Sank, J. Wenner, A. N. Cleland, J. M. Martinis. Measurement
of the decay of Fock states in a superconducting quantum circuit. Physical Review
Letters 101, 240401 (2008).

M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, Erik Lucero, M. Neeley,
A. D. O’Connell, H. Wang, J. M. Martinis, A. N. Cleland. Generation of Fock
states in a superconducting quantum circuit. Nature 454, 310–314 (2008).

Martin E. Huber, Nicholas C. Koshnick, Hendrik Bluhm, Leonard J. Archuleta,
Tommy Azua, Per G. Bjrnsson, Brian W. Gardner, Sean T. Halloran, Erik Lucero,
and Kathryn A. Moler. Gradiometric micro-SQUID susceptometer for scanning
measurements of mesoscopic sample. Review of Scientific Instruments 79, 053704
(2008).

N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, Erik Lucero, A. D.
O’Connell, H. Wang, A. N. Cleland, J. M. Martinis, A. N. Korotkov. Reversal of
the Weak Measurement of a Quantum State in a Superconducting Phase Qubit.
Physical Review Letters 101, 200401 (2008).

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, Erik Lucero,
A. D. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis. Process tomography of
quantum memory in a Josephson-phase qubit coupled to a two-level state. Nature
Physics 4, 523–526 (2008).

A. D. O’Connell, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, Erik Lucero,
C. McKenney, M. Neeley, H. Wang, E. M. Weig, A. N. Cleland, J. M. Martinis.

xvi

Microwave Dielectric Loss at Single Photon Energies and milliKelvin Tempera-
tures. Applied Physics Letters 92, 112903 (2008).

Erik Lucero, M. Hofheinz, M. Ansmann, R. C. Bialczak, N. Katz, M. Neeley,
A. D. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis. High-fidelity gates in
a Josephson qubit. Physical Review Letters 100, 247001 (2008).

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, Erik Lucero, A. D.
O’Connell, H. Wang, A. N. Cleland, J. M. Martinis. Transformed Dissipation in
Superconducting Quantum Circuits. Physical Review B 77, 180508(R) (2008).

R. C. Bialczak, R. McDermott, M. Ansmann, M. Hofheinz, N. Katz, Erik Lucero,
M. Neeley, A. D. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis. 1/f Flux
Noise in Josephson Phase Qubits. Physical Review Letters 99, 187006 (2007).

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, Erik Lucero, R. McDermott,
M. Neeley, E. M. Weig, A. N. Cleland, J. M. Martinis. Measurement of the
Entanglement of Two Superconducting Qubits via State Tomography. Science
313, 1423–1425 (2006).

N. Katz, M. Ansmann, R. C. Bialczak, Erik Lucero, R. McDermott, M. Neeley,
M. Steffen, E. M. Weig, A. N. Cleland, J. M. Martinis, A. N. Korotkov. Coherent
state evolution in a superconducting qubit from partial-collapse measurement.
Science 312, 1498–1500 (2006).

M. Steffen, M. Ansmann, R. McDermott, N. Katz, R. C. Bialczak, Erik Lucero,
M. Neeley, E. M. Weig, A. N. Cleland, J. M. Martinis. State tomography of
capacitively shunted phase qubits with high fidelity. Physical Review Letters 97,
050502 (2006).

Erik Lucero. Linear Current-to-Voltage Converter Utilizing Superconducting Quan-
tum Interference Device (SQUID) Operational Amplier. University of Colorado
Senior Thesis (2005).

Photographic Publications

Erik Lucero. Mechanical Resonator coupled to a Qubit. Quantum Ground state
and single phonon control sample. APS 2012 Calendar (2012).

Erik Lucero. Mechanical Resonator coupled to a Qubit. Quantum Ground state

xvii

and single phonon control sample. APS Home Page May (2011).

Erik Lucero, Dario Mariantoni, Matteo Mariantoni. Two-Qubit Three-Resonator
sample for photon shell game. Cover. Nature Physics April (2011).

Erik Lucero. ReZQu Architecture Four-Qubit Five-Resonator sample. BBC
March 22 (2011).

Erik Lucero. ReZQu Architecture Four-Qubit Five-Resonator sample. APS March
Meeting March (2011).

Erik Lucero. Mechanical Resonator coupled to a Qubit. Quantum Ground state
and single phonon control sample. Fysikaktuellt March (2011).

Erik Lucero. Four-Qubit sample for three-qubit GHZ and W state. New York
Times November 8 (2010).

Erik Lucero. Qubit coupled to Resonator, arbitrary state generation and Wigner
tomography sample. Cover. Quantum Measurement and Control Cambridge Uni-
versity Press (2010).

Erik Lucero. Qubit coupled to Resonator, arbitrary state generation and Wigner
tomography sample. New Scientist August 15 (2009).

Erik Lucero and Max Hofheinz. Qubit coupled to Resonator, arbitrary state
generation and Wigner tomography sample. Cover Physics Today July (2009).

xviii

Abstract

Computing prime factors using a Josephson phase-qubit architecture:

15 = 3× 5

by

Erik Anthony Lucero

Josephson phase-quantum-bits, (“qubits”), together with superconducting res-

onators, comprise the essential quantum elements in a state-of-the-art quantum

processor (QuP). A QuP can be used to exploit quantum mechanics to find the

prime factors of composite numbers by running Shor’s algorithm[57].

In this thesis, I describe the first solid-state demonstration of a compiled ver-

sion of Shor’s algorithm. To meet this challenge, I designed a QuP so that I could

map the problem of factoring the number N = 15 onto a quantum circuit that

is compatible with our technological capabilities. The QuP is composed of nine

quantum elements: four phase qubits and five superconducting coplanar waveg-

uide (CPW) resonators. Using this device, I ran a three-qubit complied version of

Shor’s algorithm and successfully found the prime factors 48 % of the time (com-

pared to the ideal success rate of 50 %). In addition, the QuP produced coherent

interactions between five quantum elements, and bi- and tripartite entanglement,

xix

which was verified via quantum state tomography (QST).

Scaling up to nine quantum elements and performing these experiments rep-

resent key milestones to realizing a quantum computer. Continued improvements

in the superconducting qubit coherence times and more complex circuits should

provide the resources necessary to factor larger composite numbers and run more

intricate quantum algorithms in the near future.

xx

Contents

1 Introduction 1

1.1 Shor’s Algorithm . 8

1.1.1 A Practical Use of a Quantum Computer: Finding Prime

Factors . 9

1.1.2 Classical Subroutines . 12

1.1.3 Quantum Subroutine . 13

1.2 A Qubit and The Bloch Sphere 16

1.2.1 Qubit Control . 17

1.2.2 The Density Matrix Description 19

1.3 Decoherence . 21

1.4 Multiple Quantum Elements . 22

1.5 Superposition and Entanglement 24

1.6 The Road Ahead . 27

xxi

2 A Josephson Phase Qubit Quantum Processor 30

2.1 Quantum Integrated Circuits . 31

2.1.1 Large Qubits . 32

2.2 The QuP Fabrication . 35

2.3 Superconducting Coplanar Waveguide (CPW) Resonator: Linear

Harmonic Oscillator . 36

2.3.1 Half-wavelength CPW Bus Resonator and Quarter-wavelength

CPW Quantum Memory Resonators 38

2.4 Phase Qubit: Nonlinear, Anharmonic Oscillator 41

2.4.1 Completed Qubit . 44

2.4.2 Single-Shot SQUID-based Measurement and Readout . . . 47

2.5 Scaling Up: Connecting Multiple Quantum Elements to Form The

QuP . 49

2.6 Experimental Setup and electronics 50

2.6.1 Custom Control Electronics 51

3 Reducing Unwanted Transitions Into The Phase-Qubit’s |f〉 State:

Amplitude Errors 56

3.1 Probability Errors From Measurement 58

3.2 Amplitude Errors Due to Qubit Population Leaking Into The |f〉

State . 61

xxii

3.3 High Fidelity Gates . 66

4 Reducing Unwanted Virtual Transitions Into The Phase-Qubit’s

|f〉 State: Phase Errors 69

4.1 Phase Errors Due to Virtual Transitions 71

4.1.1 Amplifying Phase Error 72

4.1.2 Measuring Phase Error . 74

4.1.3 Correcting Phase Error . 77

4.2 Amplitude Error: The Redux . 79

4.3 Demonstrating Control . 82

4.3.1 Z-pulse Calibration: For Three Axis Control 82

5 15 = 3× 5, Some of The Time 85

5.1 The QuP . 86

5.2 Device Description and Capabilities 88

5.2.1 IDLE Bias . 88

5.2.2 Memory and Coupling Operations 90

5.2.3 Simultaneous Measurement 91

5.2.4 High-Level QuP Operations 92

5.3 Experimentally Verifying The QuP 93

5.3.1 Swap Spectroscopy: Phase Qubit as a Spectrum Analyzer 93

xxiii

5.4 Fast Entangling Logic . 96

5.4.1 Enhanced Coupling Strength with The Number of Qubits

Interacting with The Bus Resonator 100

5.4.2 Rapid Entanglement: Bell and W-States 101

5.5 Compiled Version of Shor’s Algorithm 103

5.5.1 Four Qubit Quantum Circuit 104

5.5.2 Recompiling The Quantum Circuit 106

5.5.3 Three Qubit Quantum Circuit 107

5.6 Quantum Runtime Analysis . 109

5.6.1 Step 1: Bell States via C-Phase Gate 109

5.6.2 Step 2: GHZ States After Two CNOT Gates 111

5.6.3 Step 3: Three Qubit QST 114

5.7 Shor’s Algorithm Output . 117

5.7.1 Three-Qubit QST and Single-Qubit QST 117

5.7.2 Raw Probabilities . 118

5.7.3 Linear Entropy of The Output Register 120

5.7.4 Check Experiment: No Entangling Operations 120

5.8 Sources of Error . 121

5.9 Conclusion: 15 = 3× 5 . 122

A Daily Automated Calibrations 123

xxiv

A.1 The Correct (Software) Tool For The Job 125

A.2 Qubit Control Channels and The Pyle 125

A.3 Automated Qubit Calibrations . 128

A.3.1 Experimental Interface . 128

A.3.2 41 Automatic Calibrations per Qubit 129

A.4 Daily Automation Code . 136

A.4.1 Top Level Function Calls 136

A.4.2 Bias Calibrations . 136

A.4.3 Measurement Calibrations 137

A.4.4 Qubit X,Y Pulse Control Calibrations 137

A.4.5 Single Qubit Scans . 138

A.4.6 Qubit-Resonator Calibrations: Bus and Memory 139

A.4.7 Gate Calibrations . 140

B QuP Fabrication 173

B.1 Fabrication Overview . 173

B.2 Scheduling . 174

B.3 Tips For Success In The Cleanroom 177

B.4 QuP Fabrication Recipe . 179

B.4.1 Reticle Set . 179

B.4.2 Base Wiring Al Deposition 180

xxv

B.4.3 Base Wiring Pattern . 181

B.4.4 Base Wiring Etch . 182

B.4.5 Hydrogenated Amorphous Silicon Deposition 185

B.4.6 Pattern and Etch Vias in Dielectric 185

B.4.7 Top Wiring Al Deposition 187

B.4.8 Pattern and Etch Top Wiring Part 1 187

B.4.9 Josephson Junction Al Oxidation and Deposition 187

B.4.10 Pattern and Etch Junctions 188

B.4.11 Pattern and Etch Top Wiring Part 2 189

B.4.12 Pattern and Etch Dielectric 190

B.4.13 Pattern and Wet Etch Junction Protection Straps 190

Bibliography 191

xxvi

List of Figures

1.1 UCSB QC-Group Superconducting qubit infrastructure. Picture

taken from underneath refrigerator with a wide angle lens. (Cen-

ter) He3-He4 dilution refrigerator (DR) open for sample mounting.

(Center) Cu-plate qubit sample stage with qubit devices. DR is

suspended on vibration isolation pylons (edges of the black star

structure). (Left) Rack of custom microwave electronics used to

control qubits. (Right near yellow ladder) Dewars of cryogens: liq-

uid Helium and liquid Nitrogen to operate refrigerator. (Bottom

Left) Experimental control station. 3

1.2 Evolution of UCSB Superconducting qubit devices. 6

1.3 Finding prime factors using Shor’s algorithm illustrated in a top-

level diagram. 12

1.4 Simple illustration of Greatest Common Divisor. 13

1.5 The Bloch sphere. 18

xxvii

1.6 Density matrix for a single qubit. Each blue arrow represents a

complex number formed by 〈g|ρ|g〉, 〈g|ρ|e〉, 〈e|ρ|g〉, and 〈e|ρ|e〉 . . 20

1.7 Entangled two qubit state: Bell singlet |ψs〉 = (|ge〉 − |eg〉)/
√

2.

Data are described in the text and displayed in (a) arrow plot and

(b) bar plot. 25

2.1 CAD layout of Quantum Processor, with phase qubits (resonators)

labeled Q1 −Q4 (R1-R5). The orange dotted rectangle indicates a

phase qubit cell. The black dotted rectangle encloses all 5 super-

conducting resonators. External connections are made to the 12

green pads around the perimeter of the chip consisting of 8 control

and 4 measure lines. 34

2.2 Schematic of a Linear LC harmonic oscillator. Potential energy of

the harmonic oscillator with evenly spaced energy levels |0〉 , |1〉 , |2〉 , |3〉 , . . . , |n〉. 38

2.3 Photomicrograph of the 5 (4 quarter-wave and 1 half-wave) CPW

resonators. Unwrapped lengths indicated in yellow. 39

2.4 (a) Schematic of an LC-resonator. (b) Potential energy of a har-

monic oscillator with evenly spaced energy levels. (c) Schematic of

phase qubit. (d) Potential energy of the phase qubit with unevenly

spaced energy levels. 43

xxviii

2.5 (a) Phase qubit schematic with control, measurement, and readout

circuitry. (b) Double well potential energy landscape of a phase

qubit, illustrating measurement and readout of |g〉 and |e〉 states.

(c) Qubit operation. 45

2.6 (a) The phase qubit schematic. (b) Photograph of completed phase

qubit cell with control and readout circuitry annotations. (c) SEM

photograph of the Josephson junction. 46

2.7 QuP schematic with 4 phase qubits, 5 resonators, and 4 SQUIDs. 49

2.8 Qubit coupled to a Resonator via a capacitor. 50

2.9 Experimental procedure summary as explained in the text. 52

2.10 Schematic of qubit x-, y-, and z-axis control electronics and an

example of an actual Gaussian-shaped microwave pulse measured

with a high-speed sampling oscilloscope. Further details are ex-

plained in §2.6.1. 53

3.1 Qubit spectroscopy. Probability of tunneling is plotted in grayscale

for qubit operating frequency ωeg/(2π) versus qubit bias Ib. A two-

level state (TLS) splitting shown at 7.1 GHz. 58

3.2 Quantifying measurement error due to TLS. Data are described in

text. 60

xxix

3.3 (top) Experimental pulse sequence. Data are direct measurements

of the |f〉 error due to for τ = 4, 5, 6 ns FWHM Gaussian Xπ-pulses.

Further detail in the text. 62

3.4 (a) Pulse sequence for the Ramsey error filter (REF) with Illustra-

tion of three-level system and transitions into the |f〉 state during

Xπ-pulses. (b) Probability of measuring the |f〉 state Pf versus

Xπ-pulse separation, tsep. (c) High-power spectroscopy showing

the higher transition states. 64

3.5 |f〉 state error versus τ FWHM pules. Inset illustrates non-zero

spectral power at ωfe for a 4 ns Gaussian pulse. 65

3.6 High Fidelity Gate Data as explained in text. 68

4.1 APE for X-control Gaussian pulses. (top) Bloch sphere indicating

final axis of rotation. Multilevel qubit driven on resonance. (Left)

APE pulse sequence. (Right) Probability of measuring the |e〉 state

Pe versus final φpi/2-pulse for n= {0, 1, 3, 5} pseudo-identity opera-

tions. 76

4.2 Phase error for sequential applications of Xπ/2 pulses for Gaussian

(black) and HD (blue) pulses. 76

4.3 Numerical simulations of gate fidelity. 78

4.4 APE metrology for Half-Derivative X- and Y-control pulses. . . . 79

xxx

4.5 Amplitude errors due to leakage into the |f〉 state from an Xπ-pulse. 80

4.6 QST showing the trajectory of an Xπ-pulse without HD control

(top) and with (bottom). 81

4.7 Z-pulse calibration. 83

4.8 Demonstrating qubit control. Hadamard trajectory reconstructed

from QST. 84

5.1 Micrograph (top) of the Josephson quantum processor and full

schematic (bottom). 87

5.2 Ball-and-stick model of the Josephson quantum processor. IDLE

state and performing single qubit gates. 89

5.3 Ball-and-stick model of the Josephson quantum processor. Memory

and entangling operations via rf-pulses. 91

5.4 Ball-and-stick model of the Josephson quantum processor. Simul-

taneous measurement via rf-pulses. 92

5.5 Swap spectroscopy. 95

5.6 Ball and stick model for fast entangling operation. 98

5.7 Coherent Oscillations for increasing number of qubits interacting

with the bus resonator, with details explained in the text. 99

5.8 Reconstructed density matrices for Bell-state creation and three

qubit W-state. 102

xxxi

5.9 Quantum circuit of Shor’s Algorithm, using four qubits to factor

N = 15, with co-prime a = 4. 106

5.10 Recompiling: Hadamard, Hadamard equals Identity. 107

5.11 Recompiling: Controlled gate with control qubit equal zero, per-

forms identity operation on target qubit. 108

5.12 Recompiling: Q1 is always measured in ground state, therefore it

is redundant. 108

5.13 “Recompiled” quantum circuit of Shor’s Algorithm, using three

qubits to factor N = 15, with co-prime a = 4. 109

5.14 Control pulse sequence for the first breakpoint in the quantum run-

time analysis. Bell state created followed by QST. Note that the

CNOT gate is realized by equivalent Controlled-Z gate sandwiched

between two H-gates. 112

5.15 Reconstructed density matrix from QST. 113

5.16 Control pulse sequence for the second breakpoint in the quantum

runtime analysis. GHZ state created followed by QST. 114

5.17 Reconstructed density matrix from QST. 115

5.18 Control pulse sequence for thee-qubit Shor algorithm. 116

xxxii

5.19 Output of the Shor Algorithm. Reconstructed density matrices:

from full three-qubit QST, single-qubit density matrix via tracing

out Q2 and Q3, and single-qubit density matrix from single-qubit

QST. 119

5.20 Check experiment. Run algorithm without entanglement. 121

A.1 The software languages and their use in experiments. 126

A.2 Qubit Control channels in Software and Hardware. 127

A.3 Qubit Calibration Flow illustration. Steps 1 through 4 are detailed

in the text. Control channels refers to the hardware and software

infrastructure shown in Figure A.2. 130

A.4 Qubit parameters annotated by number, corresponding to registry

keys in Table A.1, A.2, A.3, A.4, and A.5. Scales are exaggerated

for clarity. 131

A.5 Automate Daily scripts. 141

A.6 Automated SQUIDsteps page 1 of 2. 142

A.7 Automated SQUIDsteps page 2 of 2. 143

A.8 Step edge code page 1 of 2 . 144

A.9 Step edge code page 2 of 2 . 145

A.10 Measurement calibrations code page 1 of 2 146

A.11 Measurement calibrations code page 2 of 2 147

xxxiii

A.12 Qubit X,Y pulse calibration code page 1 of 10 148

A.13 Qubit X,Y pulse calibration code page 2 of 10 149

A.14 Qubit X,Y pulse calibration code page 3 of 10 150

A.15 Qubit X,Y pulse calibration code page 4 of 10 151

A.16 Qubit X,Y pulse calibration code page 5 of 10 152

A.17 Qubit X,Y pulse calibration code page 6 of 10 153

A.18 Qubit X,Y pulse calibration code page 7 of 10 154

A.19 Qubit X,Y pulse calibration code page 8 of 10 155

A.20 Qubit X,Y pulse calibration code page 9 of 10 156

A.21 Qubit X,Y pulse calibration code page 10 of 10 157

A.22 Code for single qubit scans page 1 of 4 158

A.23 Code for single qubit scans page 2 of 4 159

A.24 Code for single qubit scans page 3 of 4 160

A.25 Code for single qubit scans page 4 of 4 161

A.26 Code for qubit-resonator calibrations page 1 of 8 162

A.27 Code for qubit-resonator calibrations page 2 of 8 163

A.28 Code for qubit-resonator calibrations page 3 of 8 164

A.29 Code for qubit-resonator calibrations page 4 of 8 165

A.30 Code for qubit-resonator calibrations page 5 of 8 166

A.31 Code for qubit-resonator calibrations page 6 of 8 167

xxxiv

A.32 Code for qubit-resonator calibrations page 7 of 8 168

A.33 Code for qubit-resonator calibrations page 8 of 8 169

A.34 Code for qubit gate calibrations page 1 of 3 170

A.35 Code for qubit gate calibrations page 2 of 3 171

A.36 Code for qubit gate calibrations page 3 of 3 172

B.1 (a-g) Photomicrographs of the QuP after each of the seven etch

steps in fabrication. (a) Base wiring etch §B.4.4. (b) Via etch

§B.4.6. (c) Top wiring etch part 1 §B.4.8. (d) Junction etch §B.4.10.

(e) Top wiring etch part 2 §B.4.11. (f) Dielectric etch §B.4.12. (g)

Junction protection straps etch §B.4.13. (h) Photomicrograph of a

completed qubit cell with annotations. 175

xxxv

List of Tables

1.1 The largest published RSA number, RSA-2048, 2048 bit (617 dec-

imal digit) composite number. 10

1.2 Table of potential composite numbers to test Shor’s algorithm. . . 11

1.3 Table of values for evaluating armod(N) for a = 7 and N = 15. . 14

1.4 Table of values for evaluating armod(N) for a = 4 and N = 15. . 15

A.1 Table of qubit experimental bias parameters (written as they ap-

pear in the registry) for a typical qubit in the QuP. The Calibra-

tion and “Fine Cal.” columns refer to the experimental calibration

script detailed in Figure A.10. ∗Parameter 8 does not need to be

calibrated day to day. 132

A.2 Table of qubit experimental measurement parameters (written as

they appear in the registry) for a typical qubit in the QuP. 133

A.3 Table of qubit pulse parameters (written as they appear in the

registry) for a typical qubit in the QuP. 133

xxxvi

A.4 Table of qubit experimental parameters for qubit-resonator calibra-

tions. 134

A.5 Table of qubit experimental parameters for gate calibrations. . . . 135

B.1 Overview of the fabrication process. 176

B.2 Fabrication schedule. 178

B.3 QuP Reticles and corresponding lithographic steps. 180

B.4 Fabrication step 1. Al base wiring deposition on UCSB QC-group’s

Lesker superconducting metal deposition tool. Experimental con-

trols defined in text . 181

B.5 Wafer map of qubit-resonator coupling strengths 182

B.6 Number of devices for the various qubit-resonator coupling strength

options. 183

B.7 Wafer map of microwave coupling strengths in attoFarrads. 183

B.8 Number of devices for the various qubit-resonator and microwave

coupling strength options. 184

B.9 Dry Al etch recipe using Boron trichloride (BCl3), Chlorine (Cl2)

and Carbon tetraflouride (CF4) with chamber pressure P , plasma

rf power Prf , substrate forward bias Pb, and step time t. 184

xxxvii

B.10 a-Si:H Dielectric deposition recipe using a HD PECVD system with

chamber pressure P , plasma rf power Prf , substrate forward bias

Pb, and step time t. 186

B.11 Dry a-SI:H etch recipe. 186

B.12 Oxidations for two wafers A and B of the QuP. Wafer B oxidation

ended at t = 9 min. 188

B.13 Table summarizing the shift of Josephson junction overlaps across

the two wafers A and B. The junction is designed for a 2.3µm

overlap. After calibrating an etch-back of 1.1 − 1.4µm a shift of

0 nm resulted in 0.9− 1.2µm of overlap. All shifts indicated in the

table are positive, resulting in additional overlap. Note, this does

not follow standard shift procedures of bracketing above and below

0 nm. 189

B.14 Junciton etch recipe. 189

xxxviii

Chapter 1

Introduction

We are at a very exciting point on the experimental road to a quantum computer.

Much like the days of the first transistor, which physically occupied an entire table-

top, these coarse, or some might say crude, initial offerings of engineered quantum

systems require a lot of physical space and infrastructure (e.g. Figure 1.1). It is

not clear, nor will I speculate here on which architecture will ultimately persevere

(it is really too early to tell). Instead, in this thesis we will delve into the cur-

rent experimental challenges of building, operating, and programming a quantum

processor (QuP) -a precursor to realizing a quantum computer[49, 30]- to run a

compiled version of Shor’s Algorithm[57]. The solid-state quantum processor de-

scribed here is made up of specially engineered quantum bits herein referred to

as “qubits”. These qubits are of the superconducting phase qubit variety, along

1

with superconducting quantum memory, arranged in a quantum von Neumann

architecture[39]. This quantum architecture is analogous to the, perhaps more fa-

miliar, classical von Neumann architecture, which comprises a central processing

unit “CPU” (or quantum-CPU, “qu-CPU” for short) and random access mem-

ory “RAM” (or “qu-RAM”). And just as classical processors are built up from

a number of simpler components (transistors or “bits”), so too is this quantum

processor, which is built up from many “qubits”.

Superconducting qubits belong to a family of quantum circuits that could

be used as components in a quantum computer. These electrical circuits, like

their classical computer counterparts of bits in silicon, share the advantage of

conventional microfabrication techniques, which allows for straight-forward scaling

by simply arranging more components on a chip. Achieving this scaling with

quantum bits of any variety is a prodigious challenge, but the initial steps are now

underway with superconducting qubits. The state of the art quantum processor

described in this thesis is physically comprised of nine quantum elements: four

superconducting phase qubits and five superconducting resonators all designed to

be manipulated with microwave radiation.

The solid state quantum processor (QuP) that I will describe here builds on

the work of many successful experiments and infrastructure. For more details

on the UCSB superconducting quantum computing group’s, (herein referred to

2

Figure 1.1: UCSB QC-Group Superconducting qubit infrastructure. Picture
taken from underneath refrigerator with a wide angle lens. (Center) He3-He4

dilution refrigerator (DR) open for sample mounting. (Center) Cu-plate qubit
sample stage with qubit devices. DR is suspended on vibration isolation pylons
(edges of the black star structure). (Left) Rack of custom microwave electronics
used to control qubits. (Right near yellow ladder) Dewars of cryogens: liquid
Helium and liquid Nitrogen to operate refrigerator. (Bottom Left) Experimental
control station.

3

as the “UCSB QC-group”), phase qubit fabrication, operation, and software in-

frastructure, I refer the interested reader to Markus Ansmann’s pioneering PhD

thesis[3]. Of course the complexity of the experiments have continued to evolve

and I will be providing the details on how things have changed. The backbone

to our control-software infrastructure relies on the LabRAD software1 originally

conceived and developed by Markus Ansmann and Matthew Neeley. Our custom

qubit control-electronics were developed in-house by Professor John Martinis and

myself2. Together these efforts have enabled a number of crucial advancements

and experiments in this field, including the work I describe in this thesis.

The field of quantum computing has sparked the interest of the scientific

community3 and the popular press4 as a number of exciting technological break-

throughs have been achieved. In an effort to stir the reader to investigate beyond

this thesis, Figure 1.2 highlights a handful of key devices (by no means exhaustive)

from the UCSB QC-group. These devices were chosen for their scientific relevance

and because they clearly show how the hardware has evolved over the years. I

make note of this evolution in hardware because each new device and experiment

builds upon the success of the previous devices. I will also show in Appendix A

1http://sourceforge.net/projects/labrad/
2https://commando.physics.ucsb.edu/tw/view/Electronics/PubDocs
3http://www.aaas.org/news/releases/2010/1216sp_boy.shtml?sa_campaign=

Internal_Ads/AAAS/AAAS_News/2010-12-16/jump_page
4http://www.nytimes.com/2010/11/09/science/09compute.html,http://www.bbc.

co.uk/news/science-environment-12811199,http://www.nytimes.com/2012/02/28/
technology/ibm-inch-closer-on-quantum-computer.html

4

http://sourceforge.net/projects/labrad/
https://commando.physics.ucsb.edu/tw/view/Electronics/PubDocs
http://www.aaas.org/news/releases/2010/1216sp_boy.shtml?sa_campaign=Internal_Ads/AAAS/AAAS_News/2010-12-16/jump_page
http://www.aaas.org/news/releases/2010/1216sp_boy.shtml?sa_campaign=Internal_Ads/AAAS/AAAS_News/2010-12-16/jump_page
http://www.nytimes.com/2010/11/09/science/09compute.html
http://www.bbc.co.uk/news/science-environment-12811199
http://www.bbc.co.uk/news/science-environment-12811199
http://www.nytimes.com/2012/02/28/technology/ibm-inch-closer-on-quantum-computer.html
http://www.nytimes.com/2012/02/28/technology/ibm-inch-closer-on-quantum-computer.html

that the software has evolved in a similar fashion. When what previously would

take us months or years to calibrate and figure out, in all of the nuance and detail

important to an experiment, we can now (and need to continue to be able to!)

repeat in a few minutes on the freshest fabricated device.

Looking at the devices shown in Figure 1.2 one can see the increase in device

complexity starting at top left and moving across the row and then down the page.

The device pictured in Figure 1.2a was used to create both Fock states[24] and

arbitrary quantum states[23] using a single phase qubit (white rectangle near the

center) capacitively coupled to a superconducting resonator (long black line with

sequential gold highlights) forming a device with a total of two quantum elements.

The next device in Figure 1.2b was used to perform the first solid-state viola-

tion of Bell’s inequality[4]. It is comprised of two phase qubits (white rectangles

near the green squares at either side, left and right, of the device) coupled via a

resonator (serpent pattern in the center) forming a total of three quantum ele-

ments.

The purple colored device in Figure 1.2c was designed to show the first demon-

stration of a mechanical harmonic oscillator in its quantum ground state and in

a superposition of quantum states[50]. The device paired a phase qubit with a

mechanical resonator, analogous to the electromagnetic resonator in the previous

two devices.

5

1mm

0.1mm

1mm

1m
m

1m
m

1mm

(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Evolution of UCSB Superconducting qubit devices.

6

The device pictured in the black and white photomicrograph in Figure 1.2d

was used to show both classes of three qubit entanglement[47]. This device is

comprised of four phase qubits (four rectangles with the white lines extending out

at ∼ 45◦) coupled to one another via a capacitive island (white ‘X’ in the center),

for a total of four quantum elements.

The device in Figure 1.2e was used to demonstrate the first prototype of

the quantum von Neumann architecture[39] and it was used to create NOON

states[66]. The device has two phase qubits and three superconducting resonators,

where one of the resonators is shared between both qubits, for a total of five en-

gineered quantum elements.

The final device in the photomicrograph matrix in Figure 1.2f (rainbow colored

due to diffraction) was used to run the first solid sate demonstration of Shor’s

algorithm[34]. It is comprised of four phase qubits (rectangles positioned on the

edge about the center of the chip) and five superconducting resonators (serpent

patterns in the middle and splitting off from the qubit at ∼ 45◦) for a total of

nine engineered quantum elements. This device is the basis for this thesis.

In this thesis we demonstrate experimental control over the nine supercon-

ducting quantum elements that form the QuP and run a quantum algorithm,

namely Peter Shor’s prime factorization algorithm[57] appropriately compiled for

our number of qubits to factor the number N = 15 into its two prime factors

7

(wait for it). In addition, we show two-qubit entanglement and both classes of

three-qubit entanglement both via fast entangling operations, and by combining

single and coupled qubit gates. This state of the art solid-state QuP helps to

underline the promise of superconducting qubit architectures for scaling up to a

full fledged quantum computer.

1.1 Shor’s Algorithm

All this talk of quantum bits, quantum processors, and quantum computers, but

what are they good for? Many things[49] but let’s be clear, the end-game for quan-

tum computers is not one that merely replaces your desktop (or tablet) personal

computer5. Instead, the vision is more revolutionary in that a full-scale quantum

computer would use a completely new and different form of computation, one

that relies on the physics of quantum mechanics to solve problems that would

otherwise be intractable on a computer that relies merely on classical physics.

5Imagine a dilution refrigerator like the one pictured in Figure 1.1 and a group of graduate
students to run it in every home!

8

1.1.1 A Practical Use of a Quantum Computer: Finding Prime

Factors

The problem of finding the prime factors of some composite number6 is considered

a “hard” problem from a computer science and mathematical perspective and is

why contemporary encryption schemes like RSA (named after the inventors, Ron

Rivest, Adi Shamir, and Leonard Adleman) make use of this fact for secure data

transmissions (e.g. sending someone your credit card information).

The problem is as follows: we are given some composite number N , like the

largest published RSA number7 shown in Table 1.1, and we seek the two con-

stituent prime numbers p and q that were multiplied together to form N . Armed

with a classical computer and the best known classical algorithm, the general num-

ber field sieve[32], it will take sub-exponential timeO(exp[(log(N))1/3(log(log(N)))2/3])

to find a solution. In other words, we can expect to wait on the order of the age of

the universe, currently estimated to be 13 billion years (4× 1017 seconds), before

we obtain p and q.

However, given a quantum computer capable of running the best known quan-

tum algorithm, Shor’s algorithm[57], which exploits quantum mechanics, we would

only have to wait polynomial time O((log(N))3)[57]. In other words, we would

6A composite number is a number that is formed by the product of multiplying prime numbers
together.

7RSA-2048 is a 2048 bit (617 decimal digit) composite number.

9

RSA-Number Value
RSA-2048 = 2519590847565789349402718324004839857142928212620

4032027777137836043662020707595556264018525880784
4069182906412495150821892985591491761845028084891
2007284499268739280728777673597141834727026189637
5014971824691165077613379859095700097330459748808
4284017974291006424586918171951187461215151726546
3228221686998754918242243363725908514186546204357
6798423387184774447920739934236584823824281198163
8150106748104516603773060562016196762561338441436
0383390441495263443219011465754445417842402092461
6515723350778707749817125772467962926386356373289
9121548314381678998850404453640235273819513786365
64391212010397122822120720357

Table 1.1: The largest published RSA number, RSA-2048, 2048 bit (617 decimal
digit) composite number.

only have to wait on the order of 10’s of seconds or about the time to brew a

cup of coffee -a very practical amount of time, to factor even the largest RSA

number. Therefore, a quantum computer can solve this problem faster than a

classical computer by many orders of magnitude ∼ 1015.

This thesis was inspired by this practical application. To meet this challenge,

I designed a QuP to map the problem of factoring N = 15 onto a quantum circuit

that is compatible with our technological capabilities. N = 15 was chosen because

it is the smallest composite number that satisfies the conditions appropriate to

test Shor’s algorithm8, namely 15 is a composite number, it is not prime, and it

is not even. If any of these conditions are not satisfied Shor’s algorithm fails. The

8The next composite number being N=21, which is a significantly more complex problem.

10

Integer Composite Prime Even Notes
2 No Yes Yes Shor Algo. Fails: prime, even
3 No Yes No Shor Algo. Fails: prime
4 No No Yes Shor Algo. Fails: not composite

p = q, even
5 No Yes No Shor Algo. Fails: prime
6 Yes No Yes Shor Algo. Fails: even
7 No Yes No Shor Algo. Fails: prime
8 No No Yes Shor Algo. Fails: even
9 No No No Shor Algo. Fails: not composite

p = q
10 Yes No Yes Shor Algo. Fails: even
11 No Yes No Shor Algo. Fails: prime
12 Yes No Yes Shor Algo. Fails: even
13 No Yes No Shor Algo. Fails: prime
14 Yes No Yes Shor Algo. Fails: even
15 Yes No No Shor Algo. Succeeds
16 No No Yes Shor Algo. Fails: not composite

p = q, even
17 No Yes No Shor Algo. Fails: prime
18 Yes No Yes Shor Algo. Fails: even
19 No Yes No Shor Algo. Fails: prime
20 Yes No Yes Shor Algo. Fails: even
21 Yes No No Shor Algo. Succeeds.

Table 1.2: Table of potential composite numbers to test Shor’s algorithm.

table of integers from N = 2 to N = 21 are shown in Table 1.2 along with notes

of whether or not Shor’s algorithm would succeed. Note that the integer N = 21

also meets the conditions to test Shor’s algorithm, but I leave that for a future

demonstration.

To find the prime factors of (odd) composite numbers, like N = 15 or the RSA-

2048 number, Shor’s algorithm combines the power of both classical and quantum

11

N p

q

Shor's Algorithm

a
r

QuantumClasical Clasical

co-prime? f(r) GCD

NGiven a composite Number,

N = p q×

We want the prime factors,
p q&

We can use

Figure 1.3: Finding prime factors using Shor’s algorithm illustrated in a top-level
diagram.

computation in a three subroutines, which are sketched out in Figure 1.3.

1.1.2 Classical Subroutines

The first and last step in Shor’s algorithm are classical subroutines, which rely on

an efficient variant of Euclid’s greatest common divisor (GCD) algorithm. The

first step is to select the number a. This can be done by randomly selecting

a number between 1 and N and then checking that it is co-prime9 with N via

Euclid’s GCD algorithm. If it is, then the next step is to continue on to the

quantum routine. If it is not co-prime with N , another number is chosen and

9a and N being co-prime means that for 1 < a < N the greatest common divisor between a
and N is 1.

12

a

N

c
c

Figure 1.4: Simple illustration of Greatest Common Divisor.

checked until this condition is satisfied. A simple illustration of finding the GCD

is shown in Figure 1.4, where we consider a rectangle with area A = a × N and

we seek the largest value of c that divides a and N exactly, GCD(a,N) = c. For

the co-prime case between a and N , c = 1.

1.1.3 Quantum Subroutine

With the two inputs into the algorithm namely, the number N that we want to

factor and a co-prime a, we can continue on to the quantum computation. Shor’s

algorithm requires a quantum computer to find the period r of the function f(r) =

armod(N). This subroutine utilizes the quantum computer’s power to evaluate

f(r) for many values of r simultaneously. Fortunately, for the N = 15 case, we

can check the the quantum computer’s solutions by evaluating f(r) = armod(N)

for N = 15 and its co-primes.

13

r armod(N) Result
1 71mod(15) = 7mod(15) 7
2 72mod(15) = 49mod(15) 4
3 73mod(15) = 343mod(15) 13
4 74mod(15) = 2401mod(15) 1
5 75mod(15) = 16,807mod(15) 7
6 76mod(15) = 117,649mod(15) 4
7 77mod(15) = 823,43mod(15) 13
8 78mod(15) = 5,764,801mod(15) 1
9 79mod(15) = 40,353,607mod(15) 7
...

...
...

r = 4n for integer n

Table 1.3: Table of values for evaluating armod(N) for a = 7 and N = 15.

Consider the Example N=15

The first step is to find a co-prime a. For N = 15 it is straightforward to check the

possible co-primes for 1 < a < N , by simple division. Here is the set of co-primes

a ∈ {2, 4, 7, 8, 11, 13, 14}. For pedagogical reasons I select a = 7 and a = 4 to

illustrate two different periods.

The next step is to find the smallest power for a = 7 that satisfies the equation

armod(N) = 1 . Table 1.3 tabulates the values of armod(N) for a = 7, N = 15,

and increasing r. From the results in Table 1.3 it is clear that for co-prime a = 7

and N = 15, the function f(r) = armod(N) has a period, r = 4. In other words,

the function repeats every fourth integer.

As another example, let a = 4. From the results in Table 1.4 f(r) has a period

of r = 2. Repeating these calculations for the remaining co-primes a, it can be

14

r armod(N) Result
1 41mod(15) = 4mod(15) 4
2 42mod(15) = 16mod(15) 1
3 43mod(15) = 64mod(15) 4
4 44mod(15) = 256mod(15) 1
...

...
...

r = 2n for integer n

Table 1.4: Table of values for evaluating armod(N) for a = 4 and N = 15.

shown that for a ∈ {2, 7, 8, 13} these co-primes all have a period r = 4 and for

a ∈ {4, 11, 14}, r = 2.

Armed with period r of the function f(r) = armod(N) we finish the computa-

tion by employing Euclid’s GCD algorithm to find the GCD between, GCD(ar/2±

1 ,N) = {p, q}. For p = GCD(ar/2 + 1,N) (and q = GCD(ar/2 − 1,N)), the pre-

scription looks likes the following: p = rk−1 for k steps, until rk = 0.

k = 0 :

ar/2 + 1 = q0 ×N + r0

k = 1 :

N = q1 × r0 + r1

k = 2 :

r0 = q2 × r1 + r2

...

rk−2 = qk × rk−1 + rk. (1.1)

Where qk (rk) is the quotient (remainder) of the kth step.

For a = 7 and r = 4 the calculations proceed as following:

15

p = GCD(50, 15)

k = 0 :

50 = 3× 15 + 5

k = 1 :

15 = 3× 5 + 0

∴ p = r0 = 5, ∵ r1 = 0. (1.2)

The algorithm finishes because r1 = 0, and therefore p = r0. Similarly, for q:

q = GCD(48, 15)

k = 0 :

48 = 3× 15 + 3

k = 1 :

15 = 5× 3 + 0

∴ q = r0 = 3, ∵ r1 = 0. (1.3)

Thereby completing the algorithm and recovering the prime factors, p and q that

were multiplied together to give N .

1.2 A Qubit and The Bloch Sphere

In order to run a quantum algorithm, we first need quantum bits, or “qubits”.

Qubits are the simplest quantum system with just two states. We will call theses

states |g〉 and |e〉, analogous to the classical binary digit or “bit” which can take

on the values 0 or 1. To completely describe the state of the qubit |ψ〉, we can

16

write |ψ〉 = α |g〉 + β |e〉 where the coefficients α and β are complex numbers,

referred to as “amplitudes” for the system to be in these two eigenstates. In other

words, the qubit state can be in some amount of |g〉 and |e〉 at the same time

dictated by the values of α and β. These coefficients satisfy the normalization

condition |α|2 + |β|2 = 1 and can be interpreted as probabilities: P0 = |α|2 is the

probability that upon measurement the system will be found to be in state |g〉,

while P1 = |β|2 is the probability that the system will be found in state |e〉.

Because of the normalization constraint |α|2 + |β|2 = 1, we can write an

arbitrary qubit state |ψ〉 = eiφα cos(θ
2
) |g〉+eiφβ sin(θ

2
) |e〉, where the angle θ varies

between 0 and π. Since global phases are unobservable in quantum mechanics, we

can restrict the amplitude, α to be real (by setting φα = 0), leaving a relative phase

on β (φβ → φ) and allowing us to rewrite the qubit state as |ψ〉 = cos(θ
2
) |g〉 +

eiφ sin(θ
2
) |e〉, where the relative phase φ can vary from 0 to 2π.

Writing the qubit state in this spherical form, with azimuthal angle φ and

polar angle θ, provides us with a nice geometric representation of a unit sphere,

also known as the Bloch sphere, as shown in Figure 1.5.

1.2.1 Qubit Control

In the Bloch sphere picture qubit control corresponds to rotations of the qubit

state |ψ〉 about some axis. These rotations are analogous to the familiar two-state

17

X
Y

Z
∣g⟩

∣e⟩

∣g⟩- i ∣e⟩

∣g⟩+ ∣e⟩

∣g⟩- ∣e⟩

∣g⟩+ i ∣e⟩

θ

φ

∣ψ⟩

Figure 1.5: The Bloch sphere.

spin-1
2

particle subject to a magnetic field. Rotations about the x-, y- and z-axes

of the Bloch sphere are generated by the Pauli matrices

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (1.4)

Where a rotation Rz(γ) about the z-axis by some angle γ takes the initial qubit

state |ψ〉 to |ψ′〉 via the unitary operation,

|ψ′〉 = U |ψ〉 , (1.5)

where

U = Rz(γ)

= exp(−(iγ/2)σz). (1.6)

18

Consider a uniform magnetic field applied in the z-direction to a spin-1
2

parti-

cle. The Hamiltonian that describes this interaction is given by H = ~ω
2
σz, where

~ is the Planck constant over 2π and ω is the Larmor frequency proportional to

the applied magnetic field. The unitary time evolution operator is therefore given

by

U(t) = exp(−iHt/~)

= exp(−i(ωt/2)σz). (1.7)

Comparing Equation 1.6 to Equation 1.7 we note that U(t) looks just like

the rotation about the z-axis Rz(γ) with ωt replacing the angle γ. And similarly

for rotations about the x-axis Rx(γ) = exp (−(iγ/2)σx) and the y-axis Ry(γ) =

exp (−(iγ/2)σy).

Although three axes control is convenient, it turns out that with control over

just two axes, say x and z one can build up any rotation Rα(γ), where α is an

arbitrary axis. This provides complete control over the qubit state -an important

requirement for quantum computation.

1.2.2 The Density Matrix Description

Pure states map to the Bloch sphere, as described above and illustrated in Fig-

ure 1.5, but how can we describe the qubit state in a real experiment, where it

19

∣g⟩

∣e⟩

〈g∣ 〈e∣

1

i

Figure 1.6: Density matrix for a single qubit. Each blue arrow represents a
complex number formed by 〈g|ρ|g〉, 〈g|ρ|e〉, 〈e|ρ|g〉, and 〈e|ρ|e〉

interacts with the environment and is manipulated with imperfect controls? The

qubit can no longer be described by just a pure state, but instead it can be de-

scribed as a collection of pure states. More succinctly we can employ the density

matrix formalism, which allows for a quantum system to be in a probabilistic

mixture of different pure states. The density matrix ρ is defined as
∑

i pi |ψi〉 〈ψi|,

where pi is the probability that the system is in the (pure) state |ψi〉. The density

matrix formalism also allows for points inside the Bloch sphere, which represent

mixed states and accounts for decoherence. Another advantage to the density ma-

trix description is that it generalizes to more than one qubit. For the majority of

this thesis I will stick with the density matrix description, but wherever possible

for single qubits I will use the simpler pure state model.

To help familiarize the reader with another way the density matrix is displayed

lets look at a representative density matrix for a single qubit, as shown in Fig-

20

ure 1.6. The axes drawn off to the right of the plot apply to each of the four blue

arrows. The ordinate axis is the imaginary axis that ranges from −i to i. The

abscissa axis is the real axis that ranges from −1 to 1. The four blue arrows repre-

sent the complex number formed by 〈g|ρ|g〉, 〈g|ρ|e〉, 〈e|ρ|g〉, and 〈e|ρ|e〉. The data

shown are for a qubit (theoretically) prepared in the equal superposition state,

|ψ〉 = 1√
2
(|g〉+|e〉), which can be written as ρ = |ψ〉〈ψ| = 1

2
[(|g〉+|e〉)(〈g|)+〈e|)] =

1
2
(|g〉〈g|+ |g〉〈e|+ |e〉〈g|+ |e〉〈e|). So, each of the four combinations are (theoret-

ically) represented by an arrow of length 1/2 pointing completely along the real

axis.

1.3 Decoherence

Although extensive efforts are made to isolate qubits from the environment so

as to protect the fragile quantum states we still have to control, measure, and

connect qubits so they can interact with one another. These additional degrees

of freedom (collectively referred to as “the environment”) provide routes for the

quantum states to leak into or “decohere”. Decoherence refers to these various

processes where the coupling to the environment deteriorates the quantum state.

One process is relaxation, where the excited state dissipates energy into the

environment and relaxes to the ground state. Consider the Bloch sphere picture,

where a qubit is prepared in the |e〉 state. As it relaxes the vector shrinks towards

21

the middle of the sphere and continues to relax all the way back into the ground

state. Relaxation is described by an exponential decay time T1.

Another decoherence process is dephasing. Consider a qubit state prepared in

the equator of the Bloch sphere, |ψ〉 = 1√
2
(|0〉+eiφ |1〉) with a definite phase φ = 0.

Dephasing causes the qubit transition frequency to fluctuate, which is like applying

randomized z-rotations, thereby randomizing φ and reducing the phase coherence.

In the Bloch sphere picture, this process shrinks the state vector towards the

center. Dephasing is commonly described by an exponential decay time Tφ, but

because relaxation also causes loss of phase coherence the two times are often

expressed as one characteristic decoherence timescale, T2, where 1
T2

= 1
2T1

+ 1
Tφ

.

As one might guess decoherence is one of the main limiting factors for experi-

mentalists. The trade off between protecting the qubit on the one hand (reducing

decoherence) and being able to easily manipulate and encourage qubits to interact

on the other (which typically increases decoherence) is a continuous engineering

issue. Reducing decoherence continues to be a topic of research in all quantum

information architectures, including superconducting qubits[55, 43, 8, 17].

1.4 Multiple Quantum Elements

Because our quantum processor is comprised of quantum elements that include

qubits (which ideally have only two “computational states”) and superconducting

22

resonators (which are quantum harmonic oscillators that have many levels enu-

merated by 0, 1, 2, 3 . . . n) in this thesis, I will use the notation |g〉, |e〉, to represent

the “ground” and “excited” states of a qubit and I will increment the letter ac-

cordingly for the higher excited states of the qubit, i.e. |f〉, |h〉, . . ., etc. Whereas

for the resonator states, I will use the notation |0〉 , |1〉 , . . . , |n〉 to represent the

photon number states of the resonator.

To describe the ground state of the full nine quantum element system we

simply combine the individual states for the resonators and qubits via an outer

product |00000〉⊗ |gggg〉, where the set of five “0”s represent the ground state for

the five resonators and the four “g”s represent the ground state for the respective

qubits. From this notation it should be clear when describing only a subset of

elements, like one resonator in the ground state and two qubits in the first excited

state, e.g. |0〉 ⊗ |ee〉 (or more compactly, |0ee〉).

The current state of the art in superconducting qubits is nine quantum ele-

ments, but simply placing nine isolated quantum elements on a single chip allows

for nothing more exciting than single qubit dynamics. However, with supercon-

ducting quantum elements we can make connections with superconducting wires

and capacitors. The size of the capacitors set a maximum coupling strength be-

tween the elements. Although the coupling capacitors are fixed we can still turn

the coupling interaction on and off by electronically adjusting the qubit |g〉 → |e〉

23

transition frequency.

In Chapter 2, I will describe the coupling scheme implemented between the

phase qubits and the superconducting resonators that form the QuP. As a conse-

quence of this scheme, the QuP is capable of various forms of controllable multi-

quantum element interactions and the ability to build up quantum algorithms via

the standard single- and coupled-qubit gate model.

1.5 Superposition and Entanglement

Superposition, as discussed above in §1.2, refers to a physical system that must

be described by its amplitude to be in each of a set of possible eigenstates. Recall

that these amplitudes (α and β above) are complex numbers that when squared

give the probability of measuring the system in that particular state. When a

system is strongly measured (as opposed to only measured weakly [29]), it will be

found in one and only one of these eigenstates. However, all the time before and

leading up to measurement the state is described by the entire superposition.

Entanglement in quantum mechanics refers to a (two or more) multi-body

quantum state that can no longer be described as a product state. The system is

instead in a compound state where the participating components are intertwined,

or entangled. Entanglement plays a key role in quantum mechanics and by no

surprise also in quantum computation. In fact, entanglement is the underlying

24

〈gg∣ 〈ge∣ 〈eg∣ 〈ee∣

∣ee⟩

∣eg⟩

∣ge⟩

∣gg⟩
1

i

1/2

0

-1/2
∣ee⟩

∣gg⟩∣ee⟩
∣gg⟩

1/2

0

-1/2

∣ee⟩
∣gg⟩∣ee⟩

∣gg⟩

Real

Real Imaginary

(a)

(b)

Figure 1.7: Entangled two qubit state: Bell singlet |ψs〉 = (|ge〉 − |eg〉)/
√

2. Data
are described in the text and displayed in (a) arrow plot and (b) bar plot.

phenomena that gives rise to correlations between the participating qubits that

violates correlations predicted by invoking classical physics. Entanglement is one

of the characteristics that distinguishes quantum computers from classical com-

puters and what gives rise to the speedup over classical computation.

A canonical example of a two qubit entangled state is a “Bell-singlet”, |ψs〉 =

(|ge〉 − |eg〉)/
√

2. Upon writing this state, one can glean that there is no way

to extract either qubit from the entangled state to form a product state, e.g.

25

|ψs〉 6= |g1〉 (|e2〉 − |g2〉), where the subscripts refer to qubit 1 and 2 respectively.

In an experiment, where the Bell singlet is prepared and qubit 1 is measured in the

ground state |g1〉, qubit 2 will be found in the excited state |e2〉, and vice versa.

In other words, the action of measuring qubit 1 (2) determines the outcome of

qubit 2 (1). These correlations will continue to exist even when the qubits are

separated in space or time or when different measurement axes are used.

The Bell singlet can be expressed as a density matrix,

ρs = |ψs〉〈ψs|

=
1

2
(|ge〉〈ge| − |ge〉〈eg| − |eg〉〈ge|+ |eg〉〈eg|) (1.8)

and displayed like the data shown in Figure 1.7, where I introduce another more

commonly used “metropolis” or bar-graph in Figure 1.7b along with the now

familiar arrow plot in Figure 1.7a. The data here are for the ideal preparation of

the Bell singlet.

Starting with the arrow plot in Figure 1.7a, the axes drawn off to the right

of the plot apply to all sixteen origins for arrows. The ordinate axis is the imag-

inary axis that ranges from −i to i. The abscissa axis is the real axis that

ranges from −1 to 1. The sixteen arrows represent the complex numbers formed

by 〈gg|ρs|gg〉,〈gg|ρs|ge〉,〈gg|ρs|eg〉,〈gg|ρs|ee〉, . . . , 〈ee|ρs|ee〉. From Equation 1.8

there are (theoretically) four arrows of length 1
2

pointing along the positive (neg-

ative), 〈ge|ρs|ge〉, 〈eg|ρs|eg〉 (〈ge|ρs|eg〉, 〈eg|ρs|ge〉) real axis.

26

The metropolis plot in Figure 1.7b breaks the data into two plots (one for the

real and one for the imaginary components). Although I have shown both real and

imaginary components, it is common to show only the real components especially

when the imaginary components are zero (or nearly vanishing experimentally). I

have also left off the middle labels |ge〉, |eg〉, 〈ge|, and 〈eg| for visual clarity. The

four bars correspond to the same four numbers as above in Figure 1.7a.

Being able to prepare and measure the existence of two-qubit and three-qubit

entanglement provides a benchmark that can be used across quantum architec-

tures. Therefore, we measure both two and three qubit entanglement and in §5.7.4,

we show that entanglement is necessary to successfully run a quantum algorithm.

1.6 The Road Ahead

With this introductory chapter behind us, the remainder of this thesis will proceed

in the following manner. In Chapter 2, I describe our superconducting resonators

and phase qubits and how they are designed, fabricated, and connected to form a

quantum processor (QuP). Since we ultimately want to run a quantum algorithm

on this QuP, which requires electronic-manipulation of the quantum elements, we

first need to understand how to optimally control the phase qubits. Therefore,

in Chapter 3, I will describe how we experimentally reduced amplitude errors,

an error associated with control, down to fault tolerant levels through accurate

27

and precise manipulation of the qubit. Then in Chapter 4, I will discuss how

we experimentally implemented a control theory to reduce phase errors, which

consequently allowed us to perform even faster high fidelity single qubit gates,

and thereby reduced the overall Shor algorithm time.

With a solid handle on the single qubit material, we move on to the final

chapter, which describes our experiments with the nine quantum element (four

phase qubits and five resonators) QuP. Wherein, I will discuss the details of:

characterizing all nine-quantum elements via (“swap”) spectroscopy in §5.3.1, the

fast-entangling protocols and capabilities of the QuP to create two and three-

qubit entangled states in §5.4, the compiling of Shor’s algorithm in §5.5.1, and

the final quantum circuit that we used to find the prime factors of the composite

number N = 15 with co-prime a = 4. I also present the quantum runtime

analysis of the algorithm in §5.6, where we show, using quantum state tomography

(QST)[59] that we have quantum entanglement over the complete duration of

Shor’s algorithm in §5.6.1 and in §5.6.2. And finally, we present the output of

the algorithm from three experimental perspectives in §5.7: full three-qubit QST,

single qubit QST of the output register, and the raw output of the algorithm.

We conclude with a check experiment in §5.7.4, where we run the algorithm sans-

entanglement, thereby confirming that entanglement is necessary for the success

of the algorithm.

28

This capability to build and operate a nine-quantum element device, and

demonstrate a compiled version of Shor’s algorithm, represents a significant step

toward scaling up to larger numbers of qubits with an architecture that may

eventually lead to a quantum computer.

29

Chapter 2

A Josephson Phase Qubit Quantum

Processor

In this chapter I discuss how our superconducting resonators and phase qubits

are designed, fabricated, and connected to form a quantum processor (QuP).

The chapter begins with a discription of quantum integrated circuit design and

a top-level description of the QuP. Next, I provide an overview of the QuP fab-

rication process (but leave the detailed recipe of the QuP to Appendix B). Then

in the following two sections of this chapter, I discuss the individual quantum

elements: namely, the linear harmonic oscillator that is physically realized with

a superconducting coplanar waveguide (CPW) resonator (R) and the non-linear

(anharmonic) oscillator realized with lumped inductors (L), capacitors (C), and

30

Josephson junctions (JJ) combined to form the phase qubit (Q). The chapter

concludes with a discussion on how we physically connect these elements via su-

perconducting wires and capacitors to create a QuP.

2.1 Quantum Integrated Circuits

Our approach to create a QuP leverages the advantages from quantum integrated

circuit technology and the success of “off-the-shelf” quantum circuits that are

based on superconducting resonant circuits with resonant modes in the GHz range.

These quantum circuits are formed using superconducting metals patterned using

the same techniques employed in the semiconductor industry to form lumped

elements like Ls, Cs, JJs, and extended structures like transmission lines and CPW

resonators. With this toolbox of circuit elements combined with superconductivity

(a collective quantum behavior of many electrons that allows us to treat the entire

circuit quantum mechanically), we can engineer our desired quantum elements

rather than relying on naturally occurring quantum systems e.g. photons, spins,

or atoms.

31

2.1.1 Large Qubits

The superconducting resonant circuits composed of lumped Ls, Cs, and JJs form

qubits1 that are relatively large O(100×100µm2) compared to atoms or ions e.g.

Be+ with a characteristic radii O(100 pm). At this larger scale it is easier to make

physical connections to the qubits. Another advantage of the quantum integrated

circuit approach is that we can engineer the impedance of the quantum elements

(qubits and resonators) to be 50 Ω. This simplifies the connection between indi-

vidual elements to a transmission line (a.k.a. a wire) and provides the capability

for long range interactions2.

Since the spatial degrees of freedom are fixed relative to the quantum elements,

and they are impedance matched to facilitate long-range interactions, we turn on

and off the interactions between the elements in frequency space via electronic

control and circuit design. The CPW resonators have a fixed length, and there-

fore fixed modes in frequency. And although the phase qubits have fixed circuit

parameters they can be biased electronically to tune them in and out of reso-

nance with the resonators. The strength of the qubit-resonator interaction is set

a capacitor between the qubits and resonators as we discuss in §2.5. In this way

the resonator can be thought of as bandpass filter: when the qubit is near or on

1The qubits are formed from Ls, and Cs with areas O(100×100µm2) and JJs with areas
O(1µm2).

2In the QuP there are interactions between elements that are separated by millimeters.

32

resonance with the resonator the interaction is turned on and when the qubit is

tuned away from resonance the interaction is turned off. For the QuP design the

interaction is off when the qubit is tuned ∼ ±500 MHz away from the resonator.

Connecting these macroscopic qubits to the (meandering) extended CPW res-

onator structures and arranging them in a useful circuit design, like the com-

pleted QuP shown in Figure 2.1, results in a quantum circuit occupying an area

6.25× 6.25 mm2.

The dashed-orange rectangle labeled Q1 in Figure 2.1 highlights a representa-

tive phase qubit and its respective superconducting quantum interference device

(SQUID) measurement circuit. The meandering blue traces, labeled R1 −R5 en-

closed in a dashed-black rectangle are the CPW resonators. The qubits Qi are

connected to a respective memory resonator Ri and the shared central resonator

R5 with transmission lines and coupling capacitors. The resonator R5 is a quan-

tum bus [37, 65, 28, 56, 5, 38, 25, 58, 24, 2, 66, 39] that provides the central

connection to all of the quantum elements Q1 − Q4 (and R1 through R4 though

their respective qubits).

Around the perimeter, interrupting the blue-border in Figure 2.1, there are

12 green pads (4 squares labeled “Qi Meas” and 8 tapered microwave launch-

ers labeled “Qi Control” and “Ri Control”)3. These 12 pads provide electrical

3The 8 smaller green rectangles on the right are for test structures and are not connected to
the QuP circuit.

33

Q2
R2

Q1

Q3

Q4

Control

Meas

Control

ControlControl

Control

Control

Control

Control

R3

R4R1

R5

Q1

Q2

R5

Q1

R1 R4

Meas
Q4

Q4

Q3

Meas
Q3

Meas
Q2 R2

6.25 mm

6.
25

 m
m

Figure 2.1: CAD layout of Quantum Processor, with phase qubits (resonators)
labeled Q1−Q4 (R1-R5). The orange dotted rectangle indicates a phase qubit cell.
The black dotted rectangle encloses all 5 superconducting resonators. External
connections are made to the 12 green pads around the perimeter of the chip
consisting of 8 control and 4 measure lines.

34

connections to control and measure the quantum elements.

2.2 The QuP Fabrication

The entire QuP fabrication was performed using standard thin-film deposition

and etching technologies all available in the UCSB Nanofabrication Cleanroom.

We use Al as the superconducting metal. The Al is lithographically defined to

form lumped elements, coplanar waveguide resonators, and transmission lines for

electrical connections between elements. The lumped linear inductors are formed

by loops of superconducting wires. Interdigitated capacitors are formed by breaks

in the Al wire. The parallel-plate capacitors, important for improved qubit co-

herence times[41], are fabricated by sandwiching hydrogenated amorphous Silicon

(a-Si:H) (a low-loss dielectric[51]) between two layers of Al. The a-Si:H dielectric

is also used for wiring cross-overs. The Josephson junctions (the triangular shaped

wedges in the SEM image in Figure 2.6c)4 are formed with Al-AlOx-Al. The entire

device is fabricated on a sapphire substrate (black areas in Figure 2.6b) chosen

for its low loss properties at GHz frequencies[42]. The fabrication recipe for the

QuP is in Appendix B. For more details on our fabrication process please see the

thesis by Ansmann[3, chap. 5].

4A Josephson junction is formed by interrupting a superconductor with an insulator to form
the stack-up: superconductor-insulator-superconductor.

35

2.3 Superconducting Coplanar Waveguide (CPW)

Resonator: Linear Harmonic Oscillator

Resonators comprise one type of quantum element in the QuP. A resonator, or

harmonic oscillator is the simplest system that exhibits quantum behavior. Con-

sider the parallel LC circuit shown in Figure 2.2. The voltage V (t) across the

circuit drives the currents IC(t) and IL(t). Using Kirchoff’s current law,

IC(t) = −IL(t), (2.1)

where the current through the capacitor is given by

IC(t) = C
dV

dt
(2.2)

and the current through the inductor is

IL(t) = − 1

L

∫
V (t)dt. (2.3)

By substituting Equation 2.2 and 2.3 into 2.1 and differentiating

dIc
dt

= −dIL
dt

C
d2V

dt2
= − 1

L
V (2.4)

which is the equation of motion for a 1-dimensional simple harmonic oscillator,

36

m
d2x

dt2
= −kx (2.5)

with m → C, x → V , k → 1
L

, and angular frequency ω =
√

1
LC

. The harmonic

oscillator solution is known, which gives equally spaced energies, ∆E = ~ω with

energy levels given by

En = ~ω(n+
1

2
) (2.6)

and illustrated schematically in Figure 2.2. The fact that the energy spacing

is degenerate means that all of the levels absorb photons of the same energy,

∆E = ~ω. This makes controlling any of the individual transitions of the resonator

challenging with only a classical driving source, which drives the resonator into

a coherent state as shown in [23]. However, with energy levels that are spaced

unevenly we can drive the individual energy levels separately. In order to engineer

a quantum system with energy levels spaced unevenly we need to introduce a non-

linear element to perturb the harmonic potential. Fortunately, we can exploit the

strong non-linearity of the Josephson effect and create a sufficiently anharmonic

potential to form a qubit that, when combined with a classical drive, provides

a classical to quantum transducer capable of addressing the individual resonator

levels [23].

37

C L

IC(t)

|0〉
V

U
|1〉
|2〉

|n〉

microwaves

......

|3〉

IL(t)

ΔE=ħω

V(t)

Figure 2.2: Schematic of a Linear LC harmonic oscillator. Potential energy of
the harmonic oscillator with evenly spaced energy levels |0〉 , |1〉 , |2〉 , |3〉 , . . . , |n〉.

2.3.1 Half-wavelength CPW Bus Resonator and Quarter-wavelength

CPW Quantum Memory Resonators

All of the resonators in the QuP are fabricated as either a half-wavelength (λ/2)

or quarter-wavelength (λ/4) CPW, which means the resonance frequency can be

engineered precisely. The design values used for the five resonators are: M1 =

4600µm, M2 = 4500µm, M3 = 4550µm, M4 = 4650µm, and B = 9910µm,

which are also annotated in Figure 2.3. The λ/2 CPW labeled “B” in the center

of Figure 2.3 is the coupling bus, which mediates the interaction between all four of

the phase qubits. I designed the quantum memory resonators, labeled M1 through

M4 in Figure 2.3 to be λ/4 CPWs because of the smaller footprint. Although all

of the memory resonators could have been designed the same length, I chose to

stagger their lengths to simplify the frequency identification experimentally.

38

λ/2
B

λ/4M2 M4

M1 M3
4600 μm 4550 μmλ/4

4500 μm 4650 μm

9910 μm

10
00

 μm

Figure 2.3: Photomicrograph of the 5 (4 quarter-wave and 1 half-wave) CPW
resonators. Unwrapped lengths indicated in yellow.

39

Advantages of CPW Resonators

After the pioneering paper by Hofheinz[23], CPW resonators were integrated into

our “off-the-shelf” quantum integrated circuit designs. The CPW resonator pro-

vides a number of benefits that we describe below.

CPW resonators have long coherence times (T1 ∼ 5µs and T2 nearly 2 · T1)

compared to the phase qubit coherence times (T1 ∼ 0.5µs and T2 ∼ 0.2µs), which

makes resonators great candidates for quantum memory. Because CPW resonators

can be defined lithographically on the base-layer during our QuP fabrication, we

can deposit very high quality superconducting materials via molecular beam epi-

taxial (MBE) growth methods and begin to incorporate the recent breakthrough

materials research results[43] to further extend coherence times.

Another advantage of a CPW resonator is that it can be used as a drop-

in coupler to connect any number of (phase or other frequency-tunable variety

of) qubits. This “quantum bus” architecture also solves the frequency crowding

problem of “always on” capacitively coupled qubits by effectively dropping in a

band-pass filter so the qubits that are detuned (biased to be idling at a different

frequency away from the resonators resonant frequency) will not interact with

one another, thus creating a “frequency detuning” type of tunable coupler.5 This

band-pass filter created by the resonator also helps to protect the qubits from both

5Although, I note that the frequency detuning “on/off” ratio is inferior to the dynamically
tunable coupler as pioneered by Bialczak [12, 11].

40

microwave and measurement crosstalk[4]. Microwave (measurement) crosstalk

occurs when the microwave drive (tunneling event) on the target qubit perturbs

any of the other qubits.

2.4 Phase Qubit: Nonlinear, Anharmonic Oscillator

We can engineer a nonlinear anharmonic oscillator by shunting the parallel LC-

resonator with a Josephson junction to form the phase qubit as illustrated schemat-

ically in Figure 2.4c. The Josephson junction (JJ) has classical current and voltage

relations,

IJ(t) = I0 sin δ(t) (2.7)

VJ(t) =
φ0

2π

dδ

dt
(2.8)

where I0 is the junction critical current, δ is the phase across the junction, and

φ0 is the flux quantum. By taking the canonical voltage relations for an inductor,

V = LJ(dIJ/dt), and using Equation 2.7 and 2.8 the Josephson junction can be

interpreted as a nonlinear, tunable inductor

LJ =
φ0

2πI0 cos δ
. (2.9)

41

By using Kirchoff’s current law we can analyze the phase qubit circuit in a similar

fashion as we did for the parallel LC circuit.

IJ(t) + IC(t) = −IL(t). (2.10)

Inserting the Josephson relations from Equation 2.7 and 2.8 into 2.10 and differ-

entiating we obtain an equation of motion (similar to 2.4)

C

(
φ0

2π

)2
d2δ

dt2
= − ∂

∂δ
(U(δ)) (2.11)

where m→ C
(
φ0
2π

)2
, x→ δ, and U(δ) is the potential.

U(δ) = −φ0

2π
I0 cos δ +

1

2L

(
φ0

2π

)2

δ2 − φ0

2π
Ibδ (2.12)

where Ib is a dc-bias. The potential has three terms. The first term is the

nonlinear component cos δ from the JJ. The second term ∝ δ2 is from the inductor,

and the final term is a constant dc-bias linear in δ. Therefore, by inserting the JJ,

we have obtained our desired non-linear, anharmonic potential U(δ) as illustrated

in Figure 2.4d. The energy degeneracy has been lifted with a nonlinearity defined

as ∆/(2π) = ωfe/(2π) − ωeg/(2π), which is typically about 200 MHz. This is

an important feature in that it allows us to treat this potential as an effective

two-level system that can be addressed with a classical drive (shaped microwave

pulses) to excite the qubit from the ground state to the excited state (and back

42

|g〉
ΔU

δ
U

|e〉
|f〉

|h〉

Anharmonic Oscillator

microwaves

C L

IC(t) IL(t)

V(t)

δC L

IC(t) Ij(t) IL(t)

V(t)

I0

|0〉
V

U
|1〉
|2〉

|n〉

microwaves

......

|3〉

ΔE=ħω

Phase Qubit:

Harmonic Oscillator LC-Resonator

Δ=ωfe-ωeg

(a) (b)

(c) (d)

Figure 2.4: (a) Schematic of an LC-resonator. (b) Potential energy of a harmonic
oscillator with evenly spaced energy levels. (c) Schematic of phase qubit. (d)
Potential energy of the phase qubit with unevenly spaced energy levels.

again) without driving the higher excited states.6

The phase qubit circuit is designed so that the potential energy, U as a function

of the phase difference δ across the junction forms a double-well potential, as

illustrated in Figure 2.5b. The potential is tilted by applying flux via a current Ib

through the flux bias loop coupled to the qubit loop to bias the circuit near the

critical current I0 of the junction. This leads to a potential with one very shallow

6This strict two-level qubit-manifold assumption is the basis of our next two chapters where
we will show how we keep the qubit from “leaking” out into these higher excited states.

43

well on the left and a deep well on the right. The shallower left-hand well is the

qubit well, where the qubit energy ~ωeg ≈ 6 GHz is set by the inductance L and

the capacitance C. The wells are separated by a single flux quantum φ0.

The finite barrier separating the left well from the right arises from the I0 sin δ

Josephson relation. The height of this barrier can be adjusted by tilting the

potential with the flux bias. Typically the phase qubit is biased to give a barrier

height ∆U ∼ 5~ωeg, so that on the order of 5 quantum levels exist in the left-hand

well during qubit operations. In addition, the flux bias can be adjusted to tilt

the potential, causing Z-rotations, and to measure the qubit state by lowering the

barrier to preferentially tunnel the excited state to be readout with a SQUID. For

more information about this potential energy description see [3, chap. 2].

2.4.1 Completed Qubit

Four phase qubits were used as quantum elements in the QuP (labeled Q1 . . . Q4

in Figure 2.1). Shown in Figure 2.6b is a photomicrograph of a fabricated phase

qubit along with its control and readout circuitry. The bottom panel Figure 2.6c

is a scanning electron micrograph (SEM) image of the Josephson junction (the

essential non-linear circuit element).

The design of the phase-qubit (and SQUID readout) circuit went through a

crucial redesign and is detailed in Ref’s [45, 48]. Here, I highlight a few of these

44

Qubit

Flux Bias

Qubit Control

Capacitor

SQUID

T~25mK

Inductor

δ
L

C

IbIμw Im ISQ VSQ

I0

Qubit Control
& measure SQUID

readout

dc
Qubit
bias

dc
SQUID

bias

Junction

Flux Bias

|g〉
ΔU

δ
U

|e〉
|f〉

|h〉

Qubit Operation
(Z-rotations)

microwaves
(X- and Y-rotations)

Lower barrier

"e"

SQUID Readout

Φ0
"g"

tunnel

relax

δ
U

Qubit Measure and Readout
Readout

(a)

(b)

(c)

Figure 2.5: (a) Phase qubit schematic with control, measurement, and readout
circuitry. (b) Double well potential energy landscape of a phase qubit, illustrating
measurement and readout of |g〉 and |e〉 states. (c) Qubit operation.

45

Qubit

Flux Bias

Qubit Control

Capacitor

SQUID

T~25mK

Inductor

δ
L

C

IbIμw Im ISQ VSQ

I0

Qubit Control
& measure SQUID

readout

dc
Qubit
bias

dc
SQUID

bias

Junction

Readout

(a)

Flux Bias

Capacitor

SQUID

Coupling to
Memory

Resonator

SQUID "Readout"

Inductor

Junction

100 μm

Coupling to
Bus

Resonator

Junction

Qubit Control

(b)

(c)

Mfq

Figure 2.6: (a) The phase qubit schematic. (b) Photograph of completed phase
qubit cell with control and readout circuitry annotations. (c) SEM photograph of
the Josephson junction.

46

features and relevant circuit parameters for the device pictured and schemati-

cally represented in Figure 2.6. The flux bias coil carries all of the qubit control

(microwave and measurement pulses) and bias down one line. This is an improve-

ment over earlier phase qubit devices, which needed 2 control lines. The mutual

inductance between qubit and flux bias coil is chosen to be Mfq ≈ 2 pH. We

aimed for phase qubit frequencies of ∼ 6 GHz with a junction critical current of

I0 ≈ 2µA (with an area of ∼ 1µm2, which is achievable with optical lithography)

and lumped parallel-plate capacitance C ≈ 1 pF. Since we want two wells in the

qubit potential and having chosen I0 and C, the inductance L is determined to

be L ≈ 720 pH.

This redesign allowed us to drop the completed phase qubit design-cell directly

into the QuP design with only minor modifications, mainly in how we connected

the phase qubit to the other quantum elements on chip.

2.4.2 Single-Shot SQUID-based Measurement and Readout

We obtain information about our qubits in a two step process, measurement and

then readout. This process begins by applying a fast (∼ 10 ns) pulse to the flux

bias line, which briefly lowers the potential barrier between the two wells such

that the excited state sees a smaller barrier and will preferentially tunnel into

the neighboring right hand well and relax, whereas the ground state will not

47

tunnel (instead it remains in the left hand well). This measurement process is

destructive, which means that at the end of our measure pulse the quantum state

is projected in either the left well “g” or right well “e”. Recall from our qubit

potential discussion that these two wells are separated by approximately a flux

quantum and it is this feature that we use for the second part of our information

extraction, readout of the state we just measured.

After encoding the left well as “g” and the right well as “e”, we use the on chip

superconducting quantum interference device (SQUID), as shown in Figure 2.6,

to detect this large flux difference. The SQUID transduces this flux into a voltage

that we amplify and record at room temperature. The measurement and readout

process is illustrated schematically in Figure 2.5b.

The SQUID-based measurement and readout scheme used here is classified

as single-shot because every qubit involved in the experiment is projected into

a definite state (“g” or “e”) upon measurement and the experiment returns one

specific state at the end of every experiment. For more details on the SQUID

design see [45, 48].

48

Q2
Q1 Q3

Q4

M2 M4

M1 M3

B

λ/2

λ/4
SQUID

Control

Figure 2.7: QuP schematic with 4 phase qubits, 5 resonators, and 4 SQUIDs.

2.5 Scaling Up: Connecting Multiple Quantum El-

ements to Form The QuP

Because of the modularity of these superconducting quantum elements and the

flexibility of quantum integrated circuit design, we can arrange these quantum

elements together in a QuP like in the schematic shown in Figure 2.7. The only

element left to discuss is the capacitors that connect everything together.

Due to the low impedance of the phase qubit it is really straightforward to

couple them to CPW resonators. In fact, we only need to connect a capacitor

between the two. Of course selecting the capacitor value is critical. This qubit

- capacitor - resonator circuit, illustrated in Figure 2.8 produces an interaction

of the form[27], Hint = (~g/2)(a†σ− + aσ+), where, a† and a are respectively

the photon creation and annihilation operators for the resonator, σ+ and σ− are

49

Q R
Cc

Cq Cr

Figure 2.8: Qubit coupled to a Resonator via a capacitor.

respectively the qubit raising and lowering operators, ~ = h/2π, and g is the

coupling strength given by g = Cc/(
√
CqCr). For the qubit-to-bus resonator

coupling capacitor Cc = 4.5 fF, combined with a qubit capacitance Cq ∼ 1.0 pF,

and a resonator capacitance of Cr ∼ 50 fF (at a designed frequency of 6.2 GHz),

we expect a coupling strength g = 55 MHz.

2.6 Experimental Setup and electronics

A summary of the experimental procedure to mount our qubit chips is shown

in Figure 2.9. Once the QuP fabrication is complete, we use a diamond saw to

dice the 3” wafer into approximately 100 chips of size 6.25×6.25 mm2. Next, we

select the best device from the wafer by probing the test junctions and manually

wire-bound it in a specially microwave engineered superconducting box (discussed

in detail in [48]). This device is mounted on a Cu-plate of a He3-He4 dilution

refrigerator and connected to all 12 of the appropriate control lines (qubit control

lines Q1-Q4, resonator control lines R1,R2,R4,R5 and SQUID measurement lines

50

for Q1-Q4). The control lines for the resonator drive, qubit control and readout

on each qubit are all carefully designed to be well filtered and impedance matched

to 50 Ω to allow for precise and accurate pulse shaping of the control signals.

The control lines run from the Cu-plate of the dilution refrigerator all the way

to the top of the cryostat where they connect to custom-built control electronics.

Finally, the dilution refrigerator is sealed up, evacuated, and cooled down to a

base-operating temperature of around 20− 30 mK.

For more details on the cryogenics and wiring setup see the description by

Ansmann[3, chap.6]. For the Shor algorithm experiment we scaled up all of the

wiring and electronics to control up to ten qubits (at least two QuP chips) in one

cooldown.

2.6.1 Custom Control Electronics

Shown in the bottom of Figure 2.10 is an example of our classical driving source -a

Gaussian-shaped microwave pulse taken with a high-speed sampling oscilloscope.

These pulses have nearly ideal spectral quality. As shown schematically in Fig-

ure 2.10 the pulses are created with a continuous microwave source controlled by

an IQ mixer fed by dual 1 GHz digital to analog converters (DAC). The microwave

source drives in saturation the local oscillator input of the mixer at frequency f0.

The DAC channels are generated in a custom board using AD9736 chips that

51

Dice

and Bond

Select
Insert

Mount

and Control with...

 Cooldown

Custom Electronics

Connect

(a) (b)

(c) (d)

(e)

Figure 2.9: Experimental procedure summary as explained in the text.

52

1610 1614 1618 1622

.8

.2

−8 −4 0 4 8
−0.04

0

0.04

8 160 t [ns]
-0.4

0.4

µ
−
w

a
ve

 a
m

p
 [
a

.u
] (S3)

6.7

7.3

f
[G

H
z]

Iφ [a.u]

7

(S1)

20 30 40

ω10/2π = 6.75GHz

ω10/2π = 7.22GHz

TLS

0

0.2

0.4

0.6

P
tu

n
n
e

lli
n

g

0

0.6

6.05 6.25f [GHz]

1

2

0

QubitTwo Photon2 -Error

ω10
ω20

2

ω12

(S2)

1610 1614 1618 1622

.8

.2

−8 −4 0 4 8
−0.04

0

0.04

8 160 t [ns]
-0.4

0.4

µ
−
w

a
ve

 a
m

p
 [
a

.u
] (S3)

6.7

7.3

f
[G

H
z]

Iφ [a.u]

7

(S1)

20 30 40

ω10/2π = 6.75GHz

ω10/2π = 7.22GHz

TLS

0

0.2

0.4

0.6

P
tu

n
n
e

lli
n

g

0

0.6

6.05 6.25f [GHz]

1

2

0

QubitTwo Photon2 -Error

ω10
ω20

2

ω12

(S2)

1GHz

1GHz

1GHz

Figure 2.10: Schematic of qubit x-, y-, and z-axis control electronics and an
example of an actual Gaussian-shaped microwave pulse measured with a high-
speed sampling oscilloscope. Further details are explained in §2.6.1.

53

have 14 bit resolution. They drive the I and Q ports through 200 MHz (−3 dB

frequency) dissipative Gaussian lowpass filters and low distortion differential am-

plifiers. The microwave output of the mixer is filtered by a 7 pole Chebyshev

lowpass filter at 8.5 GHz to suppress harmonics of f0. The large bandwidth of

the control signal allows for sideband mixing. By applying sine and cosine waves

at fsb to the I and Q ports, the mixer generates an output signal at frequency

f0 + fsb. Sideband mixing allows for very high on/off ratios of qubit control since

the (small) carrier leakage at f0 is off resonance with the qubit. The digital control

allows imperfections of the DAC chain and the IQ mixer to be corrected by first

measuring its response function and then correcting it with deconvolution. The

relative amplitudes and phases of the I and Q mixer channels are calibrated by

minimizing the power at the opposite sideband f0 − fsb. This is done at enough

sideband frequencies so that all Fourier component of an arbitrary digital input

signal can be corrected. In total, we obtain accurate pulse shapes with greater

than 60 dB suppression of spurious frequencies and harmonics.

Qubit Control

Single qubit logic operations, corresponding to rotations about the x-, y-, and

z-axes of the Bloch sphere, are generated as follows: Rotations about the z-axis

are produced from current pulses on the qubit flux bias line that adiabatically

54

change the qubit frequency, leading to phase accumulation between the states |g〉

and |e〉 [6]. Rotations about any axis in the x-y plane are produced by microwave

pulses resonant with the qubit transition frequency. The phase of the microwave

pulses defines the orientation of the rotation axis in the x-y plane, and the pulse

duration and amplitude control the rotation angle.

A note on our custom built electronics: We have made our custom electronics

available to the public on the UCSB QC-group’s TWiki7, including our ever-

growing body of knowledge related to the electronics that we have built. I am

pleased that these custom electronics have been deployed all over the world in a

number of laboratories and I look forward to their extended use in further research.

7https://commando.physics.ucsb.edu/tw/view/Electronics/PubDocs

55

https://commando.physics.ucsb.edu/tw/view/Electronics/PubDocs

Chapter 3

Reducing Unwanted Transitions Into

The Phase-Qubit’s |f〉 State:

Amplitude Errors

As we learned in Chapter 2 the phase qubit has more than just two levels, but

the non-linear inductance from the Josephson junction removes the energy level

degeneracy, thereby allowing a classical microwave drive pulse (like the one gen-

erated in Figure 2.10) to address the separate transitions[46] including the lowest

two-levels |g〉 and |e〉 used for a qubit. To illustrate the importance of this con-

trol issue, we note that many experimental systems use qubit states |g〉 and |e〉,

often the ground and first excited states, chosen from a larger set of basis states

56

[49, 46, 15, 21, 13, 18, 70, 67, 26, 53, 52, 40]. This encoding does not preclude un-

wanted excitations to other available states in the basis. For example, excitations

to the next higher energy state |f〉 are not necessarily small and correspond to

gate errors that may not be included in standard single qubit measurements like

T1 and T2.

Measuring only T1 and T2 assumes no loss in fidelity during a logic gate oper-

ation when the quantum state is changed, and thus it more properly corresponds

to the fidelity of a memory operation. Therefore, a full measurement of gate fi-

delity, applicable to the fault-tolerance threshold, should include gate errors that

are determined via probabilities with an absolute calibration. To that end we look

to construct individual experiments that can highlight separate error cases and

then build up their collective action to understand the complete fidelity of a gate

operation.

Therefore, in this chapter, I will describe how we separate out measurement

errors from gate errors in §3.1. Then in §3.2, I will discuss a metrology technique

based on a Ramsey interference pulses sequence that enhances a particular error

source, namely qubit excitations to the |f〉 state, and finally the chapter concludes

with a single qubit gate fidelity measurement in §3.3.

57

1610 1614 1618 1622

.8

.2

−8 −4 0 4 8
−0.04

0

0.04

8 160 t [ns]
-0.4

0.4

µ
−
w

a
ve

 a
m

p
 [
a

.u
] (S3)

6.7

7.3

f
[G

H
z]

Iφ [a.u]

7

(S1)

20 30 40

ω10/2π = 6.75GHz

ω10/2π = 7.22GHz

TLS

0

0.2

0.4

0.6

P
tu

n
n
e

lli
n

g

0

0.6

6.05 6.25f [GHz]

1

2

0

QubitTwo Photon2 -Error

ω10
ω20

2

ω12

(S2)

TLSTLS
splitting = 50MHz

Ib

ωeg/2π = 6.75GHz

ωeg/2π = 7.22GHz

Measurement

ω
eg

/(2
π

)

Figure 3.1: Qubit spectroscopy. Probability of tunneling is plotted in grayscale
for qubit operating frequency ωeg/(2π) versus qubit bias Ib. A two-level state
(TLS) splitting shown at 7.1 GHz.

3.1 Probability Errors From Measurement

Non-ideal behavior of the qubit can arise from errors related to the qubit control

or in the state measurement. First, let’s focus on the physical mechanisms that

lead to measurement errors. In phase qubits, measurement fidelities below unity

are due to stray tunneling of the |g〉 state, the |e〉 state leaking energy to spurious

two-level states (TLS)[16], and T1 relaxation.

I first discuss errors due to stray transitions to the spurious TLS. Qubit spec-

troscopy is shown in Figure 3.1, where the probability of tunneling is plotted

in grayscale for qubit frequency ωeg/(2π) that is changed via the qubit bias

Ib[16]. A TLS gives a resonance at 7.05 GHz that couples to the qubit with

splitting size 50 MHz. To quantify the TLS effects as measurement errors, we

58

determined the measurement fidelity above (ωeg/(2π) = 7.22 GHz) and below

(ωeg/(2π) = 6.75 GHz) it; this large TLS splitting at 7.05 GHz is highlighted in

orange in Figure 3.1.

The measurement data for the qubit operated above and below the TLS are

plotted in Figure 3.2. For each data set, the tunneling probability of the ground

state |g〉 and the first excited state |e〉 is determined versus measurement pulse

amplitude Iz. The inset in the left-panel of Figure 3.2 illustrates the pulse se-

quence. For the |g〉 state we apply no microwaves. For the |e〉 state experiment

the X pulse is calibrated for a π-rotation to give maximum probability of the |e〉

state. The tunneling probability Ptunnel for the |g〉 and |e〉 state is determined

versus Iz. After this calibration, Iz is chosen to give maximum visibility between

the states, which is displayed in each figure by an arrow.

The difference in visibility observed between the two qubit operating frequen-

cies is directly attributed to coupling to the TLS located at 7.05 GHz, as observed

in Figure 3.1. The measurement pulse lowers the barrier for increased tunneling

probabilities of the excited state, but it also reduces the qubit operating fre-

quency (as illustrated by the“measurement” arrow in Figure 3.1) and in the case

for ωeg/(2π) = 7.22 GHz the qubit is swept through the TLS at 7.05 GHz.

The theoretical predictions for the tunneling probabilities are given by the solid

black and gray lines Figure 3.2. Theory predicts that the |g〉 state is misidentified

59

Above TLS

0

0.5

1

0.1 0.5 0.8
0

0.5

1

Γ1

(B)

Iφ = Idc+
Measurement

peak
ZI

U

δ

(A) Operation

2

ω
10

Iuw

8 ns
Meas.

Iz
3 ns t

Xπ

IZ [a.u.]

(C) (D)ω10/2π = 7.22GHz

0

0.5

1

0.1 0.5 0.8

01 01

ω10/2π = 6.75GHz

∆U

0.850 0.895

P
tu

n
n

e
l

1

0

1

0

0.1 0.5 0.8IZ [a.u.]

Below TLS

ωeg/2π = 6.75GHzωeg/2π = 7.22GHz

|g〉|e〉|e〉 |g〉

Figure 3.2: Quantifying measurement error due to TLS. Data are described in
text.

as a |e〉 state with a probability of 0.034. This error is consistent with theory,

and corresponds to stray tunneling events during measurement[16]. At ωeg/2π =

6.75 GHz the |e〉 state is misidentified as the |g〉 state with a probability of 0.061,

but at a higher qubit frequency, ωeg/2π = 7.22 GHz this error increases to 0.106.

The increase in measurement error with qubit frequency is attributed to the TLS

located between these two frequencies. With a measurement of the TLS splitting

from spectroscopy of size 50 MHz, we predict a |e〉 state population decrease of

0.045, a value consistent with our data.

The remaining measurement error is accounted for with an error budget of

0.010 for T1 decay, 0.050 for coupling to other TLS, and 0.011 for no tunneling

60

of the |e〉 state during measurement. With good agreement between experiment

and theory, we can reliably account for measurement errors in our data.

3.2 Amplitude Errors Due to Qubit Population Leak-

ing Into The |f〉 State

We now turn to measuring and reducing errors from the qubit leaking into the

|f〉 state. There is a tradeoff between using a fast pulse for small T1 errors due to

qubit decay, or a slow pulse for small Fourier amplitude at the |e〉 → |f〉 transition

frequency, as illustrated in the inset Figure 3.5. A short Gaussian pulse, FWHM

4 ns, produces power at the transition frequency ωfe/2π which drives transitions

outside the qubit manifold causing qubit leakage error. Therefore, we aim to find

the optimal length pulse that optimizes the tradeoff between qubit relaxation and

leakage.

The measurement of the qubit leaking into the higher excited state is explicitly

shown in Figure 3.3, where the probability to tunnel the qubit Ptunnel is plotted

versus the measure pulse amplitude Iz for a single Xπ-pulse using 4, 5, and 8 ns

FWHM Gaussian pulses with the theory lines labeled for the three lowest states

|g〉 , |e〉, and |f〉. Just as in Figure 3.2 the data on the right in Figure 3.3 labeled

“|g〉” are for the case where no microwaves are applied. To preferentially tunnel

61

0.5 1 1.6
0

0.5

1

0
1 1.6

1

0.5

IZ [a.u.]

P
tu

n
n

e
l

(A)

2

0

= 4 ns

= 5 ns

= 8 ns

!
!
!

24 34 44
1

5

10
x 10

P
2

0.01

0
24 34 44tsep [ns]

Τ = 5 ns

= 5 ns!

1

2

0

t

Xπ
Xπ(B)

t
Xπ

!

tsep

|f〉
|f〉 |e〉 |g〉

0.5 1 1.6
0

0.5

1

0
1 1.6

1

0.5

IZ [a.u.]

P
tu

n
n

e
l

(A)

2

0

= 4 ns

= 5 ns

= 8 ns

!
!
!

24 34 44
1

5

10
x 10

P
2

0.01

0
24 34 44tsep [ns]

Τ = 5 ns

= 5 ns!

1

2

0

t

Xπ
Xπ(B)

t
Xπ

!

tsep

|f〉
0.5 1 1.6
0

0.5

1

0
1 1.6

1

0.5

IZ [a.u.]

P
tu

n
n

e
l

(A)

2

0

= 4 ns

= 5 ns

= 8 ns

!
!
!

24 34 44
1

5

10
x 10

P
2

0.01

0
24 34 44tsep [ns]

Τ = 5 ns

= 5 ns!

1

2

0

t

Xπ
Xπ(B)

t
Xπ

!

tsep

|f〉

|f〉error

Figure 3.3: (top) Experimental pulse sequence. Data are direct measurements of
the |f〉 error due to for τ = 4, 5, 6 ns FWHM Gaussian Xπ-pulses. Further detail
in the text.

the higher (lower) excited states a smaller (larger) Iz amplitude is applied.

Focusing on the middle curve labeled “|e〉”, an Xπ pulse of length 4, 5, and

8 ns is applied to prepare the excited state. The shoulder, labeled “|f〉 error”,

rising at smaller Iz amplitudes is the leakage error. Errors become difficult to

measure below ∼ 0.01 because of stray tunneling of the |e〉 state.

The |f〉 state error may be measured with much greater sensitivity by recog-

nizing that excitation to the |f〉 state is a coherent quantum process. Using a

two-pulse sequence with variable time delay as illustrated in Figure 3.4a, a Ram-

sey fringe may be set up between the transitions to the |f〉 state from the two

62

pulses. In addition most of the qubit state is in |g〉, so there is little stray tunnel-

ing from |e〉. The two Xπ-pulses (of duration τ = 5 ns) are followed by a measure

pulse with an amplitude calibrated to tunnel only the |f〉 state. During the first

Xπ-pulse both of the states |e〉 and |f〉 are excited. The second Xπ-pulse causes

the coherent beating of the |f〉 state.

In Figure 3.4b we plot the |f〉 state probability Pf versus pulse delay time

tsep. Since the periodic oscillation is due to coherent interference between the two

pulses, the magnitude of this oscillation is four times the probability of exciting

the |f〉 state for a single pulse1. More importantly, creating an oscillating signal

of a constant error allows a determination of the amplitude with fewer systematic

errors; this error can now be reliably measured down to 10−4 using this “Ram-

sey error filter”. As a further check the oscillation frequency matches the beat

frequency (ωeg − ωfe)/2π measured via spectroscopy, as shown in Figure 3.4c.

This Ramsey error filter data was repeated for 4, 5, 6, 6.5, 7, 7.5, and 8 ns

FWHM Gaussian pulses. The |f〉 state errors determined in this manner are also

plotted in Figure 3.5. For Gaussian pulses with width 4 and 5 ns, the data from the

two methods overlap. The error drops exponentially with increasing pulse width,

reaching the value 10−4 at 8 ns (where a magnitude of 10−4 is considered to be

an error-threshold for fault tolerance). A simple Fourier-transform prediction[61]

1The first pulse populates the |f〉 with some amplitude, followed by the second pulse, which
coherently doubles the population, and since we measure a probability these amplitudes are
squared, hence four times the magnitude compared to the error from a single pulse.

63

1610 1614 1618 1622

.8

.2

−8 −4 0 4 8
−0.04

0

0.04

8 160 t [ns]
-0.4

0.4

µ
−
w

a
ve

 a
m

p
 [
a

.u
] (S3)

6.7

7.3

f
[G

H
z]

Iφ [a.u]

7

(S1)

20 30 40

ω10/2π = 6.75GHz

ω10/2π = 7.22GHz

TLS

0

0.2

0.4

0.6

P
tu

n
n
e

lli
n

g

0

0.6

6.05 6.25f [GHz]

1

2

0

QubitTwo Photon2 -Error

ω10
ω20

2

ω12

(S2) |f〉
|f〉
|e〉
|g〉

ħωfg
2

ħωfe

-

ħωeg

0.5 1 1.6
0

0.5

1

0
1 1.6

1

0.5

IZ [a.u.]

P
tu

n
n

e
l

(A)

2

0

= 4 ns

= 5 ns

= 8 ns





24 34 44
1

5

10
x 10

P
2

0.01

0
24 34 44tsep [ns]

Τ = 5 ns

= 5 ns

1

2

0

t

Xπ
Xπ(B)

t
Xπ



tsep

Pf

|f〉
|e〉
|g〉

(a)

(c)

(b)

Figure 3.4: (a) Pulse sequence for the Ramsey error filter (REF) with Illustration
of three-level system and transitions into the |f〉 state during Xπ-pulses. (b)
Probability of measuring the |f〉 state Pf versus Xπ-pulse separation, tsep. (c)
High-power spectroscopy showing the higher transition states.

64

0 1 2 3 4 5 6 7 8

−6

−5

−4

−3

−2

−1

1021

frequency

s
p

e
c

tr
a

l
p

o
w

e
r

4ns

= 8ns

1 2 3 4 5 6 7 8

10-2

1

10-4

10-6

0
[ns]

Single π
Ramsey error

Spec. analyzer
FT theory
Numerical sim.

S
ta

te
 e

rr
o

r





|f〉

ωegωfe

Figure 3.5: |f〉 state error versus τ FWHM pules. Inset illustrates non-zero
spectral power at ωfe for a 4 ns Gaussian pulse.

is plotted as a solid gray line, which is computed from the power spectrum of

the Gaussian pulse at frequency ωfe/(2π), normalized to the power at frequency

ωeg/(2π). The asterisks are a measurement of this normalized power taken from

the actual control pulses. This simple comparison is an excellent check on the

shaping of the microwave pulses. From this data, we can see that short pulses

with a wide frequency spectrum gives large qubit error, this is illustrated in the

inset of Figure 3.5 where a 4 ns pulse produces a significant amount of spectral

power at ωfe/(2π). The solid black line is a prediction of the error obtained from

numerical calculations [61], which shows good agreement with the data.

65

3.3 High Fidelity Gates

To reduce the errors caused by unwanted |f〉 state transitions, we apply a shaped

pulse significantly long enough so as to minimize the spectral components at the

|e〉 → |f〉 transition frequency. This keeps the qubit within the two-state manifold,

with residual |f〉 state population on the order of 10−4. For example, a qubit

frequency of ωeg/(2π) = 6.5 GHz, and a nonlinearity ∆/(2π) = (ωfe−ωeg)/(2π) =

−200 MHz (ωfe = 6.3 GHz) requires an 8 ns length π-pulse to keep the |f〉 leakage

to 10−4. With this pulse length and the error budget from Section §3.1, we are

poised to measure our single qubit gate fidelity.

Because the measurement error for the |g〉 state is less dependent on systemat-

ics, we choose to measure our logic gate performance by returning the qubit to the

|g〉 state. And since a π-pulse is the maximum rotation of a single qubit operation

conducting a pulse sequence involving π-pulses gives a measure of the maximum

error for a gate. Therefore, we determine the fidelity of a gate by applying two

π-pulses that produce the transitions |g〉 → |e〉 → |g〉, followed by measurement.

This pulse sequence is illustrated in Figure 3.6a.

We apply 8 ns FWHM Xπ-pulses similar to the one represented in Figure 2.10.

We verify that we are indeed performing Xπ-pulses, by testing whether the proba-

bility for the final state is independent of the phase Θ between the two microwave

pulses, as indicated in Figure 3.6a. The two panels in Figure 3.6b show the ex-

66

perimental and theoretical probability of being in the excited state Pe (color bar)

as a function of Θ and microwave detuning ∆ from the qubit transition frequency

ωeg/2π. The experimental data is in excellent correspondence with theoretical

predictions. On resonance (∆ = 0), the phase Θ has no effect, as expected, which

demonstrates that the two pulses are calibrated properly as π-pulses.

Gate error is directly measured by repeating this experiment with variable

time separation tsep between the two π-pulses, as shown in Figure 3.6c. The gate

error grows with increasing time tsep > 9 ns because the |e〉 state decays, and the

error has a slope consistent with separate measurements of T1. The error also

increases at small times due to the overlap of the two Gaussian microwave pulses.

The horizontal dashed line indicates P1 = 0.034 taken without the application

of microwaves; the difference between the data and the dashed line is the gate

error. When the pulses are separated by a time tsep = 12 ns, we find an error

∆P1 = 0.04. Since two gate operations are used for this protocol, the fidelity for

a single gate operation is 0.98.

67

02
0

4
0

6
0

8
0

1
0
0

0

−50

0

50

Xπ

Iz

Iuw

Meas.

t

Θπ

tsep 1

D
e

tu
n

in
g

50

-50

∆
[M

H
z]

0

ExperimentExperiment TheoryTheory

Θ0 1/2πRotation angle

(B)(B) (C)(C)

P1 00.51

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0

0.2

P
1

0 10 20 30 40 50
tsep

(D)

(A)

[ns]

0.04
0.034 stray tunnelling

0.1

∆P1=

0 1

Pe
1

0

0.5

10 10

0

50

-50

μw
 d

et
un

in
g

0.034
Stray tunnelling

Rotation angle Θ/2π

[M
H

z]

tsep [ns]0 10 40 50
0

0.1

0.25

0.04 Error at tsep =12ns

TheoryExperiment

|e〉
P |
e〉

(a)

(b)

(c)

Figure 3.6: High Fidelity Gate Data as explained in text.

68

Chapter 4

Reducing Unwanted Virtual

Transitions Into The Phase-Qubit’s

|f〉 State: Phase Errors

In Chapter 3, I showed how we reduced the amplitude errors associated with

transitions outside of the qubit manifold by careful shaping of the control pulse

(microwave envelope) and by choosing the correct gate duration, which scales in-

versely with the qubit nonlinearity 1/∆. However, fast pulses also generate phase

errors which contribute to overall gate error, but the relative contribution differs

from amplitude-related errors. Consequently different measurement techniques

need to be employed to quantify phase errors.

69

To measure possible phase error, quantum process tomography (QPT) is typi-

cally used. QPT provides a complete analysis of gate operation [45, 12, 49], but it

requires Xπ/2 and Yπ/2 pulses, which themselves can be error sources. This poses a

circular problem: quantum process tomography relies on π/2-pulses, but we need

quantum process tomography to verify that we have tuned up our π/2-pulses.

To solve this dilemma, we designed a method to separately quantify the phase

error generated by a gate, which we call Amplified Phase Error (APE). By using

a Ramsey fringe experiment, we amplified and measured this ubiquitous source

of error.1 We chose to focus on errors related to π/2 pulses, because such pulses

provide the basis for tomography and are essential in algorithms.

This chapter begins with a model, expressed in quantum circuit language, for

phase errors due to virtual transitions into the higher excited states outside of

the qubit manifold. Using this quantum circuit language the chapter proceeds

onto a discussion of how to amplify phase errors in §4.1.1, measure in §4.1.2, and

correct them in §4.1.3. To correct for phase errors, specific to virtual transitions

outside of the qubit manifold, we implement “half derivative” an experimental

simplification of derivative reduction by adiabatic gate (DRAG) control theory

[44]. This solution uses two control pulses (X and Y simultaneously) and was

born out of the theory proposed by Motzoi[44]. In §4.2 we revisit amplitude errors

1The APE protocol is not specific to phase qubits, it can be used in general multi-level qubit
architectures [49, 46, 15, 21, 13, 18, 70, 67, 26, 53, 52, 40].

70

associated with HD pulses. And the chapter concludes in §4.3 with demonstrations

of the improved control from HD pulses.

4.1 Phase Errors Due to Virtual Transitions

The phase error arising from virtual transitions (especially to the |f〉 state) can

be modeled as effective qubit rotations about the z-axis. We restrict ourselves to

simple gates comprising π and π/2 rotations. An Xπ/2 pulse (a rotation about

the x-axis by an angle θ = π/2) ideally produces the transformation

Xπ/2 = e−iσx
π
4 =

1√
2

(
1 −i
−i 1

)
, (4.1)

where σx is one of the Pauli matrices.

To test this for an experimental system with more than two levels, we integrate

the Schrödinger equation to explicitly calculate the time evolution for an arbitrary

input state, which is described by a 3× 3 unitary matrix U (to include the effects

from the |f〉). With a Gaussian control pulse, we find the elements of U that

connect the |g〉 or |e〉 state with the |f〉 state have small magnitude, consistent

with the negligible |f〉 state error measured in Chapter 3. Therefore, the time

evolution of the two qubit states is well described by the 2 × 2 submatrix of

U . For more details on the qubit numerical simulatuons, see Ansmann[3, chap.

3]. From these numerical simulations we find that for small phase errors, this

71

submatrix can be expressed in quantum circuit language as

X ′π/2 = e−iε
′
ZεXπ/2Zε , (4.2)

where Zε is the phase error of interest and 0 < ε� 1 2.

Zε =

(
1 0
0 e−iε

)
. (4.3)

Note that Equation 4.2 differs from X?
π/2 = Z−εXπ/2Zε, which corresponds to

a rotation about a new axis ε away from the x-axis in the x− y plane.

4.1.1 Amplifying Phase Error

In order to best measure this error, we first sought a protocol that would amplify

the error ε. For an arbitrary rotation θ about the x-axis, the gate operation is

Xθ =

(
cos θ/2 −i sin θ/2
−i sin θ/2 cos θ/2

)
, (4.4)

such that X ′π/2 is

X ′π/2 =
1√
2

(
1 −ie−iε

−ie−iε e−i2ε

)
.

(4.5)

2The leading term in Equation 4.2 is a global phase and can be ignored.

72

If we consider a 2π rotation generated by concatenating four π/2 pulses, this

results in

X ′4π/2 ≡ (X ′π/2)4

=
1

4

(
e−6iε(−1− e2iε − 3e4iε + eiε) −ie−7iε(−1 + e2iε)2(1 + e2iε)
−ie−7iε(−1 + e2iε)2(1 + e2iε) e−8iε(−1 + 3e2iε + e4iε + e6iε)

)
' e−i4εI , (4.6)

where I is the identity. Equation (4.6) shows that a concatenated 2π rotation

does not accumulate a relative phase error it only acquires a global phase.

We next examine the pseudo-identity operation that is formed by concatenat-

ing positive and negative θ rotations. For a first-order expansion with ε � 1 we

find

I ′θ = (ZεXθZε)(ZεX−θZε)

≈
(

1 + i(cos θ − 1)ε −(sin θ)ε
(sin θ)ε 1− i(cos θ + 3)ε

)
, (4.7)

where Xθ is an arbitrary rotation of θ about the x-axis. For θ = π we find that

I ′π = e−2iε′I, which is similar to the 2π rotation, as the phase error ε cancels.

However, for θ = π/2 we find,

I ′π/2 = X ′−π/2X
′
π/2

=

(
e−iε cos(ε) e−2iε sin(ε)
−e−2iε sin(ε) e−3iε cos(ε)

)
≈

(
1− iε ε
−ε 1− 3iε

)
. (4.8)

73

Where X ′ is defined in Equation 4.5. For n applications of the pseudo-identity

operation, in the limit where 0 < ε� 1, ε→ nε

I ′nπ/2 ≈
(

1− inε nε
−nε 1− 3inε

)
, (4.9)

focusing on the relative phase along the diagonal elements, and by removing an

overall global phase

I ′nπ/2 ≈ (Z2ε)
n = Z2nε , (4.10)

shows a phase error accumulation. Thus by rotating back and forth with X ′π/2,

X ′−π/2 operations the state accumulates phase errors, which can be measured.

4.1.2 Measuring Phase Error

To measure this error, we combine the result from Equation 4.10 with a phase

measuring experiment, forming what we call an amplified phase error (APE) se-

quence. The APE sequence consists of inserting n ∈ {0, 1, 3, 5} successive I ′π/2

pseudo-identity operations between the π/2 pulses that define a Ramsey fringe

measurement, as illustrated in the left panel of Figure 4.1. All control pulses

are separated in time by 2τ and at the end of the sequence the Z control line is

pulsed to measure the probability of |e〉. The phase error is amplified by 2n for n

74

applications of the pseudo-identity operation,

I ′nπ/2 ≈ (Z2ε)
n = Z2nε . (4.11)

By applying APE pulses to the state |ψ〉 = (|g〉 − i |e〉)/
√

2 followed by a final

φπ/2 pulse, we directly probe the phase error due to the Xπ/2 pulses. The data

for the single-control (X-quadrature Gaussian shaped) APE pulse sequence are

shown in Figure 4.1 along with a Bloch sphere indicating the axis of rotation and

the three-level system illustrating the phase error due to virtual transitions to the

|f〉. While performing on-resonance |g〉 ↔ |e〉 gate operations at frequency feg,

virtual transitions to |f〉 create a phase change in |e〉.

We plot the probability of measuring the |e〉 state versus rotation axis φ of the

final φπ/2 pulse, for I ′nπ/2 (n = 0, 1, 3, 5) pseudo-identity operations. Each datapoint

represents 1200 repetitions of the experiment. Fits to extract the phase shift are

plotted as lines. Consistent with Eq. (4.11), the phase error scales with n as shown

in Figure 4.2. For n = 5 the final pulse is 83◦ out of phase, corresponding to a 10×

phase error amplification from a total of 11 pulses (10 from the APE sequence

and 1 from the initial Xπ/2), yielding 7.3◦ phase error per gate. The oscillation

amplitude is also reduced, due to decoherence.

75

0 180 [deg]Φ
0

X

Z

Y

P1


0
0



[deg]

P1

(a)

(b)

tn={0,1,3,5}
1

φ

X

Z

Y

tn={0,1,3,5}

180

(c)

f10
1
0

2

τ2

X
Y

Z

φ

τ

1

-
πφ
2

πX
2

πX
2

πX
2

-
πφ
2

πX
2

πX
2

πX
2

|g〉
|e〉
|f〉

feg

Pe

|e〉

Figure 4.1: APE for X-control Gaussian pulses. (top) Bloch sphere indicating
final axis of rotation. Multilevel qubit driven on resonance. (Left) APE pulse
sequence. (Right) Probability of measuring the |e〉 state Pe versus final φpi/2-
pulse for n= {0, 1, 3, 5} pseudo-identity operations.

Number of Xπ/2 pulses

Ph
as

e
Er

ro
r i

n
[d

eg
]

Figure 4.2: Phase error for sequential applications of Xπ/2 pulses for Gaussian
(black) and HD (blue) pulses.

76

4.1.3 Correcting Phase Error

To correct the phase error, we employ the derivative reduction by adiabatic gates

(DRAG) protocol [44]. The original DRAG prescription uses three controls, X, Y ,

and Z. The X control provides the original envelope-shaping to the microwaves,

which we implemented as a Gaussian in time with arbitrary amplitude A, X =

A exp[−4 ln(2)(t− t0)2/τ 2], where τ is the full-width-at-half-maximum (FWHM)

and t0 the time at the center of the pulse. The quadrature control Y = −Ẋ/∆ is

the time derivative of the X control scaled by the nonlinearity ∆. The Z control

produces a dynamic detuning pulse during the gate that removes the effective

z-rotations from the virtual transitions.

Half-Derivative

We find both in simulations and experiment that the Y and Z controls are not

independent. From our numerical simulations3, we plot in Figure 4.3 the gate

fidelity defined as F = Tr(χsimχideal) in a colorscale for a range of magnitudes for

the Y and Z controls. All simulated pulses are of the DRAG prescription and a

fixed length of 6 ns FWHM. The circle in Fig. 4.3 indicates the values from the

original DRAG prescription[44]. We find there is a ridge of maximum fidelity for

the two control parameters, with peak values of fidelity having a simple linear

3Three level system with ∆/(2π) = −200 MHz.

77

m
ag

ni
tu

de
 o

f Z
 c

on
tro

l

magnitude of Y control

-1

0

1

2
-1 0 1 20.5 1.5-0.5

0.96

0.72

0.48

ga
te

 fi
de

lit
y

Figure 4.3: Numerical simulations of gate fidelity.

relation between the Y and Z values. Along this ridge, the maximum fidelity is

insensitive to Z. Therefore, we choose to set the Z control to zero, which simplifies

the experimental control procedures as it reduces the necessary control signals

for optimal pulses from 3 to 2. By setting Z = 0 the Y control is reduced by

1/2, to give Y = −Ẋ/(2∆) forming the so-called “half-derivative” (HD) protocol

(highlighted in Figure 4.3 with white dotted lines).

For a Gaussian envelope on the X control, the HD pulses are as illustrated

in Figure 4.4 and differ from the DRAG pulses by the quadrature controls, Y =

−Ẋ/(2∆), Z = 0. The Y control provides a dynamic detuning to the qubit, which

keeps the microwave drive and the qubit on resonance during the gate operation

78

0

X

Z

Y

P1


0
0



[deg]

P1

(a)

(b)

tn={0,1,3,5}
1

φ

X

Z

Y

tn={0,1,3,5}

180

(c)

f10
1
0

2

τ2

X
Y

Z

φ

τ

1

-
πφ
2

πX
2

πX
2

πX
2

-
πφ
2

πX
2

πX
2

πX
2

Pe

|e〉

Figure 4.4: APE metrology for Half-Derivative X- and Y-control pulses.

performed by the X control, similar to the role the Z control plays in the original

DRAG prescription[44]. The HD pulse sequence in Figure 4.4 is the same as

Figure 4.1, but with the addition of the Y control. Data (dots) and fits (lines)

are plotted for the same number of I ′π/2 pseudo-identity operations. We find by

simply using the analytic expression for HD, Y = −Ẋ/(2∆) the phase error is

reduced to 1.6◦ per gate. One can tune the phase error to zero by utilizing the

APE experiment to adjust the magnitude of the Y control.

4.2 Amplitude Error: The Redux

HD pulses also reduce the amplitude errors, i.e. leakage to the |f〉 state. As shown

in Figure 4.5 we plot the data from a Ramsey error filter as done in Chapter 3 for

79

10-3

4.5 5.0 6.0 7.06.55.5

|2

st
at

e
pr

ob
ab

ilit
y

τ [ns]

10-1

10-5

pulse width

10-2

10-4|f〉

Figure 4.5: Amplitude errors due to leakage into the |f〉 state from an Xπ-pulse.

both single control Gaussian (black dots) and HD pulses (blue squares). The lines

are three-state simulations using Gaussian (solid black) and HD (dashed blue)

pulses. A 6 ns (FWHM) HD Xπ pulse gives a |f〉 state probability of 10−4, almost

an order of magnitude better than a non-HD pulse of the same width, which

consequently provides a 20% faster gate with equivalent performance to what was

shown in Chapter 3.

80

(a)

X

Z

Y

(b)

(c)

1

θX

X
Y

Xθ Y

0

1

0

1

0

1

θ Y

0

1

X

0

1

X

Z

Y
1

θX

QST

X

Z

Y

1

2πX

2πZ

QST2πX

2πZ

1 2

1

2

QST

(a)

X

Z

Y

(b)

(c)

1

θX

X
Y

Xθ Y

0

1

0

1

0

1

θ Y

0

1

X

0

1

X

Z

Y
1

θX

QST

X

Z

Y

1

2πX

2πZ

QST2πX

2πZ

1 2

1

2

QST

With only X-control

(a)

X

Z

Y

(b)

(c)

1

θX

X
Y

Xθ Y

0

1

0

1

0

1

θ Y

0

1

X

0

1

X

Z

Y
1

θX

QST

X

Z

Y

1

2πX

2πZ

QST2πX

2πZ

1 2

1

2

QST

We get
phase errors

(a)

X

Z

Y

(b)

(c)

1

θX

X
Y

Xθ Y

0

1

0

1

0

1

θ Y

0

1

X

0

1

X

Z

Y
1

θX

QST

X

Z

Y

1

2πX

2πZ

QST2πX

2πZ

1 2

1

2

QST

But with HD We reduce
phase errors

|e〉

|e〉

g

e

g

e

g

e

g

e

Figure 4.6: QST showing the trajectory of an Xπ-pulse without HD control (top)
and with (bottom).

81

4.3 Demonstrating Control

With calibrated Xπ/2 and Yπ/2 pulses, we can now perform quantum state tomog-

raphy (QST) without worry of miscalibrated measurement axes. As a practical

demonstration of how HD pulses reduce phase error, we perform QST [60] with

and without HD. Figure 4.6 shows the pulse sequence and data for the Gaus-

sian pulses (HD pulses) during an Xθ rotation. The pulses are of fixed length

(FWHM = 6 ns) with variable amplitude θ. QST is performed at each incremen-

tal increase of amplitude and the quantum state is recreated in the Bloch sphere

from two perspectives, looking down the x and the −y axes as shown to the right

of each of the respective pulse sequences. In contrast with the single control Gaus-

sian pulses, the HD pulses execute a meridian trajectory with no phase error with

increasing θ.

4.3.1 Z-pulse Calibration: For Three Axis Control

For our final HD control demonstration, we calibrate our Z pulse as shown in

Figure 4.7. The Ramsey-type pulse sequence consists of a static length (full-width

at half-max = 6ns) with an increasing amplitude Z-pulse inserted between two HD

π/2 pulses with fixed separation time tfixed = 24 ns. The separation time is chosen

to minimize overlap of the pulses. The Zamp increases incrementally. We plot

the probability of measuring the |e〉 state P1 as a function of Z-pulse amplitude,

82

0

X

Z

Y

P1



1

0 [arb. units]Zamp

Zamp

Z

t

tfixed

2/π 2/π Pe

|e〉

Figure 4.7: Z-pulse calibration.

Zamp. The data are plotted as points with best fit as a line. The probability of

measuring the |e〉 state P1 oscillates with increasing Zamp[60]. The arrow indicates

the Zamp that corresponds to a rotation angle of π about the z-axis.

The final demonstration of our single qubit control using the HD protocol is an

(off-equator) Hadamard gate, shown in Fig. 4.8, which uses all three x−,y−,and

z− control axes. We incrementally increase the amplitude of all three control lines

using fixed length (FWHM = 6 ns) pulses to perform rotations from 0 to π/
√

2

about both the x and z axes, which at full amplitude gives the Hadamard gate

H (|g〉 → (|g〉 + |e〉)/
√

2). The trajectory concludes with a second set of pulses

to complete the identity operation I = HH, and returning to the initial state

(|g〉+ |e〉)/
√

2→ |g〉.

83

(a)

X

Z

Y

(b)

(c)

1

θX

X
Y

Xθ Y

0

1

0

1

0

1

θ Y

0

1

X

0

1

X

Z

Y
1

θX

QST

X

Z

Y

1

2πX

2πZ

QST2πX

2πZ

1 2

1

2

QST

(a)

X

Z

Y

(b)

(c)

1

θX

X
Y

Xθ Y

0

1

0

1

0

1

θ Y

0

1

X

0

1

X

Z

Y
1

θX

QST

X

Z

Y

1

2πX

2πZ

QST2πX

2πZ

1 2

1

2

QST

Combing all three
controls: X, Y & Z

We can control
"off-axis" rotations

 And Perform Hadamard Gates

H|g> (|g> + |e>)/√2 H |g>

g

e
|e〉

Figure 4.8: Demonstrating qubit control. Hadamard trajectory reconstructed
from QST.

84

Chapter 5

15 = 3× 5, Some of The Time

In this chapter, we pull everything together, including the concepts covered in the

introductory chapter, the design characteristics of the QuP discussed in Chap-

ter 2, and the qubit control details covered in Chapters 3 and 4, to demonstrate

the capabilities of our Josephson phase-qubit quantum processor (QuP) as shown

in Figure 5.1. The chapter begins with a description of the QuP and its capabili-

ties. In Section §5.3, I show swap spectroscopy [39], experimentally verifying the

existence of all nine of the engineered quantum elements. In §5.4, I show the fast

entangling operations to create Bell and |W〉 states, and simultaneous coherent

interactions of the four phase qubits with the bus resonator. In §5.5, I introduce

the quantum circuit for the compiled version of Shor’s algorithm, folllowed by the

quantum runtime analysis of the algorithm in §5.6. I conclude with the results

85

from the Shor algorithm, and finish the computation to find the prime factors p

and q of N = 15.

5.1 The QuP

The QuP pictured and schematically illustrated in Figure 5.1 was scaled-up to nine

quantum elements from an architecture of two qubits and three resonators [39]

(like the device pictured in Figure 1.2e). The QuP was fabricated with aluminum

(colored regions in the photomicrograph) on a sapphire substrate (black regions)

using Al/AlOx/Al Josephson junctions.

The bottom panel of Figure 5.1 shows a complete schematic of the device. As

described in Chapter 2, the device is designed with four phase qubits and five

superconducting coplanar waveguide (CPW) resonators. Each qubit Qi is indi-

vidually controlled using a bias coil that carries dc, rf- and GHz-pulses to adjust

the qubit frequency and to pulse microwaves for manipulating and measuring the

qubit state. The GHz microwave pulses produce single qubit operations, capable

of performing HD pulses as described in Chapter 4. The rf-pulses provide the

control to adjust each qubit’s frequency over an operating range of ∼ 2 GHz, al-

lowing each qubit to couple to the other quantum elements on the chip. Each

qubit Qi is connected to a λ/4 memory resonator Mi, as well as the central λ/2

bus resonator B, via interdigitated capacitors. Each Qi is inductively coupled to

86

1mm

Q2
M2

Q1

Q3

Q4M1
M3

M4

B
SQ
UIDCo
ntr
ol

Q2
Q1 Q3

Q4

M2 M4

M1 M3

B

λ/2

λ/4
SQUID

Control

Figure 5.1: Micrograph (top) of the Josephson quantum processor and full
schematic (bottom).

87

a superconducting quantum interference device (SQUID) for single-shot readout.

5.2 Device Description and Capabilities

To help illustrate the various operations available on the QuP, consider the “ball-

and-stick” operation models in the following sections.

5.2.1 IDLE Bias

As depicted in Figure 5.2, the phase qubits can be tuned in frequency (colored

ball moving up and down on the stick) to couple to other quantum elements that

are static in frequency e.g. the bus and memory resonators (rectangles labeled B,

M1, . . . ,M4). The so called “IDLE Bias” is where the qubits (Q1 . . . Q4) start at

the beginning of an experiment and ultimately return to just prior to measure-

ment. This state is off resonance from both the bus and memory resonators so

as not to interact with them. Although the qubits are drawn as having unique

IDLE biases, they can be operated at the same qubit frequency ωeg/2π = feg

provided that they are all off-resonance with the bus (memory) resonator to re-

duce the qubit-resonator coupling interaction by a factor of ∼ 100. For a bus

resonator at fB = 6.1 GHz (memory resonator at fM1 = 6.8 GHz), and a qubit

88

Q2

Q1 Q3 Q4

fre
qu
en
cy

M1 M2
M3 M4

B

IDLE Bias

Q2

Q1 Q3
Q4

fre
qu
en
cy

M1 M2
M3 M4

B

Single Qubit Gates
GHz & rf

dc

Figure 5.2: Ball-and-stick model of the Josephson quantum processor. IDLE
state and performing single qubit gates.

89

IDLE bias frequency1 of feg = 6.6 GHz, the qubit-bus resonator coupling strength

of g = 55 MHz (qubit-memory resonator gM1 = 20 MHz) is reduced by a factor of

(fB−feg)2

g2
= 83,

(
(fM1

−feg)2

g2M1

= 100
)

.

Due to the reduced effective coupling between the qubits and resonators, the

IDLE bias is where single qubit gates are performed, as illustrated in the bottom

panel of Figure 5.2. The outlined arrows indicate single qubit rotations by apply-

ing GHz and (small-amplitude) rf-pulses to the respective qubit control lines, as

discussed in Chapters 3 and 4.

5.2.2 Memory and Coupling Operations

As shown in the QuP circuit schematic in Figure 5.1 and recreated in the “ball-

and-stick” operation model in Figure 5.3, each qubit Qi is capacitively connected

to the bus B (and respective memory Mi) resonator. The capacitive coupling is

drawn as dotted lines between the quantum elements in Figure 5.3. Although the

coupling capacitors are fixed, Figure 5.3 illustrates how the effective interaction

can be controlled by tuning the qubits into or near resonance with the coupling bus

to turn the coupling “on”, or detuning Qi to fB ± 500 MHz to turn the coupling

“off” [23]. This tuning/detuning is controlled via fast rf-pulses (represented as

dotted arrows in Figure 5.3) on the qubit control lines, with pulse rise times

1In practice this IDLE bias varies from day to day, but typically only on the order of a few
MHz, which is automatically adjusted via the daily calibrations as discussed in Chapter A.

90

Q2

Q1 Q3
Q4

fre
qu
en
cy

M1 M2
M3 M4

rf

rf

B
Coupling Operation

Memory Operation

Figure 5.3: Ball-and-stick model of the Josephson quantum processor. Memory
and entangling operations via rf-pulses.

∼ 1 ns and pulse durations O(10 ns). By applying rf-pulses on the respective

control line, each qubit is tuned in and out of resonance with B (M) to perform

entangling (memory) operations. In the case illustrated in Figure 5.3 an rf-pulse

is applied to the control line of Q4 (Q1) to tune it into resonance with the bus

resonator B (memory resonator M1) for a coupling (memory) operation.

5.2.3 Simultaneous Measurement

The rf-pulses are also used for measuring the qubits. Because each phase qubit

is separately coupled to its own readout SQUID we can perform simultaneous

measurement of all four qubits. The capability for simultaneous measurement is

an important distinction between our previous capacitively coupled devices which

suffered from measurement crosstalk [3, 48]. The rf-measurement-pulses are illus-

91

Q2

Q1 Q3
Q4

fre
qu
en
cy

M1 M2
M3 M4

B

Simultaneous Measurement

rfrfrf
rf

Figure 5.4: Ball-and-stick model of the Josephson quantum processor. Simulta-
neous measurement via rf-pulses.

trated in Figure 5.4 as dotted arrows next to each qubit indicating the application

of the appropriate rf-pulse to measure the qubit as discussed in Chapter 2.

5.2.4 High-Level QuP Operations

Creating entanglement and executing quantum algorithms [49, 7] constitute high-

level QuP operations built upon lower-level single and coupled qubit operations.

The QuP runs quantum algorithms by a sequence of high-fidelity single-qubit

gates (X, Y , Z, and H), [35, 36] (controlled by applying GHz- and rf-pulses to

the respective qubit control lines at the qubit “IDLE Bias” frequency) combined

with controlled-phase (Cφ) gates [18, 69, 39], which are composed of single qubit

gates and qubit-resonator coupling operations (controlled by applying rf-pulses).

92

The QuP can also create entanglement by utilizing “fast-entangling logic”. Fast-

entanglement is realized by applying rf-pulses to the respective qubits to bring all

of the participating qubits on resonance with the bus resonator at the same time

[63].

5.3 Experimentally Verifying The QuP

The QuP is mounted and wirebonded into a superconducting aluminum sample

holder2 and cooled in a dilution refrigerator to ∼ 25 mK, as outlined in §2.6. The

individual qubit operation and calibrations are similar to previous works[24, 4, 47,

69, 39], with additional automated calibrations detailed in Appendix A. At this

point, we have verified that each qubit can perform high fidelity single qubit gates

and to that end, we are ready to characterize the remaining quantum elements

and use the QuP.

5.3.1 Swap Spectroscopy: Phase Qubit as a Spectrum Ana-

lyzer

With the individual phase qubits tuned up at the nominal “IDLE Bias” we perform

swap spectroscopy[39] to calibrate all nine of the engineered quantum elements

on the QuP. The protocol for swap spectroscopy illustrated in the bottom panel

2This is a microwave engineered cavity, whose details are discussed in [48, Chapter 2]

93

of Figure 5.5, is as following: First we prepare the qubit in the excited state |e〉,

by applying a π-pulse at the IDLE Bias, we then detune the qubit away from

its IDLE bias point via a fast rf-pulse and allow the quanta of energy to swap

with whatever modes exists in the spectrum. Thereby demonstrating that swap

spectroscopy uses the qubit as a quantum-limited spectrum-analyzer.

The top panel of Figure 5.5 shows the probability of the qubit in the exited

state, Pe (color scale) versus frequency (vertical axis) and interaction time ∆τ for

each qubit Q1 . . . Q4. For each individual swap spectroscopy experiment only the

respective qubit is pulsed into the excited |e〉 state, all other qubits are operated at

the IDLE bias so as not to participate. As a representative example, let us focus

on the data for the green qubit Q1. Initially, Q1 is pulsed into the excited |e〉 state

at its IDLE bias (dark blue on the Pe colorscale) and then detuned (f = ∆f±feg)

from the IDLE bias. At 6.1 GHz, Q1 is on resonance with the bus resonator B.

As the qubit and resonator interact for duration ∆τ , the excitation originally in

Q1 is swapped to the bus resonator B (red data). As the interaction continues,

the excitation is transferred back-and-forth (red-to-blue-to-red . . .) between the

qubit and the bus resonator resulting in the chevron patterns centered about

f = 6.1 GHz for the bus resonator B and f = 6.8 GHz for the memory resonator

M1 (f = 7.2, 7.1, 6.9 GHz for the memory resonators M2 −M4 respectively). The

oscillation periods of the chevrons give the coupling strengths between Qi and

94

Q2

Q1 Q3
Q4

fre
qu

en
cy

M1 M2
M3 M4

B

B

Q1

π

Q2 Q3 Q4

M1

M2

M3

M4

rf rf

π π π

Pe

B B B6.1

6.8

7.2 7.1
6.9

0 200 0 200 0 200 0 200∆τ [ns]

0.0 1.0

rf rf

f [
G

H
z]

Figure 5.5: Swap spectroscopy.

95

B (Mi), which for the four qubits are all ∼= 55 MHz (∼= 20 MHz). The coupling

strengths between Qi and B (Mi) were measured to be within 5 % (10 %) of the

design values. Swap spectroscopy is repeated for each qubit to map out all of the

intentionally engineered modes (B and Mi) and the unintentional TLS defects.

With a complete qubit spectrum and all of the modes accounted for an optimal

IDLE bias is chosen for each qubit to minimize the stray coupling to the various

modes in the spectrum.

5.4 Fast Entangling Logic

With all of the quantum elements accounted for we can move on to more inter-

esting demonstrations of the QuP. For the fast entangling logic demonstrations

we will be using all four phase qubits and the bus resonator. The dynamics of

the qubit-resonator interactions can be described by the Jaynes-Cummings model

Hamiltonian[27]

Hinteraction =
∑
i

~gi
2

(a†σ−i + aσ+
i), (5.1)

where gi is the coupling strength between the bus resonator B and the qubit Qi,

a† and a are respectively the photon creation and annihilation operators for the

resonator, σ+
i and σ−i are respectively the qubit Qi raising and lowering operators,

and ~ = h/2π. This Hamiltonian Hinteraction describes the swapping of excitations

96

between two (or more) modes when on resonance.

At the beginning of the fast entangling operations the qubits Q1 − Q4 are

initialized in the ground state |gggg〉 and tuned off-resonance from the bus res-

onator B at an idle frequency f ∼ 6.6 GHz. Qubit Q1 is prepared in the excited

state |e〉 via a π-pulse. The bus resonator B is then pumped into the first Fock

state n = 1 by tuning Q1 on resonance (f ∼ 6.1 GHz) via a fast rf-pulse of dura-

tion 1/(2g1) = τ ∼ 9 ns, calibrated for an iSWAP operation between B and Q1,

|0〉⊗|eggg〉 → |1〉⊗|gggg〉 [24] as illustrated in the top panel ball-and-stick model

in Figure 5.6.

The participating qubits are then tuned on resonance (f ∼ 6.1 GHz) and left

to interact with B for an interaction time ∆τ as illustrated in the bottom-panel

of Figure 5.6. The dynamics during the interaction between the i = {1, 2, 3, 4}

qubits and the bus resonator are shown in the top panel of Figure 5.5 for N = 1,

and Figure 5.7 (left panels labeled) for N = 2, N = 3, N = 4.

The three panels on the left of Figure 5.7 show the probability PQi of measuring

the participating qubits in the excited state, and the probability PB of B being

in the n = 1 Fock state, versus ∆τ . At the beginning of the interaction the

excitation is initially concentrated in B (PB maximum) then spreads between

the participating qubits (PB minimum) and returns back to B, continuing as a

coherent oscillation during the interaction time ∆τ . As shown in the N = 2 panel,

97

Q2
Q1 Q3

Q4

fre
qu
en
cy

M1 M2
M3 M4

B

∣0＞⊗ ∣eggg＞
π

rf

∣1＞⊗ ∣gggg＞

Q2
Q1 Q3

Q4

fre
qu
en
cy

M1 M2
M3 M4

B

rf

Simultaneous Interaction

Figure 5.6: Ball and stick model for fast entangling operation.

98

0

0.5

1.0

P Q
1,

P Q
4,

P B
P Q

1,
P Q

2,
P Q

4,
P B

a

0

0.5

1.0
0

0.5

1.0

P Q
1,

P Q
2,

P Q
3,

P Q
4,

P B

Q2

Q3Q1

Q4

B

Q2

Q1

Q4

B

Q1

Q4

B

Q1

B

20 1000 40 60
Interaction time Δτ (ns)

80

N
um

be
r o

f q
ub

its
 (N

)

1

2

3

4

N=2

N=3

N=4

50 70 90 110 130
Oscillation frequency (MHz)

Figure 5.7: Coherent Oscillations for increasing number of qubits interacting with
the bus resonator, with details explained in the text.

99

the bus resonator (black data) and the qubits Q1 and Q4 (green and orange data)

coherently share the single excitation. The deviation from an equivalent sharing

between the participating qubits results in a beat frequency, which is apparent

after 40 ns of interaction. This is due to the difference in coupling strengths of the

qubits and can be compensated for by adjusting the detuning of the participating

qubits (not shown).

As the number of participating qubits increase to N = 3 and N = 4 the period

of the coherent oscillation increases as shown in the left panels labeled N = 3 and

N = 4 in Figure 5.7. With more qubits interacting with the bus resonator the time

to swap an excitation back-and-forth is reduced. For the N = 2 qubits interacting

with the bus resonator a single swap is (from B to Q1 and Q4) takes 6.5 ns, while

for N = 3 (N = 4) qubits it takes 5.1 ns (4.5 ns).

5.4.1 Enhanced Coupling Strength with The Number of Qubits

Interacting with The Bus Resonator

When the qubits are simultaneously tuned on resonance with B they interact

with an effective coupling strength ḡN that scales with the number N of qubits

as
√
N [20], analogous to a single qubit coupled to a resonator in a n-photon

Fock state[24]. These coherent oscillations continue for a time ∆τ and increase

in frequency with each additional qubit. For N qubits, ḡN =
√
Nḡ, where ḡ =

100

[1/N(
∑

i=1,N g
2
i)]

1/2. The oscillation frequency of PB for each of the four cases

i = {1, 2, 3, 4} is shown in the right panel of Figure 5.7. The inset schematics

illustrate which qubits participate. These results are similar to Ref.[20], but with

a larger number N of qubits interacting with the resonator, we can confirm the

√
N scaling of the coupling strength with N. From these data we find a mean

value of ḡ = 56.5 ± 0.05 MHz. The error bars on the data in the right panel of

Figure 5.7 indicate the −3 dB point of the Fourier transformed PB data.

5.4.2 Rapid Entanglement: Bell and W-States

By tuning the qubits on resonance for a specific interaction time τ , corresponding

to the first minimum of PB in Figure 5.7 (for N = 2 and N = 3) we can generate

Bell singlets |ψS〉 = (|ge〉 − |eg〉)/
√

2 and |W〉 states |W〉 = (|gge〉 + |geg〉 +

|egg〉)/
√

3. Stopping the interaction at this time (τBell = 6.5 ns and τW = 5.1 ns)

leaves the single excitation evenly distributed among the participating qubits and

places the qubits in the desired equal superposition state similar to the protocol in

Ref.[2], but with the full quantum state tomography (QST) we are able to further

analyze these states.

Figure 5.8 show the real part of reconstructed density matrices from this

analysis[60]. The Bell singlet |ψs〉 = (|ge〉 − |eg〉)/
√

2 is formed with fidelity

FBell = 〈ψs| ρBell |ψs〉 = 0.89 ± 0.01 and entanglement of formation[22] EOF =

101

1/3

0
eee

gggeee

ggg

W

P Q
1,

P Q
2,

P Q
4,

P B

0

0.5

1.0 N=3

20 1000 40 60
Interaction time Δτ (ns)

80

0

0.5

1.0

P Q
1,

P Q
4,

P B

N=2

gg

1/2

0

-1/2

ee

ee

gg

ψsτBell = 6.5 ns

τW = 5.1 ns

Figure 5.8: Reconstructed density matrices for Bell-state creation and three qubit
W-state.

102

0.70. The three-qubit state |W〉 = (|gge〉 + |geg〉 + |egg〉)/
√

3 is formed with

fidelity FW = 〈W | ρW |W〉 = 0.69± 0.01, which satisfies the entanglement witness

inequality FW > 2/3 for three-qubit entanglement [1]. The measured imaginary

parts, which are not displayed are found to be small, with |Im ρψs| < 0.05 and

|Im ρW| < 0.06, as expected theoretically.

Generating either of these classes of entangled states (bi- and tri-partite) re-

quires only a single entangling operation that is short relative to the characteristic

time for two-qubit gates (tg ∼ 50 ns). This entanglement protocol has the further

advantage that it can be scaled to an arbitrary number of qubits by connecting

more qubits to the resonator and tuning them on resonance for the appropriate

interaction time.

5.5 Compiled Version of Shor’s Algorithm

The initial motivation for creating this QuP was to perform a compiled version

of Shor’s algorithm as proposed in [9], which was used in formulating the quan-

tum circuit for the pioneering Shor algorithm demonstration in nuclear magnetic

resonance (NMR)[64], and more recently in photonic systems[31, 33, 54]. A refor-

mulated proposal for electrons in semiconductor nanostructures [14] also discusses

the details of the quantum circuit compilation. Here, we use these previous pro-

posals and demonstrations and map the compiled version of Shor’s algorithm to

103

our superconducitng QuP. This makes for an interestingt demonstration of our

QuP’s capabilities as it combines the challenge of precise and accurate individual

qubit control (as discussed in Chapter 3 and Chapter 4), with entangling opera-

tions (discussed here) to form a sequence of quantum operations that perform a

meaningful quantum algorithm.

Of particular importance to the success of this experimental demonstration

(and also for the success of the next generation of quantum algorithms) were

the automated calibrations, which we leave for discussion in Chapter A. For now

we mention that the full factoring sequence that we describe was executed after

performing automatic calibration of the individual gates. We then combined them,

without additional tuning, so as to factor the composite number N = 15 with co-

prime a = 4, (where 1 < a < N and the greatest common divisor between a and

N is 1).

5.5.1 Four Qubit Quantum Circuit

The quantum circuit for a compiled version of Shor’s algorithm is shown in Fig-

ure 5.9 for factoring the number N = 15 with a = 4 co-prime [9, 14], which returns

the period r = 2 (“10” in binary) with a theoretical success rate of 50 %. The

three steps in the quantum algorithm are initialization, modular exponentiation,

104

and the quantum Fourier transform3. Once we have r from this routine, we can

use a classical computer to calculate the prime factors, p and q (as demonstrated

in Chapter 1).

In Figure 5.9, computation moves from left to right and the participating

qubits labeled on the left Q1,Q2,Q3, and Q4 each have a line that represents their

progression through the algorithm. Single qubit operations are represented as

boxes, although in this algorithm only H-gates are used, one would represent X,

Y or Z rotations of any arbitrary angle (though typically the angles are some

fractions of π) with a box around the letter and a subscript for the angle. The H-

gate is performed like what we saw in Chapter 4. Entangling operations between

qubits are represented with a black dot for the control qubit(s), which is connected

to a circle with a cross in it (just like a target) for the target qubit(s)4. For

the entangling operations used here, we employ the Cπ gate, or more commonly

referred to as the Cz gate as proposed by[62] and detailed in [39]. Combined

with single qubit gates, i.e. Hadamard-gates, we can form the more familiar

controlled NOT (CNOT) gate. The CNOT action is to flip the the target qubit

if and only if the control qubit is in the excited state. The algorithm ends with a

projective measurement of the qubits of interest, which is represented as a meter

3Although we did not need to use the quantum Fourier transform (QFT) in this demonstra-
tion, this QuP architecture can perform the QFT as demonstrated in [39].

4There are controlled gates with more qubits, like a Toffoli gate which requires three qubits,
two controls and one target [39].

105

armod(N)

Init Quantum
Fourier

Transform

Modular
Exponentiation

H H

H H
Cπ/2

Q2

Q3

Q4

Q1 |0>

|0>

|0>

|0>

"00" "10"

Figure 5.9: Quantum circuit of Shor’s Algorithm, using four qubits to factor
N = 15, with co-prime a = 4.

that returns either “0” or “1”. Recall that this quantum algorithm will run for

∼ 105 repetitions to build up the final probabilities.

5.5.2 Recompiling The Quantum Circuit

The algorithm can be further simplified by noticing that qubit Q1 is initialized

via a Hadamarad (H) gate and then idles until the next H-gate. This sequence is

highlighted in Figure 5.10. Since the Hadamard gate is self-inverse, i.e. H ·H = I,

we can replace these two gates with an Identity I gate as illustrated in Figure 5.10.

Still looking at the actions of Q1, we notice that Q1 is the control qubit for

the controlled Cπ/2 gate. Because Q1 is initialized in the |g〉 and idles until the

Cπ/2 gate it therefore does not invoke the controlled action on the target qubit Q2.

106

H HQ1 I=

I

H H
Cπ/2

Q2

Q3

Q4

Q1 |0>

|0>

|0>

|0>

"00" "10"

Figure 5.10: Recompiling: Hadamard, Hadamard equals Identity.

This action is highlighted in Figure 5.11. When the control qubit is |g〉, the target

qubit’s initial state |ψ〉 equals its final state |ψ′〉 such that |ψ′〉 = U |ψ〉 → |ψ′〉 =

I |ψ〉. So, we can replace the Cπ/2 with two I-gates as highlighted in Figure 5.11.

5.5.3 Three Qubit Quantum Circuit

The final step in the “recompiling” is to remove the redundant qubit Q1 by noting

that we always measure Q1 in the |g〉 state. Removing Q1 forms the three qubit

version of Shor’s algorithm as shown in Figure 5.12 and Figure 5.13. The quantum

circuits in Figure 5.9 and Figure 5.13 are equivalent for the specific case of N = 15

with a = 4 co-prime. As discussed in Chapter 1, entanglement plays a key role

in the success of a quantum algorithm therefore, we perform a quantum runtime

107

Target

Control |0> |0>

ψ ψ'
ψ = ψ'

I

I

I

H HQ2

Q3

Q4

Q1 |0>

|0>

|0>

|0>

"00" "10"

I

I

Figure 5.11: Recompiling: Controlled gate with control qubit equal zero, performs
identity operation on target qubit.

I IQ1

I

H HQ2

Q3

Q4

Q1 |0>

|0>

|0>

|0>

"00" "10"

I

I

|0>
"0"

Q1 Always Measure "0"

Figure 5.12: Recompiling: Q1 is always measured in ground state, therefore it is
redundant.

108

H HQ2

Q3

Q4

|0>

|0>

|0>

"0" "1"

1
2

3

Bell
GHZ

Output

Figure 5.13: “Recompiled” quantum circuit of Shor’s Algorithm, using three
qubits to factor N = 15, with co-prime a = 4.

analysis to check for entanglement throughout the algorithm at the three points

labeled “Bell”, “GHZ” and “Output” in Figure 5.13.

5.6 Quantum Runtime Analysis

5.6.1 Step 1: Bell States via C-Phase Gate

The first breakpoint in the algorithm verifies the existence of bipartite entanglement[3].

A Bell-singlet |ψs〉 is formed after a H gate [36] on Q2 and a CNOT[69, 39] between

Q2 and Q3. Figure 5.14 shows the actual pulse sequence used. The traces are for

all three control pulses (X, Y, and Z) for both qubits Q2 and Q3. The Hadamard

gates are labeled above the X-,Y- and Z-pulses (although the Z-pulses are hard

109

to make out on this scale, they are indeed used). The CNOT gate is realized

by sandwiching a Cz gate between two H-gates, as illustrated in the top panel of

Figure 5.14 and in the actual pulse traces (captured on a high-speed oscilloscope)

shown below. The gray region labeled “QST” for quantum state topography is

used to reconstruct the density matrices used to analyze the quantum state.

The Z-pulses for the control qubit Q2 do the following: The first pulse tunes

Q2 on resonance with the bus resonator (not shown) and stays on resonance long

enough (∼ 9 ns) to execute an iSWAP operation |Q2B〉 = |e 0〉 → i |g1〉, which

swaps the excited state of the qubit into the resonator. Later in the sequence,

the second Z-pulse applied to Q2 returns the excitation back to the qubit via a

second iSWAP operation. The third Z-pulse pulse is a small Gaussian-smoothed

rectangular bump right after the second iSWAP operation that corrects for the

dynamically acquired phase of Q2. And the final Z-pulse is the measurement

pulse.

The Z-pulses for the target qubit Q3 do the following: The first pulse tunes

the second excited level |e〉 ↔ |f〉 (this is the “|e〉 ↔ |f〉 transition”, typically

about −200 MHz from the qubits |g〉 ↔ |e〉 transition frequency) of the qubit on

resonance with the bus resonator (not shown) and stays on resonance for the time

(∼ 15 ns) required to do a 2π rotation i.e. ×2 iSWAP operations between the

states |Q3B〉 : |e1〉 ↔ |f0〉. This action is conditioned on the state of Q2. If Q2

110

was excited and transferred that excitation to B (as described above) then Q3

picks up the phase φ = π. The second Z-pulse is the bump to correct for the

dynamic phase acquired from detuning Q3 from its IDLE bias. The final Z-pulse

is the measurement pulse.

Figure 5.15, is the real part of the density matrix reconstructed from QST

on |ψs〉. The singlet is formed with fidelity FBell = 〈ψs| ρBell |ψs〉 = 0.75 ± 0.01

(|Im ρψs| < 0.05 not shown) and entanglement of formation EOF = 0.43.

5.6.2 Step 2: GHZ States After Two CNOT Gates

The algorithm is paused after the second CNOT gate between Q2 and Q4 to check

for tripartite entanglement[48, 47, 19]. The actual pulse sequence used to generate

this state is shown in Figure 5.16. The sequence builds on the previous sequence

for the Bell state with the additional qubit Q4, H-gates and second Cz.

At this breakpoint in the algorithm a three-qubit |GHZ〉 = (|ggg〉+ |eee〉)/
√

2,

with fidelity FGHZ = 〈GHZ| ρGHZ |GHZ〉 = 0.59 ± 0.01 (|Im ρGHZ| < 0.06 not

shown) is formed between Q2, Q3, and Q4 as shown in Figure 5.17. This state is

found to satisfy the entanglement witness inequality, FGHZ > 1/2 [1] indicating

three-qubit entanglement. We note that this |GHZ〉 measurement together with

the |W〉 measurement above in §5.4.2 is the first measurement employing simul-

taneous measurement with single-shot readout of the qubits for both classes of

111

HQ2

Q3

H

H
Cz

H

QSTH

H H

Cz

X

Y

Z

Q2

X

Y

Z

Q3

t [ns]0 100 150 200

Figure 5.14: Control pulse sequence for the first breakpoint in the quantum
runtime analysis. Bell state created followed by QST. Note that the CNOT gate
is realized by equivalent Controlled-Z gate sandwiched between two H-gates.

112

H HQ2

Q3

Q4

|0>

|0>

|0>

"0" "1"

1
2

3

Bell
GHZ

Output

gg
ee

ee
gg

1/2

0

-1/2

1 ψs

Figure 5.15: Reconstructed density matrix from QST.

113

X
Y
Z

Q2

Q3

0

X
Y
Z

X
Y
Z

Q4

H

H

H H

Cz

Cz

H

t [ns] 100 150 200

QST

Figure 5.16: Control pulse sequence for the second breakpoint in the quantum
runtime analysis. GHZ state created followed by QST.

three-qubit entanglement.

5.6.3 Step 3: Three Qubit QST

The third step in the runtime analysis captures all three qubits at the end of

the algorithm, where the final H-gate on Q2, rotates the three-qubit |GHZ〉 into

|ψ3〉 = H2 |GHZ〉 = (|ggg〉 + |egg〉 + |gee〉 − |eee〉)/2. The actual control pulses

are shown and labeled in Figure 5.18.

114

ggg
eee ggg

eee
0

1/2

H HQ2

Q3

Q4

|0>

|0>

|0>

"0" "1"

2

3

GHZ
Output

2 GHZ

Figure 5.17: Reconstructed density matrix from QST.

115

X
Y
Z

Q2

Q3

0

X
Y
Z

X
Y
Z

Q4

QSTH

H

H H

Cz

Cz

H

H

t [ns] 100 150 200 250

Figure 5.18: Control pulse sequence for thee-qubit Shor algorithm.

The middle panel in Figure 5.19 is the real part of the density matrix with

fidelity F = 〈ψ3| ρ3 |ψ3〉 = 0.54± 0.01. Because the state is locally equivalent to a

|GHZ〉 state we still have violate the three qubit entanglement witness F > 1/2.

From the three-qubit QST we can trace out the register qubit to compare with

the experiment, where we measure only the single qubit register and the raw

probabilities of the algorithm output, which we discuss next.

116

5.7 Shor’s Algorithm Output

Although the success of the algorithm hinges on quantum entanglement, the final

output is ideally a completely mixed state, σm = (1/2)(|g〉〈0|+|e〉〈1|). Therefore,

measuring only the raw probabilities of the output register does not reveal the

underlying quantum entanglement necessary for the success of the computation.

Thus, we perform QST at the end of the algorithm in addition to recording the

raw probabilities of the output register.

Ideally, the algorithm returns the binary output“00” or “10” (including the

redundant qubit) with equal probability, where the former represents a failure

and the latter indicates the successful determination of r = 2. We use three

methods to analyze the output of the algorithm: Three-qubit QST, single-qubit

QST, and the raw probabilities of the output register state.

5.7.1 Three-Qubit QST and Single-Qubit QST

Single qubit QST captures only what happens to the output register qubit and

disregards (does not measure) the functional qubits (Q3 and Q4). However, QST

on the output register does provide phase information which can be useful in

verifying the correct behavior of the algorithm.

The bottom two panels in Figure 5.19 are the real part of the density matrices

for the single qubit output register from three-qubit QST and one-qubit QST

117

with fidelity F =
√
ρ σm

√
ρ = 0.92± 0.01 for both density matrices. The density

matrices were formed by: tracing-out Q3 and Q4 from from the data shown in

the middle panel (blue bars), and directly measuring Q2 with QST. The data are

equivalent, as we expect.

5.7.2 Raw Probabilities

The raw probabilities of the output register provide the direct answer of the al-

gorithm. From the raw probabilities calculated from 150,000 repetitions of the

algorithm, we measure the output “10” with probability 0.483 ± 0.003, yielding

r = 2, and after classical processing we compute the prime factors of N = 15,

with a co-prime via GCD[(ar/2 ± 1), N]:

p = GCD[42/2 + 1, 15] = 3

q = GCD[42/2 − 1, 15] = 5, (5.2)

and we find

N = p× q
15 = 3× 5 (5.3)

118

3

1/4

0

ggg
eee ggg

eee
-1/4

ψ3

H HQ2

Q3

Q4

|0>

|0>

|0>

"0" "1"

3 Output

"1""0"

0
1 0

1

1/2

0

1

"1""0"

0
1 0

1

1/2

0

1

Figure 5.19: Output of the Shor Algorithm. Reconstructed density matrices:
from full three-qubit QST, single-qubit density matrix via tracing out Q2 and Q3,
and single-qubit density matrix from single-qubit QST.

119

5.7.3 Linear Entropy of The Output Register

The linear entropy SL = 4[1 − Tr(ρ2)]/3 is another metric for comparing the

observed output to the ideal mixed state, where SL = 1 for a completely mixed

state[68]. We find SL = 0.78 for both the reduced density matrix from the third

step of the runtime analysis (three-qubit QST), and from direct single-qubit QST

of the register qubit.

5.7.4 Check Experiment: No Entangling Operations

As a final check, we run the algorithm without any of the entangling operations and

compare the output, both single QST and raw probabilities to those of the actual

algorithm. The top panel in Figure 5.20 shows the reduced quantum circuit, with

entangling operations removed. The algorithm reduces to two H-gates separated

by the time of the two entangling gates. Ideally Q2 returns to the ground state

and the algorithm fails (returns “0”) 100 % of the time. The bottom panel in

Figure 5.20 is the real part of the density matrix for the register qubit after

running this check experiment. The fidelity of measuring the register qubit in |g〉

is Fcheck = 〈g| ρcheck |g〉 = 0.83 ± 0.01. The algorithm fails, as expected, without

the entangling operations.

120

Q2

Q3

Q4

|0>

|0>

|0>

IDLE

IDLE

delay = 2(tCNOT)
HH QST

"1""0"

0
1 0

1

1/2

0

1

Figure 5.20: Check experiment. Run algorithm without entanglement.

5.8 Sources of Error

Short coherence times, both T1 and T2, are the largest sources of error, followed by

the presence of two-level states (TLS) that the qubits inevitably couple to while

tuning the qubits on and off resonance with the resonators. Smaller junctions

were engineered to help reduce the density of TLS in the qubit spectrum, however

the density of TLS in the QuP are still a source of decoherence. Perhaps even

smaller junctions (with areas less than 1µm2) will reduce the density of TLS to

the point that the errors they cause can be neglected. Another option is to deploy

a control scheme that does not require the qubits to be tuned or detuned for

121

coupling interactions, thereby reducing the participation of the TLS.

5.9 Conclusion: 15 = 3× 5

In conclusion, we have implemented a compiled version of Shor’s algorithm on a

modular nine quantum element QuP that correctly finds the prime factors p = 3,

q = 5 of the composite number N = 15. We showed that the QuP can create

Bell states, both classes of three-qubit entanglement |GHZ〉 and |W 〉, and the

requisite entanglement to execute Shor’s algorithm. In addition, we produce co-

herent interactions between four qubits and the bus resonator with a protocol that

can be scaled to rapidly create an N -qubit |W〉 state. During these multi-qubit

coherent interactions we also observe a
√
N dependence of the effective coupling

strength with the number N of participating qubits consistent with theoretical

predictions. These demonstrations represent an important milestone for super-

conducting qubits, further proving this architecture for quantum computation

and quantum simulations.

122

Appendix A

Daily Automated Calibrations

In this chapter, I discuss the software automation developed over the years to

calibrate phase qubits. The software is general enough to accommodate a variety

of quantum elements, e.g. transmon-type qubits, tunable resonators, resonator

readout schemes, etc., although such a discussion is left for another thesis. We

have found that automating the repetitive calibration tasks is, and will continue

to be, essential to the success of any quantum architecture that is serious about

scaling. A characteristic for any software infrastructure is the flexibility to evolve

so as to continue to meet the needs of future experiments, as opposed to recreating

the framework for every subsequent evolution in hardware. To that end, I am

pleased to note that just as this thesis was built on previous experiments, the code

I review here is already evolving with further automation for future experiments

123

in the laboratory. I stress that the capability for this automation has been a

UCSB QC-group effort, but is largely due to the foresight of Markus Ansmann

and Matthew Neeley, who birthed LabRAD1 to provide the infrastructure for

this continuos software evolution, and Max Hofheinz for the initial automated

microwave electronics calibrations.

What I name the “manual” procedure for single-qubit calibration has been

described in great detail previously in [3, chap. 8]; here, l focus on the sequence of

the experiments2, show which parameters are calibrated, and provide the (com-

mented) code used for the calibrations. This appendix begins with a brief outline

of the current state of the LabRAD infrastructure (for more on the origin and

philosophy of LabRAD please see[3, chap. 6]) and how it constitutes the qubit

control channels. The rest of the appendix is dedicated to the automated phase

qubit calibrations beginning in §A.3. In §A.3.1, using a top-level diagram, I de-

scribe the experimental software interface and how a calibration script updates

qubit parameters. In §A.3.2, I detail the 41 separate parameters that need to be

calibrated for every qubit before running a quantum algorithm. I categorize the

automation into functional blocks of the phase qubit calibrations starting with the

dc-bias parameters in §A.4.2, then the measurement parameters in §A.4.3, qubit

1http://sourceforge.net/projects/labrad/
2The sequence of experiments has been constructed to facilitate bootstrapping. In this con-

text bootstrapping means the experiments are executed such that the results from the current
experiment feed into the next.

124

http://sourceforge.net/projects/labrad/

X,Y pulse control calibrations in §A.4.4, the single qubit scans in§A.4.5, qubit-

resonators calibrations in §A.4.6, and finally the coupled qubit gate calibrations

in §A.4.7.

A.1 The Correct (Software) Tool For The Job

A high-level block diagram in Figure A.1 shows the software tools that we have

chosen to facilitate the various tasks related to data-taking.3 Within the UCSB

QC-group there continues to be significant development to make as much of

LabRAD rely on free-open-source software and phase-out the closed-source soft-

ware (i.e. Labview and Delphi). As can be seen in Fig.A.1, Python plays a

dominate role in our experiments. Here, I will be focusing solely on the Python

scripts that have been created to run the qubit calibrations and experiments.

A.2 Qubit Control Channels and The Pyle

The point of this software infrastructure is to abstract-away the hardware to the

point where one can still accurately, yet easily, program the experiment at a

high-level, while still having access to all of the low-lying constituents for precise

3I’ll save everyone from the long winded debate over which language is best suited for which
task, and instead just comment that there were strong opinions rooted from the original creators
of LabRAD. More importantly, LabRAD is an opensource project so if you think you can make
any portion better with another language we all encourage you to do it and share it!

125

Figure A.1: The software languages and their use in experiments.

modifications to the calibrations when necessary. At a high-level this is a quantum-

circuit-schematic, where the underlying qubits and control electronics have been

completely calibrated and abstracted away such that all the experimenter needs

to be aware of are the “quantum-resources” available to them. This abstraction is

akin to programming a field programmable gate array (FPGA) using a schematic

capture of boolean logic, where details of the interior gate connections are not

needed. In the experimental scripts described here, the level of abstraction is to

the point where we build up individual pulse sequences to form the calibrations.

Therefore, the high-level coding of quantum circuit control software is well within

reach.

Figure A.2 illustrates the current level of abstraction of our qubit channels.

The mid-line in the figure provides a boundary between the software and the

126

Figure A.2: Qubit Control channels in Software and Hardware.

127

hardware, which are nearly mirror-images of one another. The symmetry fades

as we get to the top-level abstraction in the software, titled “Pyle”. Pyle (as in

a “pile” of code) is a repository for our experimental scripts. When composing

an experiment, to later become an experimental calibration, the experimenter has

access to all of the resources shown in Fig.A.2. Typically, the scripts stay within

the qubit server abstraction, but one of the advantages of LabRAD is the user-

defined level of granularity. One can make a call to the underlying abstraction

layers, like the lower-level general purpose interface bus (GPIB) server if needed.

For our discussions here we will be operating at the “Pyle” level where we are only

concerned with making calls to qubit parameters handled in the Qubit Server.

A.3 Automated Qubit Calibrations

A.3.1 Experimental Interface

An experiment is run by initiating a script via a (python) command window

(step 1 in Figure A.3). Upon execution of the script the existing calibrations

are applied to the system (step 1.a in Figure A.3) and the qubit responds (step

2 in Figure A.3). The data are recorded in the Data Vault (step 3), plotted in

the grapher (step 3.a) if desired, and the desired data values are returned to the

script for calibrations and immediate analysis. If an update flag is set true, the

128

registry values are updated with the new calibration values (step 4). The registry

contains the ever growing qubit parameters that describe the experiments. The

list of qubit parameters (or “registry keys”) are tabulated in Table A.1, A.2, A.3,

A.4, and A.5.

A.3.2 41 Automatic Calibrations per Qubit

Figure A.4 shows a representative pulse sequence for a single repetition of a single

qubit experiment. All of the arrows (and numbers) indicate a qubit parameter

that must be calibrated. The relevant experimental times are indicated in each

section, one repetition of an experiment takes ∼ 100µs to complete. Typically

each data point is repeated ×1000. Therefore, a fast one-parameter (“1-D”)

sweep, consisting of ∼ 1000 points, takes O(100 sec) or a couple of minutes. Typi-

cally the calibration analyses consists of finding a min (max), calculating a period

(via a fast Fourier transform), or fitting a well defined function -all of which are

relatively quick calculations on a modest desktop computer - adding a O(100 sec)

to the experiment. For two-parameter (“2-D”) sweeps one may need to optimize

the range of values so as to help reduce the calibration time. These scans are

typically are preceded by quick 1-D scans to find the appropriate range.4

4When possible, it is usually desirable and more efficient to substitute a series of 1-D scans
for a a single 2-D calibration.

129

Registry

Existing calibrations applied

QuP responds

Repeat 1000x
Prob. 0,1

Data
Vault

2

Data recorded
in Data Vault

Data values
return to
script.
Calibration
algorithms
executed

Registry updated to
new calibration

values

Grapher

3.a Data plotted "live"
via Grapher

3

3.b

4

Experiment script executed1

1.a

Control Channels

Figure A.3: Qubit Calibration Flow illustration. Steps 1 through 4 are detailed
in the text. Control channels refers to the hardware and software infrastructure
shown in Figure A.2.

130

Qubit X

Qubit Y

Qubit Z

20*

fm

fb

16

17 25 27{ }

28

29

30

31

32

33

35

36

34

37

39

38

41
40

Reset Operate Readout

total time ~ 100 μs
t

memory

bus

time ~ 1 μs

Algorithm QST Measure

Qubit Bias
dc control

dc control

response
VSQUID

SQUID Bias

1

3
5

2 4 6

7

8

9
10

11

12

13

14 15

21 24{ }

18
19

20

Δ/2π
fegffe

rf control

rf control

Figure A.4: Qubit parameters annotated by number, corresponding to registry
keys in Table A.1, A.2, A.3, A.4, and A.5. Scales are exaggerated for clarity.

131

Daily Qubit Bias Calibrations
Parameter Calibration Fine Cal. Typical

Value

1 biasReset SQUID
steps

0.110 V

2 biasResetSettling SQUID
steps

8µs

3 biasOperate SQUID
steps

Step edge 0.513 V

4 biasOperateSettling SQUID
steps

40µs

5 biasReadout SQUID
steps

0.740 V

6 biasReadoutSettling SQUID
steps

20µs

7 biasStepEdge SQUID
steps

Step edge 0.455 V

8∗ SQUIDReadoutDelay SQUID
steps

10µs

9 SQUIDRampBegin SQUID
steps

0.1 V

10 SQUIDRampEnd SQUID
steps

0.5 V

11 SQUIDRampLength SQUID
steps

50µs

12 SQUIDSwitchTime SQUID
steps

37µs

Table A.1: Table of qubit experimental bias parameters (written as they ap-
pear in the registry) for a typical qubit in the QuP. The Calibration and “Fine
Cal.” columns refer to the experimental calibration script detailed in Figure A.10.
∗Parameter 8 does not need to be calibrated day to day.

132

Daily Qubit Measurement Calibrations
Parameter Calibration Fine Cal. Typical

Value

13 measAmp scurve findMPA −0.85 DAC
Ampl.

14 measLenTop scurve findMPA 5 ns
15 measLenFall scurve findMPA 30 ns

Table A.2: Table of qubit experimental measurement parameters (written as they
appear in the registry) for a typical qubit in the QuP.

Daily Qubit X,Y Pulse Calibrations
Parameter Calibration Fine Cal. Typical

Value

16 feg Spectroscopy
low power

Ramsey via
freqTuner

6.54 GHz∗

17 ffe Spectroscopy
high power

Ramsey eror
filter (REF)

6.44 GHz∗

18∗ piLength * 14 ns
19∗ piFWHM * 7 ns
20 piAmp piTunerHD 0.70
21 measEg Visibility 0.054
22 measEe Visibility 0.090
23 measFg Visibility 0.946
24 measFe Visibility 0.910
25 calRabiOvrUw 2-D Spec,

Pituner
0.19 GHz

26 calZpaFunc 2-D Spec,
findZpa-
Func

(0.0, 0.994)

27 calDfOvrZpa calZpaFunc,
feg

−1.645 GHz

Table A.3: Table of qubit pulse parameters (written as they appear in the registry)
for a typical qubit in the QuP.

133

Daily Qubit-Resonator Calibrations
Parameter Calibration Fine Cal. Typical

Value

28 fB SWAP10 SWAP10-Tuner,
fockTuner

6.10 GHz∗

29 cZContrlLen SWAP10-
Tuner

fockTuner 12.56 ns

30 cZContrlAmp SWAP10-
Tuner

fockTuner −0.239 DAC
Ampl.

31 piAmpfe piTunerHDfe 0.492 DAC
Ampl.

32 cZTargetAmp SWAP21-
Tuner,
piTuner21

fockTuner n = 2 −0.160 DAC
Ampl.

33 cZTargetLen SWAP21-
Tuner,
piTuner21

fockTuner n = 2 15.40 ns

34 fM SWAP10 fockTuner 7.0 GHz
35 memRWAmp SWAP10-

Tuner
fockTuner 0.147 DAC

Ampl.
36 memRWLen SWAP10-

Tuner
fockTuner 22.38 ns

Table A.4: Table of qubit experimental parameters for qubit-resonator calibra-
tions.

134

Daily Qubit Gate Calibrations
Parameter Calibration Fine Cal. Typical

Value

37 piAmpZ piTunerZ 0.042 DAC
Ampl.

38 cZContrlPhaseCorAmp cZCalP1 semi-auto 0.129 DAC
Ampl.

39 cZContrlPhaseCorLen * 5 ns
40 cZTargetPhaseCorAmp cZCalP2 semi-auto 0.223 DAC

Ampl.
41 cZTargetPhaseCorLen * 5 ns

Table A.5: Table of qubit experimental parameters for gate calibrations.

135

A.4 Daily Automation Code

A.4.1 Top Level Function Calls

Figure A.5 shows the code for the daily automations. The header (all of the

“from” and “import” statements) is for proper linking of resources. The function

titled “daily bringup” defines the sequence of calibration experiments that are

run at the beginning of everyday. For four qubits and five resonators the daily

calibrations were completed after ∼ 4 hrs.5

A.4.2 Bias Calibrations

Figure A.6 through A.9 shows the code for the automated bias experiments. These

experiments calibrate the parameters summarized in Table A.1. The biasReset

parameter is the voltage to reset the qubit. The biasResetSettling parameter is the

time to wait for the qubit bias to settle at its reset voltage. The biasOperate pa-

rameter is the qubit operating voltage. The biasOperateSettling parameter is the

time to wait for the qubit bias to settle at its operating voltage. The biasReadout

parameter is the qubit readout voltage. The biasReadoutSettling parameter is the

time to wait for the qubit bias to settle at its readout voltage. The biasStepEdge

5Typically, my days started by waking up, logging-in remotely to initiate the “daily bringup”
script. Then I would enjoy a cup of coffee, some breakfast, and commute (ride my bike) into
the laboratory in time to verify the end of the calibrations and begin the higher level Shor
experiments.

136

parameter sets the maximum bias voltage before the qubit well disappears. The

SQUIDReadoutDelay parameter is the time to wait before ramping the SQUID

voltage for readout of the qubit state. The SQUIDRampBegin (SQUIDRampEnd)

is the beginning (ending) voltage of the SQUID ramp. The SQUIDRampLength is

the length of the SQUID ramp. The SQUIDSwitchTime is the the time at which

the SQUID switches into the voltage state (based on a the comparator threshold

voltage).

A.4.3 Measurement Calibrations

Figure A.10 and A.11 shows the code for the automated measurement experi-

ments. These experiments calibrate the parameters summarized in Table A.2.

The measAmp parameter is the DAC amplitude set to measure the excited |e〉

state. The measLenTop parameter is the length of time that the measAmp is

sustained. The measLenFall parameter is the length of time until the measAmp

returns to zero.

A.4.4 Qubit X,Y Pulse Control Calibrations

Figure A.12 through A.21 shows the code for the qubit X,Y pulse calibrations

for the parameters summarized in Table A.3. The parameter feg is the qubit

|g〉 ↔ |e〉 transition frequency. The parameter ffe is the qubit |e〉 ↔ |f〉 transi-

137

tion frequency. The piLength parameter is the full length of a π-pulse, which is

set manually and is no less than twice piFWHM. The piFWHM is the FWHM

length of a π-pulse, which is also set manually (see Chapter 4 for more details

on how the appropriate length for these values). The piAmp parameter is the

DAC amplitude caibrated for a π-pulse. The measEg parameter corresponds to

the stray tunneling of the |g〉 state. The measFg parameter corresponds to the

probability of measuring the |g〉 state (1 − measEg = measFg). The meas Fe

parameter is the probability of measuring the excited |e〉 state. The measEe pa-

rameter is the amount that the |e〉 state is misidentified as the ground |g〉 state.

The calRabiOvrUw parameter is the calibration that converts Rabi-amplitude to

a frequency. The calZpaFunc parameter is the calibration that fits (a polynomial

to) the spectroscopy curve, which is used for the calDfOverZpa calibration. The

calDfOverZpa parameter is the calibration that converts z-amplitude to detuning

frequency.

A.4.5 Single Qubit Scans

Figure A.22 through A.25 shows the code for the standard single qubit scans, T1,

T2, and spin echo.

138

A.4.6 Qubit-Resonator Calibrations: Bus and Memory

Figure A.26 through A.33 shows the code for the qubit-resonator calibrations

for the parameters summarized in Table A.4. The fB parameter is the resonant

frequency of the bus resonator. The cZContrlLen parameter is the length to

perform an iSWAP between the qubit and bus resonator. The cZContrlAmp

parameter is the z-amplitude to tune the qubit frequency feg on resonance with

the bus resonator (to perform an iSWAP between the qubit and bus resonator).

The piAmpfe parameter is the DAC amplitude to drive the a π-pulse between the

|e〉 → |f〉 states. The cZTargetAmp parameter is the z-amplitude to tune the

qubit frequency ffe on resonance with the bus resonator (to perform an iSWAP2

operation between the qubit and bus resonator). The cZTargetLen parameter is

the length to perform an iSWAP2 between the qubit and bus resonator. The fM

parameter is the resonant frequency of the memory resonator. The memRWAmp

parameter is the z-amplitude to tune the qubit frequency feg on resonance with

the memory resonator (to perform an iSWAP between the qubit and memory

resonator for memory read and write operation). The memRWLen parameter is

the length to perform an iSWAP between the qubit and memory resonator.

139

A.4.7 Gate Calibrations

Figure A.34 through A.36 shows the code for the gate calibrations for the param-

eters summarized in Table A.5. The piAmpZ parameter is the DAC amplitude to

perform a π-pulse about the z-axis. The cZControlPhaseCorAmp parameter is the

DAC amplitude to adjust the phase after completing a Controlled-Z gate for the

control qubit. The cZControlPhaseCorLen is the length of the phase correction

detuning pulse, which is set manually. The cZTargetPhaseCorAmp parameter is

the DAC amplitude to adjust the phase after completing a Controlled-Z gate for

the target qubit. The cZTargetPhaseCorLen is the length of the phase correction

detuning pulse, which is set manually.

140

C:\workspaces\erik\pyle\pyle\dataking\automateDaily.py Sunday, April 22, 2012 1:11 PM

from datetime import datetime

import itertools

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import numpy as np

from scipy.optimize import leastsq, fsolve

import time

import random

import labrad

from labrad.units import Unit

ns, us, GHz, MHz = [Unit(s) for s in ('ns', 'us', 'GHz', 'MHz')]

#from labrad.scripts.test import GHz_DAC_brinigup_all

from pyle.dataking import measurement

from pyle.dataking import multiqubit as mq

from pyle.dataking import util

from pyle.util import sweeptools as st

from pyle.dataking import noon

from pyle.dataking import ghz

from pyle.dataking import werner

from pyle.dataking import shor as shor

from pyle.dataking import hadamard as hadi

from pyle.plotting import dstools as ds

from pyle import tomo

def daily_bringup(s, pause=True):

bringupAll(s._cxn) #brings up the GHz_DACs first

bringup_squidsteps(s, pause=pause)

bringup_stepedge(s, pause=pause)

bringup_scurve(s, pause=pause)

bringup_sample(s, pause=pause)

single_qubit_scans(s)

qubit_coupling_resonator_scans(s)

qubit_memory_resonator_scans(s)

gate_bringup(s)

create_bell_state_iswap(s,zSweep=False)

def bringupAll(cxn):

print 'Bringup script: started bringup'

if True: #Didn't want to unindent

fpga = cxn.ghz_fpgas

boardList = [b[1] for b in fpga.list_devices()]

successList = [True]*len(boardList)

-1-

Figure A.5: Automate Daily scripts.

141

C:\workspaces\erik\pyle\pyle\dataking\AppA_BiasCode.py Monday, April 30, 2012 3:55 PM

From automateDaily.py

def daily_bringup(s, pause=True):

bringupAll(s._cxn) #brings up the GHz_DACs first

bringup_squidsteps(s, pause=pause)

bringup_stepedge(s, pause=pause)

bringup_scurve(s, pause=pause)

bringup_sample(s, pause=pause)

single_qubit_scans(s)

qubit_coupling_resonator_scans(s)

qubit_memory_resonator_scans(s)

gate_bringup(s)

create_bell_state_iswap(s,zSweep=False)

def bringup_squidsteps(s, pause=True):

N = len(s['config']) #N=4 for the four phase qubits in the QuP

for i in range(N):

print 'measuring squidsteps for qubit %d...' % i,

mq.squidsteps(s, measure=i, noisy=False, update=pause)

print 'done.'

N = len(s['config'])

for i in range(N):

print 'measuring step edge, qubit %d...' % i,

mq.stepedge(s, measure=i, noisy=False, update=pause)

print 'done.'

for i in range(N):

print 'binary searching to find step edge %d...' % i

mq.find_step_edge(s, measure=i, noisy=False)

print 'done.'

From multiqubit.py

def squidsteps(sample, bias=st.r[-2.5:2.5:0.05, V], resets=(-2.5*V, 2.5*V), measure=0, stats=150,

save=True, name='SquidSteps MQ', collect=False, noisy=False, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

if 'squidBiasLimits' in q:

default = (-2.5*V, 2.5*V)

bias_lim = q['squidBiasLimits']

if bias_lim != default:

print 'limiting bias range to (%s, %s)' % tuple(bias_lim)

resets = max(resets[0], bias_lim[0]), min(resets[1], bias_lim[1])

bias = st.r[bias_lim[0]:bias_lim[1]:bias.range.step, V]

axes = [(bias, 'Flux Bias')]

deps = [('Switching Time', 'Reset: %s' % (reset,), us) for reset in resets]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

def func(server, fb):

reqs = []

-1-

Figure A.6: Automated SQUIDsteps page 1 of 2.

142

C:\workspaces\erik\pyle\pyle\dataking\AppA_BiasCode.py Monday, April 30, 2012 4:30 PM

for reset in resets:

q['biasOperate'] = fb

q['biasReadout'] = fb

q['biasReset'] = [reset]

q['readout'] = True

reqs.append(runQubits(server, qubits, stats, raw=True))

data = yield FutureList(reqs)

if noisy: print fb

returnValue(np.vstack(data).T)

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=False)

if update:

squid.adjust_squid_steps(Q, data)

if collect:

return data

-2-

Figure A.7: Automated SQUIDsteps page 2 of 2.

143

C:\workspaces\erik\pyle\pyle\dataking\AppA_Stepedge.py Monday, April 30, 2012 4:11 PM

From automateDaily.py

def bringup_stepedge(s, pause=True):

N = len(s['config'])

for i in range(N):

print 'measuring step edge, qubit %d...' % i,

mq.stepedge(s, measure=i, noisy=False, update=pause)

print 'done.'

for i in range(N):

print 'binary searching to find step edge %d...' % i

mq.find_step_edge(s, measure=i, noisy=False)

print 'done.'

From multiqubit.py

def stepedge(sample, bias=None, stats=300L, measure=0,

save=True, name='StepEdge MQ', collect=False, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

if bias is None:

stepedge = q['biasOperate'][mV]

stepedge = st.nearest(stepedge, 2.0)

bias = st.r[stepedge-100:stepedge+100:2, mV]

axes = [(bias, 'Operating bias')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, fb):

q['biasOperate'] = fb

q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_operate_bias(Q, data)

if collect:

return data

def find_step_edge(sample, stats=60, target=0.5, bias_range=None,

measure=0, resolution=0.1, blowup=0.05,

falling=None, statsinc=1.25,

save=False, name='StepEdge Search MQ', collect=False, update=True, noisy=True

):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

axes = [('Flux Bias', 'mV')]

dataset = sweeps.prepDataset(sample, name, axes, measure=measure)

if falling is None:

falling = q['biasOperate'][V] > q['biasStepEdge'][V]

-1-

Figure A.8: Step edge code page 1 of 2

144

C:\workspaces\erik\pyle\pyle\dataking\AppA_Stepedge.py Monday, April 30, 2012 4:11 PM

if bias_range is None:

stepedge = q['biasOperate'][mV]

stepedge = st.nearest(stepedge, 2.0)

bias_range = (stepedge-100, stepedge+100)

interval = list(bias_range)

def sweep(stats=stats):

yield 0.5*(interval[0]+interval[1]), stats

lower = True

coeffs = 0.25, 0.75

while interval[1] - interval[0] > resolution:

stats *= statsinc

fb = coeffs[lower]*interval[0] + coeffs[not lower]*interval[1]

fb = st.nearest(fb, 0.2*resolution)

yield fb, min(int((stats+29)/30)*30, 30000)

lower = not lower

def func(server, args):

fb, stats = args

q['biasOperate'] = fb*mV

q['readout'] = True

prob = yield runQubits(server, qubits, stats, probs=[1])

if (prob[0] > target) ^ falling:

interval[1] = min(fb, interval[1])

else:

interval[0] = max(fb, interval[0])

inc = blowup * (interval[1] - interval[0])

interval[0] -= inc

interval[1] += inc

if noisy:

print fb, prob[0]

returnValue([fb, prob[0]])

sweeps.run(func, sweep(), save, dataset, pipesize=2, noisy=False)

fb = 0.5 * (interval[0] + interval[1])*mV

if 'biasStepEdge' in q:

print 'Old bias_step_edge: %.3f' % Q['biasStepEdge']

print 'New biasStepEdge: %.3f' % fb

if update:

Q['biasStepEdge'] = fb

return fb

-2-

Figure A.9: Step edge code page 2 of 2

145

C:\workspaces\erik\pyle\pyle\dataking\AppA_Scurve.py Monday, April 30, 2012 4:46 PM

From automateDaily.py

def bringup_scurve(s, pause=True):

N = len(s['config'])

for i in range(N):

print 'measuring scurve, qubit %d...' % i

mpa05 = mq.find_mpa(s, measure=i, target=0.05, noisy=False, update=False)

print '5% tunneling at mpa =', mpa05

mpa95 = mq.find_mpa(s, measure=i, target=0.95, noisy=False, update=False)

print '95% tunneling at mpa =', mpa95

low = st.nearest(mpa05 - (mpa95 - mpa05) * 1.0, 0.002)

high = st.nearest(mpa95 + (mpa95 - mpa05) * 1.0, 0.002)

step = 0.002 * np.sign(high - low)

mpa_range = st.r[low:high:step]

mq.scurve(s, mpa_range, measure=i, stats=1200, noisy=False, update=pause)

print 'done.'

for i in range(N):

print 'binary searching to find mpa %d...' % i

mq.find_mpa(s, measure=i, noisy=False, update=True)

mq.find_mpa_func(s, measure=i, noisy=False, update=True)

print 'done.'

From multiqubit.py

def scurve(sample, mpa=st.r[0:2:0.05], stats=300, measure=0,

save=True, name='SCurve MQ', collect=True, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

axes = [(mpa, 'Measure pulse amplitude')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, mpa):

q['measureAmp'] = mpa

q.z = eh.measurePulse(q, 0)

q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_scurve(Q, data)

if collect:

return data

def find_mpa(sample, stats=60, target=0.05, mpa_range=(-2.0, 2.0), pi_pulse=False,

measure=0, pulseFunc=None, resolution=0.005, blowup=0.05,

falling=None, statsinc=1.25,

save=False, name='SCurve Search MQ', collect=True, update=True, noisy=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

-1-

Figure A.10: Measurement calibrations code page 1 of 2

146

C:\workspaces\erik\pyle\pyle\dataking\AppA_Scurve.py Monday, April 30, 2012 4:46 PM

axes = [('Measure Pulse Amplitude', '')]

dataset = sweeps.prepDataset(sample, name, axes, measure=measure)

if falling is None:

falling = q['biasOperate'][V] > q['biasStepEdge'][V]

interval = [min(mpa_range), max(mpa_range)]

def sweep(stats=stats):

mpa = 0.5 * (interval[0] + interval[1])

yield mpa, min(int((stats+29)/30)*30, 30000)

lower = True

coeffs = 0.25, 0.75

while interval[1] - interval[0] > resolution:

stats *= statsinc

mpa = coeffs[lower]*interval[0] + coeffs[not lower]*interval[1]

mpa = st.nearest(mpa, 0.2*resolution)

yield mpa, min(int((stats+29)/30)*30, 30000)

lower = not lower

def func(server, args):

mpa, stats = args

q['measureAmp'] = mpa

if pi_pulse:

q.xy = eh.mix(q, eh.piPulse(q, 0))

q.z = eh.measurePulse(q, q['piLen']/2.0)

else:

q.xy = env.NOTHING

q.z = eh.measurePulse(q, 0)

q['readout'] = True

probs = yield runQubits(server, qubits, stats, probs=[1])

prob = probs[0]

if (prob > target) ^ falling:

interval[1] = min(mpa, interval[1])

else:

interval[0] = max(mpa, interval[0])

inc = blowup * (interval[1] - interval[0])

interval[0] -= inc

interval[1] += inc

if noisy:

print mpa, prob

returnValue([mpa, prob])

sweeps.run(func, sweep(), save, dataset, pipesize=2, noisy=False)

mpa = 0.5 * (interval[0] + interval[1])

key = 'measureAmp' if not pi_pulse else 'measureAmp2'

if key in q:

print 'Old %s: %.3f' % (key, Q[key])

print 'New %s: %.3f' % (key, mpa)

if update:

Q[key] = mpa

return mpa

-2-

Figure A.11: Measurement calibrations code page 2 of 2

147

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

From automateDaily.py

def bringup_sample(s, pause=False, fine_tune=True):

N = len(s['config'])

bringup_pi_pulses(s, pause=pause)

if fine_tune:

for i in range(N):

choose frequency range to cover all qubits

fmin = min(s[qubit]['f10'] for qubit in s['config']) - 0.1*GHz

fmax = max(s[qubit]['f10'] for qubit in s['config']) + 0.1*GHz

print 'measuring flux func, qubit %d...' % i,

mq.find_flux_func(s, (fmin, fmax), measure=i, noisy=False)

print 'done.'

print 'measuring zpa func, qubit %d...' % i,

mq.find_zpa_func(s, (fmin, fmax), measure=i, noisy=False)

print 'done.'

update the calibrated ratio of DAC amplitudes to detuning and rabi freqs

update_cal_ratios(s)

def bringup_pi_pulses(s, pause=False):

N = len(s['config'])

for i in range(N):

print 'measuring spectroscopy, qubit %d...' % i,

mq.spectroscopy(s, measure=i, noisy=False, update=pause) # zoom in on resonance peak

mq.spectroscopy_two_state(s, measure=i, noisy=False, update=pause)

print 'done.'

for i in range(N):

print 'calibrating pi pulse, qubit %d...' % i,

mq.pitunerHD(s, measure=i, noisy=False)

print 'done.'

print 'fine-tuning frequency, qubit %d...' % i,

mq.freqtuner(s, iterations=1, measure=i, save=True)

print 'done.'

print 'redoing pi pulse calibration, qubit %d...' % i,

mq.pitunerHD(s, measure=i, noisy=False)

print 'done.'

print 'checking visibility, qubit %d...' % i

mpa1_05 = mq.find_mpa(s, measure=i, pi_pulse=True, target=0.05, noisy=False, update=

False)

print '5% tunneling of 1 at mpa =', mpa1_05

mpa0_95 = mq.find_mpa(s, measure=i, pi_pulse=False, target=0.95, noisy=False, update=

False)

print '95% tunneling of 0 at mpa =', mpa0_95

-1-

Figure A.12: Qubit X,Y pulse calibration code page 1 of 10

148

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

low = max(st.nearest(mpa1_05 - (mpa0_95 - mpa1_05) * 0.5, 0.002), 0)

high = min(st.nearest(mpa0_95 + (mpa0_95 - mpa1_05) * 0.5, 0.002), 2)

step = 0.002 * np.sign(high - low)

mpa_range = st.r[low:high:step]

mq.visibility(s, mpa_range, stats=1200, measure=i, noisy=False)

print 'done.'

measure e0, e1 and visibility very carefully at the correct measure-pulse amplitude

print 'measuring visibility at calibrated mpa %d...' % i,

Q = s[s['config'][i]]

data = mq.visibility(s, [Q['measureAmp']]*100, stats=600, measure=i, noisy=False, name=

'Measurement Fidelity', collect=True)

e0, f1 = np.mean(data[:,1]), np.mean(data[:,2])

print 'done.'

print ' e0: %g, f0: %g' % (e0, 1-e0)

print ' e1: %g, f1: %g' % (1-f1, f1)

Q['measureE0'] = e0

Q['measureF0'] = 1-e0

Q['measureE1'] = 1-f1

Q['measureF1'] = f1

From multiqubit.py

def spectroscopy(sample, freq=None, stats=300L, measure=0, sb_freq=0*GHz, detunings=None,

uwave_amp=None,

save=True, name='Spectroscopy MQ', collect=False, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

q['readout'] = True

if freq is None:

f = st.nearest(q['f10'][GHz], 0.001)

freq = st.r[f-0.04:f+0.04:0.001, GHz]

if uwave_amp is None:

uwave_amp = q['spectroscopyAmp']

if detunings is None:

zpas = [0.0] * len(qubits)

else:

zpas = []

for i, (q, df) in enumerate(zip(qubits, detunings)):

print 'qubit %d will be detuned by %s' % (i, df)

zpafunc = get_zpa_func(q)

zpa = zpafunc(q['f10'] + df)

zpas.append(zpa)

axes = [(uwave_amp, 'Microwave Amplitude'), (freq, 'Frequency')]

deps = [('Probability', '|1>', '')]

kw = {

'stats': stats,

'sideband': sb_freq

}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

def func(server, amp, f):

-2-

Figure A.13: Qubit X,Y pulse calibration code page 2 of 10

149

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

for i, (q, zpa) in enumerate(zip(qubits, zpas)):

q['fc'] = f - sb_freq

if zpa:

q.z = env.rect(-100, qubits[measure]['spectroscopyLen'] + 100, zpa)

else:

q.z = env.NOTHING

if i == measure:

q['spectroscopyAmp'] = amp

q.xy = eh.spectroscopyPulse(q, 0, sb_freq)

q.z += eh.measurePulse(q, q['spectroscopyLen'])

eh.correctCrosstalkZ(qubits)

return runQubits(server, qubits, stats, probs=[1])

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_frequency(Q, data)

if collect:

return data

def spectroscopy_two_state(sample, freq=None, stats=300L, measure=0, sb_freq=0*GHz, detunings=

None, uwave_amps=None,

save=True, name='Two-state finder spectroscopy MQ', collect=False,

noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

q['readout'] = True

if freq is None:

f = st.nearest(q['f10'][GHz], 0.001)

freq = st.r[f-0.20:f+0.04:0.002, GHz]

if uwave_amps is None:

uwave_amps = q['spectroscopyAmp'], q['spectroscopyAmp']*10, q['spectroscopyAmp']*15

if detunings is None:

zpas = [0.0] * len(qubits)

else:

zpas = []

for i, (q, df) in enumerate(zip(qubits, detunings)):

print 'qubit %d will be detuned by %s' % (i, df)

zpafunc = get_zpa_func(q)

zpa = zpafunc(q['f10'] + df)

zpas.append(zpa)

axes = [(freq, 'Frequency')]

deps = [('Probability', '|1>, uwa=%g' % amp, '') for amp in uwave_amps]

kw = {

'stats': stats,

'sideband': sb_freq

}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

def func(server, f):

reqs = []

for amp in uwave_amps:

for i, (q, zpa) in enumerate(zip(qubits, zpas)):

-3-

Figure A.14: Qubit X,Y pulse calibration code page 3 of 10

150

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

q['fc'] = f - sb_freq

if zpa:

q.z = env.rect(-100, qubits[measure]['spectroscopyLen'] + 100, zpa)

else:

q.z = env.NOTHING

if i == measure:

q['spectroscopyAmp'] = amp

q.xy = eh.spectroscopyPulse(q, 0, sb_freq)

q.z += eh.measurePulse(q, q['spectroscopyLen'])

eh.correctCrosstalkZ(qubits)

reqs.append(runQubits(server, qubits, stats, probs=[1]))

probs = yield FutureList(reqs)

returnValue([p[0] for p in probs])

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_frequency_02(Q, data)

if collect:

return data

def pitunerHD(sample, measure=0, iterations=2, npoints=21, stats=1200, save=False, update=True,

noisy=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

amp = q['piAmp']

for _ in xrange(iterations):

optimize amplitude

data = rabihigh_hd(sample, amplitude=np.linspace(0.6*amp, 1.4*amp, npoints),

measure=measure, stats=stats, collect=True, noisy=noisy)

amp_fit = np.polyfit(data[:,0], data[:,1], 2)

amp = -0.5 * amp_fit[1] / amp_fit[0]

print 'Amplitude: %g' % amp

save updated values

if update:

Q['piAmp'] = amp

return amp

def rabihigh_hd(sample, amplitude=st.r[0.0:1.5:0.05], measureDelay=None, measure=0, stats=1500L,

name='Rabi-pulse height HD MQ', save=True, collect=False, noisy=True):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

if amplitude is None: amplitude = q['piAmp']

if measureDelay is None: measureDelay = q['piLen'] # /2.0

axes = [(amplitude, 'pulse height'),

(measureDelay, 'measure delay')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, amp, delay):

q['piAmp'] = amp

q.xy = eh.mix(q, eh.piPulseHD(q, 0))

q.z = eh.measurePulse(q, delay)

-4-

Figure A.15: Qubit X,Y pulse calibration code page 4 of 10

151

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

return sweeps.grid(func, axes, dataset=save and dataset, collect=collect, noisy=noisy)

def freqtuner(sample, iterations=1, tEnd=100*ns, timeRes=1*ns, nfftpoints=4000, stats=1200, df=

50*MHz,

measure=0, save=False, plot=False, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

#Automatically finds best f10, using ramsey can plot the FFT of the Ramsey fringe to

extract true f10

works for sweeps with time steps that are all equivalent (i.e. not concatenated sweeps

with diff time steps)

Time resolution should be at least at the Nyquist frequency, but better to oversample

nyfreq=float(fringeFreq)*2*10e6

timeRes = (1.0/float(nyfreq))*1e9

if plot:

fig = plt.figure()

for i in xrange(iterations):

data = ramsey(sample, measure=measure, delay=st.r[0:tEnd:timeRes,ns], fringeFreq = df,

stats=stats, name='Ramsey Freq Tuner MQ', save = save, noisy=noisy,

collect = True, randomize=False, averages = 1, tomo=False)

ts, ps = data.T

y = ps - np.polyval(np.polyfit(ts, ps, 1), ts) # detrend

timestep = ts[1] - ts[0]

freq = np.fft.fftfreq(nfftpoints, timestep)

fourier = abs(np.fft.fft(y, nfftpoints))

fringe = abs(freq[np.argmax(fourier)])*1e3*MHz

delta_freq = df - fringe

if plot:

ax = fig.add_subplot(iterations,1,i)

ax.plot(np.fft.fftshift(freq), np.fft.fftshift(fourier))

print 'Desired Fringe Frequency: %s' % df

print 'Actual Fringe Frequency: %s' % fringe

print 'Qubit frequency adjusted by %s' % delta_freq

q['f10'] -= delta_freq

print 'new resonance frequency: %g' % q['f10']

if update:

Q['f10'] = st.nearest(q['f10'][GHz], 0.0001)*GHz

return Q['f10']

def visibility(sample, mpa=st.r[0:2:0.05], stats=300, measure=0, level=1,

save=True, name='Visibility MQ', collect=True, update=False, noisy=True):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

axes = [(mpa, 'Measure pulse amplitude')]

if level==1:

deps = [('Probability', '|0>', ''),

('Probability', '|1>', ''),

-5-

Figure A.16: Qubit X,Y pulse calibration code page 5 of 10

152

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

('Visibility', '|1> - |0>', ''),

]

elif level==2:

deps = [('Probability', '|0>', ''),

('Probability', '|1>', ''),

('Visibility', '|1> - |0>', ''),

('Probability', '|2>', ''),

('Visibility', '|2> - |1>', '')

]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

def func(server, mpa):

t_pi = 0

t_meas = q['piLen']/2.0

without pi-pulse

q['readout'] = True

q['measureAmp'] = mpa

q.xy = env.NOTHING

q.z = eh.measurePulse(q, t_meas)

req0 = runQubits(server, qubits, stats, probs=[1])

with pi-pulse

q['readout'] = True

q['measureAmp'] = mpa

q.xy = eh.mix(q, eh.piPulseHD(q, t_pi))

q.z = eh.measurePulse(q, t_meas)

req1 = runQubits(server, qubits, stats, probs=[1])

if level == 2:

|2> with pi-pulse

q['readout'] = True

q['measureAmp'] = mpa

q.xy = eh.mix(q, eh.piPulseHD(q, t_pi-q.piLen))+eh.mix(q, env.gaussian(t_pi, q.

piFWHM, q.piAmp21, df=q.piDf21), freq = 'f21')

q.z = eh.measurePulse(q, t_meas)

req2 = runQubits(server, qubits, stats, probs=[1])

probs = yield FutureList([req0, req1, req2])

p0, p1, p2 = [p[0] for p in probs]

returnValue([p0, p1, p1-p0, p2, p2-p1])

elif level == 1:

probs = yield FutureList([req0, req1])

p0, p1 = [p[0] for p in probs]

returnValue([p0, p1, p1-p0])

return sweeps.grid(func, axes, dataset=save and dataset, collect=collect, noisy=noisy)

def find_flux_func(sample, freqScan=None, measAmplFunc=None, measure=0,

-6-

Figure A.17: Qubit X,Y pulse calibration code page 6 of 10

153

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

fluxBelow=2*mV, fluxAbove=2*mV, fluxStep=0.1*mV, sb_freq=0*GHz, stats=300L,

save=True, name='Flux func search MQ', collect=False, update=True, noisy=True

):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

qubit, Qubit = qubits[measure], Qubits[measure]

if measAmplFunc is None:

measAmplFunc = get_mpa_func(qubit)

if freqScan is None:

freq = st.nearest(qubit['f10'][GHz], 0.001)

dfs = np.logspace(-3, 0, 25)

freqScan = freq + np.hstack(([0], dfs, -dfs))

elif isinstance(freqScan, tuple) and len(freqScan) == 2:

freq = st.nearest(qubit['f10'][GHz], 0.001)

rng = freqScan

dfs = np.logspace(-3, 0, 25)

freqScan = freq + np.hstack(([0], dfs, -dfs))

freqScan = np.array([st.nearest(f, 0.001) for f in freqScan])

freqScan = np.unique(freqScan)

freqScan = np.compress((rng[0][GHz] < freqScan) * (freqScan < rng[1][GHz]), freqScan)

else:

freqScan = np.array([f[GHz] for f in freqScan])

freqScan = freqScan[np.argsort(abs(freqScan-qubit['f10'][GHz]))]

fluxBelow = fluxBelow[V]

fluxAbove = fluxAbove[V]

fluxStep = fluxStep[V]

fluxScan = np.arange(-fluxBelow, fluxAbove, fluxStep)

fluxScan = fluxScan[np.argsort(abs(fluxScan))]

fluxPoints = len(fluxScan)

step_edge = qubit['biasStepEdge'][V]

sweepData = {

'fluxFunc': np.array([st.nearest(qubit['biasOperate'][V], fluxStep) - step_edge]),

'fluxIndex': 0,

'freqIndex': 0,

'flux': 0*fluxScan,

'prob': 0*fluxScan,

'maxima': 0*freqScan,

}

axes = [('Flux Bias', 'V'), ('Frequency', 'GHz')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def sweep():

for f in freqScan:

center = np.polyval(sweepData['fluxFunc'], f**4) + step_edge

center = st.nearest(center, fluxStep)

for flx in center + fluxScan:

yield flx*V, f*GHz

-7-

Figure A.18: Qubit X,Y pulse calibration code page 7 of 10

154

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

def func(server, args):

flux, freq = args

for q in qubits:

q['fc'] = freq - sb_freq # set all frequencies since they share a common microwave

source

qubit['biasOperate'] = flux

qubit['measureAmp'] = measAmplFunc(flux)

qubit.xy = eh.spectroscopyPulse(qubit, 0, sb_freq)

qubit.z = eh.measurePulse(qubit, qubit['spectroscopyLen'] + qubit['piLen'])

qubit['readout'] = True

prob = yield runQubits(server, qubits, stats, probs=[1])

flux_idx = sweepData['fluxIndex']

sweepData['flux'][flux_idx] = flux[V]

sweepData['prob'][flux_idx] = prob[0]

if flux_idx + 1 == fluxPoints:

one row is done. find the maximum and update the spectroscopy fit

freq_idx = sweepData['freqIndex']

sweepData['maxima'][freq_idx] = sweepData['flux'][np.argmax(sweepData['prob'])]

sweepData['fluxFunc'] = np.polyfit(freqScan[:freq_idx+1]**4,

sweepData['maxima'][:freq_idx+1] - step_edge,

(freq_idx > 5))

sweepData['fluxIndex'] = 0

sweepData['freqIndex'] += 1

else:

just go to the next point

sweepData['fluxIndex'] = flux_idx + 1

returnValue([flux, freq, prob])

sweeps.run(func, sweep(), dataset=save and dataset, collect=collect, noisy=noisy)

create a flux function and return it

p = sweepData['fluxFunc']

if update:

Qubit['calFluxFunc'] = p

return get_flux_func(Qubit, p, step_edge*V)

def get_flux_func(qubit, p=None, step_edge=None):

if p is None:

p = qubit['calFluxFunc']

if step_edge is None:

step_edge = qubit['biasStepEdge']

return lambda f: np.polyval(p, f[GHz]**4)*V + step_edge

def find_zpa_func(sample, freqScan=None, measure=0,

fluxBelow=0.01, fluxAbove=0.01, fluxStep=0.0005, sb_freq=0*GHz, stats=300L,

name='ZPA func search MQ', save=True, collect=False, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

qubit = qubits[measure]

if freqScan is None:

freq = st.nearest(qubit['f10'][GHz], 0.001)

-8-

Figure A.19: Qubit X,Y pulse calibration code page 8 of 10

155

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

freqScan = np.arange(freq-0.1, freq+1.0, 0.005)

elif isinstance(freqScan, tuple) and len(freqScan) == 2:

freq = st.nearest(qubit['f10'][GHz], 0.001)

rng = freqScan

dfs = np.logspace(-3, 0, 25)

freqScan = freq + np.hstack(([0], dfs, -dfs))

freqScan = np.array([st.nearest(f, 0.001) for f in freqScan])

freqScan = np.unique(freqScan)

freqScan = np.compress((rng[0][GHz] < freqScan) * (freqScan < rng[1][GHz]), freqScan)

else:

freqScan = np.array([f[GHz] for f in freqScan])

freqScan = freqScan[np.argsort(abs(freqScan-qubit['f10'][GHz]))]

fluxScan = np.arange(-fluxBelow, fluxAbove, fluxStep)

fluxScan = fluxScan[np.argsort(abs(fluxScan))]

fluxPoints = len(fluxScan)

sweepData = {

'fluxFunc': np.array([0]),

'fluxIndex': 0,

'freqIndex': 0,

'flux': 0*fluxScan,

'prob': 0*fluxScan,

'maxima': 0*freqScan,

}

axes = [('Z-pulse amplitude', ''), ('Frequency', 'GHz')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def sweep():

for f in freqScan:

center = np.polyval(sweepData['fluxFunc'], f**4)

center = st.nearest(center, fluxStep)

for zpa in center + fluxScan:

yield zpa, f*GHz

def func(server, args):

zpa, freq = args

for q in qubits:

q['fc'] = freq - sb_freq # set all frequencies since they share a common microwave

source

dt = qubit['spectroscopyLen']

qubit.xy = eh.spectroscopyPulse(qubit, 0, sb_freq)

qubit.z = env.rect(0, dt, zpa) + eh.measurePulse(qubit, dt)

qubit['readout'] = True

prob = yield runQubits(server, qubits, stats, probs=[1])

flux_idx = sweepData['fluxIndex']

sweepData['flux'][flux_idx] = zpa

sweepData['prob'][flux_idx] = prob[0]

if flux_idx + 1 == fluxPoints:

one row is done. find the maximum and update the spectroscopy fit

-9-

Figure A.20: Qubit X,Y pulse calibration code page 9 of 10

156

C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

freq_idx = sweepData['freqIndex']

sweepData['maxima'][freq_idx] = sweepData['flux'][np.argmax(sweepData['prob'])]

sweepData['fluxFunc'] = np.polyfit(freqScan[:freq_idx+1]**4,

sweepData['maxima'][:freq_idx+1],

freq_idx > 5)

sweepData['fluxIndex'] = 0

sweepData['freqIndex'] += 1

else:

just go to the next point

sweepData['fluxIndex'] = flux_idx + 1

returnValue([zpa, freq, prob])

sweeps.run(func, sweep(), dataset=save and dataset, collect=collect, noisy=noisy)

create a flux function and return it

poly = sweepData['fluxFunc']

if update:

Qubits[measure]['calZpaFunc'] = poly

return get_zpa_func(Qubits[measure], poly)

From automateDaily.py

def update_cal_ratios(s):

s, _qubits, Qubits = util.loadQubits(s, write_access=True)

single-qubit bringup

for Q in Qubits:

convert microwave amplitude to rabi frequency

fwhm = Q['piFWHM'][ns]

A = float(Q['piAmp'])

Q['calRabiOverUwa'] = 2*np.sqrt(np.log(2)/np.pi)/(A*fwhm)*GHz # total area is 1 cycle

convert z amplitude to detuning frequency

a = float(Q['calZpaFunc'][0])

f = Q['f10'][GHz]

Q['calDfOverZpa'] = 1/(4*a*f**3)*GHz

-10-

Figure A.21: Qubit X,Y pulse calibration code page 10 of 10

157

C:\workspaces\erik\pyle\pyle\dataking\AppA_SingleQubitCode.py Monday, April 30, 2012 8:05 PM

From automateDaily.py

def single_qubit_scans(s):

N = len(s['config'])

for i in range(N):

print 'measuring T1, qubit %d' % i,

mq.t1(s, stats=1800, measure=i, noisy=False)

#TODO add T1 fits

print 'done.'

print 'measuring ramsey fringe, qubit %d' % i,

#TODO bring T1 fit from above and turn on T2 fit

mq.ramsey(s, stats=1800, measure=i, noisy=False)

print 'done.'

print 'measuring spin_echo, qubit %d' % i,

mq.spinEcho(s, stats=1800, measure=i, noisy=False)

print 'done.'

From multiqubit.py

def t1(sample, delay=st.r[-10:1000:2,ns], stats=600L, measure=0,

name='T1 MQ', save=True, collect=True, noisy=True):

"""A single pi-pulse on one qubit, with other qubits also operated."""

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

axes = [(delay, 'Measure pulse delay')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, delay):

q.xy = eh.mix(q, eh.piPulse(q, 0))

q.z = eh.measurePulse(q, delay)

q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

return sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

def ramsey(sample, measure=0, delay=st.r[0:500:1,ns], fringeFreq = 50*MHz,

stats=300L, name='Ramsey MQ', save = True, noisy=True,

collect = False, randomize=False, averages = 1, tomo=True, fitPlot=False, t1=None,

tRange=None):

"""Ramsey sequence on one qubit. Can be single phase or 4-axis tomo, and

 can have randomized time axis and/or averaging over the time axis multiple

 times

 PARAMETERS

 sample: object defining qubits to measure, loaded from registry

 measure - scalar: number of qubit to measure. Only one qubit allowed.

 delay - iterable: time axis

 fringeFreq - value [Mhz]: Desired frequency of Ramsey fringes

 stats - scalar: number of times a point will be measured per iteration over

 the time axis. That the actual number of times a point will be

-1-

Figure A.22: Code for single qubit scans page 1 of 4

158

C:\workspaces\erik\pyle\pyle\dataking\AppA_SingleQubitCode.py Monday, April 30, 2012 8:05 PM

 measured is stats*averages

 name - string: Name of dataset.

 save - bool: Whether or not to save data to the datavault

 noisy - bool: Whether or not to print out probabilities while the scan runs

 collect - bool: Whether or not to return data to the local scope.

 randomize - bool: Whether or not to randomize the time axis.

 averages - scalar: Number of times to iterate over the time axis.

 tomo - bool: Set True if you want to measure all four tomo axes, False if

 you only want the X axis (normal Ramsey fringes).

 fitPlot - plots and returns fit for T2. Requires a value for T1, so for now you need to be

around to input the value.

 t1 - T1 for the qubit. You should have this from a fit and then you can just enter it e.g.

t1=400.0*ns

 tRange - the time range you want to use to fit T2. Enter as a tuple (0,100).

 """

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

q['readout'] = True

#Randomize time axis

if fitPlot:

print 'will make pretty plots, just you wait and see!'

if randomize:

delay = st.shuffle(delay)

#Generator that produces time delays. Iterates over the list of delays as many times as

specified by averages.

def delay_gen():

for _ in range(averages):

for d in delay:

yield d

axes = [(delay_gen(), 'Delay')]

#If you want XY state tomography then we use all four pi/2 pulse phases

if tomo:

deps = [('Probability', '+X', ''),('Probability', '+Y', ''),

('Probability', '-X', ''),('Probability', '-Y', '')]

tomoPhases = {'+X': 0.0, '+Y': 0.25, '-X': -0.5, '-Y': -0.25} #[+X, +Y, -X, -Y] in CYCLES

#Otherwise we only do a final pi/2 pulse about the +X axis.

else:

deps = [('Probability', '', '')]

tomoPhases = {'+X': 0.0}

kw = {'averages': averages, 'stats': stats, 'fringeFrequency': fringeFreq}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

#Pump pulse is at time=0 with phase=0

pump = eh.piHalfPulse(q, 0, phase=0.0)

#Probe is at variable time with variable phase

def probe(time, tomoPhase):

return eh.piHalfPulse(q, time, phase = 2*np.pi*(fringeFreq['GHz']*time['ns']+tomoPhases[

tomoPhase]))

def func(server, delay):

-2-

Figure A.23: Code for single qubit scans page 2 of 4

159

C:\workspaces\erik\pyle\pyle\dataking\AppA_SingleQubitCode.py Monday, April 30, 2012 8:05 PM

reqs = []

for tomoPhase in tomoPhases.keys():

print delay

q.xy = eh.mix(q, pump + probe(delay, tomoPhase = tomoPhase))

q.z = eh.measurePulse(q,delay+20*ns)

reqs.append(runQubits(server, qubits, stats, probs=[1]))

probs = yield FutureList(reqs)

data = [p[0] for p in probs]

returnValue(data)

result = sweeps.grid(func, axes, dataset = save and dataset, collect=collect, noisy=noisy)

if fitPlot:

print 'Making pretty plots'

with labrad.connect() as cxn:

ds = cxn.data_vault

dataset = pyle.plotting.dstools.getOneDeviceDataset(ds, datasetNumber=None, session=

sample._dir, deviceName=None,

averaged=averages>1)

pyle.fitting.dephasing.ramseyTomo(dataset, T1=t1, timeRange=tRange)

return result

def spinEcho(sample, measure=0, delay=st.r[0:1000:10,ns], df=50*MHz,

stats=300L, name='Spin Echo MQ', save=True,

collect=True, noisy=True, randomize=False, averages=1,

tomo=True):

"""Spin echo sequence on one qubit. Can be single phase or 4-axis tomo, and

 can have randomized time axis and/or averaging over the time axis multiple

 times

 PARAMETERS

 sample: object defining qubits to measure, loaded from registry

 measure - scalar: number of qubit to measure. Only one qubit allowed.

 delay - iterable: time axis

 fringeFreq - value [Mhz]: Desired frequency of Ramsey fringes

 stats - scalar: number of times a point will be measured per iteration over

 the time axis. That the actual number of times a point will be

 measured is stats*averages

 name - string: Name of dataset.

 save - bool: Whether or not to save data to the datavault

 noisy - bool: Whether or not to print out probabilities while the scan runs

 collect - bool: Whether or not to return data to the local scope.

 randomize - bool: Whether or not to randomize the time axis.

 averages - scalar: Number of times to iterate over the time axis.

 tomo - bool: Set True if you want to measure all four tomo axes, False if

 you only want the X axis (normal Ramsey fringes).

 """

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

q['readout']=True

#Randomize time axis

if randomize:

-3-

Figure A.24: Code for single qubit scans page 3 of 4

160

C:\workspaces\erik\pyle\pyle\dataking\AppA_SingleQubitCode.py Monday, April 30, 2012 8:05 PM

delay=st.shuffle(delay)

def delayGen():

for _ in range(averages):

for d in delay:

yield d

axes = [(delayGen(), 'Delay')]

if tomo:

deps = [('Probability', '+X', ''), ('Probability', '+Y', ''),

('Probability', '-X', ''), ('Probability', '-Y', '')]

tomoPhases = {'+X': 0.0, '+Y':0.25, '-X': -0.5, '-Y':-0.25}

else:

deps = [('Probability','','')]

tomoPhases={'+X':0.0}

kw={'averages':averages, 'stats':stats, 'fringeFrequency':df}

dataset=sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

#Pump pulse is at time=0 with phase=0

pump = eh.piHalfPulse(q, 0, phase=0.0)

#Probe is at variable time with variable phase

def probe(time, tomoPhase):

return eh.piHalfPulse(q, time, phase=2.0*np.pi*tomoPhases[tomoPhase])

def func(server, delay):

reqs=[]

dt=q['piLen']

tpi = dt/2.0 + delay/2.0

tProbe = dt/2.0 + delay + dt/2.0

tMeas = tProbe + dt/2.0

piPhase = 2*np.pi*df[GHz]*delay[ns]/2.0

for tomoPhase in tomoPhases.keys():

q.xy = eh.mix(q, pump +

eh.piPulse(q, tpi, phase=piPhase) +

probe(tProbe, tomoPhase))

q.z = eh.measurePulse(q, tMeas)

reqs.append(runQubits(server, qubits, stats, probs=[1]))

probs = yield FutureList(reqs)

data = [p[0] for p in probs]

returnValue(data)

return sweeps.grid(func, axes, dataset=save and dataset, collect=collect, noisy=noisy)

-4-

Figure A.25: Code for single qubit scans page 4 of 4

161

C:\workspaces\erik\pyle\pyle\dataking\AppA_QRCode.py Monday, April 30, 2012 8:39 PM

From automateDaily.py

def qubit_coupling_resonator_scans(s):

start = datetime.now()

N = len(s['config'])

for i in range(N):

print 'measuring SWAP10 Spectroscopy, qubit %d' % i,

mq.swap10tuner(s, measure=i, stats=1800, noisy=False, whichRes='Coupler')

print 'measuring 2D-SWAP Spec around Coupling resonator, for qubit %d' % i,

mq.swap10(s, swapLen=st.arangePQ(0,75,2,ns), swapAmp=None, measure=i, save=True, noisy=

False, swapAmpBND=0.2, swapAmpSteps=0.001)

#run focktuner level =1

print 'fock tuner for fine calibratin of cZControlLen'

mq.fockTuner(s, n=1, iteration=3, tuneOS=False, stats=1800, measure=i, save=True, noisy=

False)

print 'done. Calibrated Control qubits'

print 'Tuning up pi-pulse for |2> of qubit %d' % i,

mq.pituner21(s, stats = 1800, measure=i, noisy=False, findMPA=True)

print 'done'

print 'measuring SWAP21 Spectroscopy'

mq.swap21tuner(s, measure=i, stats=1800, noisy=False)

print 'measuring 2D-SWAP Spec around resonator, for qubit %d' % i,

mq.swap21(s, swapLen=st.arangePQ(0,60,2,ns), swapAmp=None, measure=i, save=True, noisy=

False, swapAmpBND=0.2, swapAmpSteps=0.001)

mq.fockTuners21(s, n=1, iteration=3, tuneOS=False, stats=1800, measure=i, save=True,

noisy=False)

print 'done. Calibrated Target qubits'

print 'now starting qubit-qubit timing calibrations...'

print 'measuring qubit-qubit delay via the resonator'

for j,k in [(0,1),(1,0), (0,2),(2,0), (1,2),(2,1), (0,3),(3,0), (1,3),(3,1), (2,3),(3,2)]:

mq.testQubResDelayCmp(s,measureC=j, measureT=k)

print 'now measuring resonator T1 using q0 for photon exchange'

mq.resonatorT1(s, stats=1800, measure=0, whichRes='Coupler')

end = datetime.now()

print 'start:', start

print 'end:', end

print 'elapsed time for qubit-resonator scans:', (end-start)

def qubit_memory_resonator_scans(s, stats=1800):

start = datetime.now()

N = len(s['config'])

for i in range(N):

print 'measuring SWAP10 Spectroscopy, qubit %d' % i,

mq.swap10tuner(s, measure=i, stats=stats, noisy=False, whichRes='Memory')

print 'measuring 2D-SWAP Spec around Memory resonator, for qubit %d' % i,

mq.swap10(s, swapLen=st.arangePQ(0,300,5,ns), swapAmp=None, measure=i,

save=True, noisy=False, swapAmpBND=0.2, swapAmpSteps=0.001, stats=stats,

-1-

Figure A.26: Code for qubit-resonator calibrations page 1 of 8

162

C:\workspaces\erik\pyle\pyle\dataking\AppA_QRCode.py Monday, April 30, 2012 8:39 PM

whichRes='Memory')

#run focktuner level =1

print 'fock tuner for fine calibratin of memoryReadWriteLen'

mq.fockTuner(s, n=1, iteration=3, tuneOS=False, stats=stats, measure=i, save=True, noisy

=False, whichRes='Memory')

print 'done. Memory resonator tuned up'

print 'now measuring memory resonator T1 for resonator %d' %i,

noon.resonatorT1(s, stats=stats, measure=i, whichRes='Memory')

end = datetime.now()

print 'start:', start

print 'end:', end

print 'elapsed time for qubit-mem-resonator scans:', (end-start)

From multiqubit.py

def swap10tuner(sample, swapLen=None, swapAmp=None, swapAmpBND=0.01, iteration=3, measure=0,

stats=600L,

name='Qeg-R10 swap tuner MQ', save=False, noisy=True, update=True, whichRes='Coupler'):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

if whichRes is 'Coupler':

if swapAmp is None:

swapAmp = q['cZControlAmp']

if swapLen is None:

swapLen = q['cZControlLen'][ns]

elif whichRes is 'Memory':

if swapAmp is None:

swapAmp = q['memReadWriteAmp']

if swapLen is None:

swapLen = q['memReadWriteLen'][ns]

for i in range(iteration):

rf = 2**i

swapLenOld = swapLen

swapAmpOld = swapAmp

print 'Tuning the swap length'

results = swap10(sample, swapLen=st.PQlinspace(swapLen*(1-0.3/rf),swapLen*(1+0.3/rf),21,

ns),

swapAmp=swapAmp, measure=measure, stats=stats,

name='Qeg-R10 swap MQ', save=save, collect=True, noisy=noisy)

newLen, percent = datasetMinimum(results, swapLenOld, swapLenOld-4/rf, swapLenOld+4/rf)

swapLen = newLen

if whichRes is 'Coupler':

print 'Old swap length was ',q['cZControlLen']

if update:

Q['cZControlLen'] = swapLen*ns

print 'New Control swap length is ', swapLen, 'ns'

else:

print 'Old Memory Read/Write length was ',q['memReadWriteLen']

if update:

-2-

Figure A.27: Code for qubit-resonator calibrations page 2 of 8

163

C:\workspaces\erik\pyle\pyle\dataking\AppA_QRCode.py Monday, April 30, 2012 8:39 PM

Q['memReadWriteLen'] = swapLen*ns

print 'New Memory Read/Write length is ', swapLen, 'ns'

print 'Tuning the swap amplitude'

results = swap10(sample, swapLen=swapLen,

swapAmp=np.linspace(max([swapAmp*(1-0.3/rf),swapAmp-swapAmpBND]),

min([swapAmp*(1+0.3/rf),swapAmp+swapAmpBND]),21), measure=

measure, stats=stats,

name='Qeg-R10 swap MQ', save=save, collect=True, noisy=noisy)

newAmp, percent = datasetMinimum(results, swapAmpOld, swapAmpOld-4/rf, swapAmpOld+4/rf)

swapAmp = newAmp

if whichRes is 'Coupler':

print 'Old Control swap amplitude was ',q['cZControlAmp']

if update:

Q['cZControlAmp']= swapAmp

print 'New swap amplitude is ', swapAmp

else:

print 'Old Memory Read/Write amplitude was ',q['memReadWriteAmp']

if update:

Q['memReadWriteAmp']= swapAmp

print 'New Read/Write amplitude is ', swapAmp

return swapLen, swapAmp

def swap10(sample, swapLen=st.arangePQ(0,200,4,ns), swapAmp=np.arange(-0.05,0.05,0.002), measure

=0, stats=600L,

name='Qeg-R10 swap MQ', save=True, collect=False, noisy=True, swapAmpBND=0.20,

swapAmpSteps=0.001, whichRes='Coupler'):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

if whichRes is 'Coupler':

if swapAmp is None:

swapAmp = q.cZControlAmp

coarseSet = np.arange(0,swapAmp*(1-swapAmpBND),swapAmpSteps*5)

fineSet = np.arange(swapAmp*(1-swapAmpBND),swapAmp*(1+swapAmpBND), swapAmpSteps)

swapAmp = np.hstack((coarseSet,fineSet))

#swapAmp = st.r[swapAmp*(1-swapAmpBND):swapAmp*(1+swapAmpBND):swapAmpSteps]

elif whichRes is 'Memory':

if swapAmp is None:

swapAmp = q.memReadWriteAmp

fineSet = np.arange(swapAmp*(1+swapAmpBND),swapAmp*(1-swapAmpBND), swapAmpSteps)

swapAmp = fineSet

axes = [(swapAmp, 'swap pulse amplitude'), (swapLen, 'swap pulse length')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, currAmp, currLen):

q.xy = eh.mix(q, eh.piPulseHD(q, 0))

q.z = env.rect(q['piLen']/2, currLen, currAmp) + eh.measurePulse(q, q['piLen']/2 +

currLen)

q['readout'] = True

return runQubits(server, qubits, stats=stats, probs=[1])

-3-

Figure A.28: Code for qubit-resonator calibrations page 3 of 8

164

C:\workspaces\erik\pyle\pyle\dataking\AppA_QRCode.py Monday, April 30, 2012 8:39 PM

return sweeps.grid(func, axes, save=save, dataset=dataset, collect=collect, noisy=noisy)

def fockTuner(sample, n=1, iteration=3, tuneOS=False,stats=1500L, measure=0, delay=0*ns,

save=False, collect=True, noisy=True, update=True, whichRes='Coupler'):

sample, qubits, Qubits = util.loadQubits(sample,write_access=True)

q = qubits[measure]

Q = Qubits[measure]

for iter in range(iteration):

rf = 2**iter

print 'iteration %g...' % iter

if whichRes is 'Coupler':

sl = q['cZControlLen']

else:

sl = q['memReadWriteLen']

results = fockScan(sample, n=1, scanLen=st.PQlinspace(-max([0.3*sl['ns']/rf,1]),max([0.3

*sl['ns']/rf,1]),21,'ns'),

stats=stats,measure=measure,probeFlag=False,delay=delay,

save=False, collect=collect, noisy=noisy, whichRes=whichRes)

newLen, percent = datasetMinimum(results, 0, -max([0.3*sl['ns']/rf,1]), max([0.3*sl['ns'

]/rf,1]))

if whichRes is 'Coupler':

q['cZControlLen'] += newLen

else:

q['memReadWriteLen'] += newLen

if save:

fockScan(sample, n=1, scanLen=st.arangePQ(0,300,2,'ns'),

stats=stats,measure=measure,probeFlag=True,delay=delay,

save=save, collect=collect, noisy=noisy, whichRes=whichRes)

if update:

if whichRes is 'Coupler':

Q['cZControlLen'] = q['cZControlLen']

else:

Q['memReadWriteLen'] = q['memReadWriteLen']

return newLen

def pituner21(sample, measure=0, iterations=2, npoints=21, stats=1500L, save=False, update=True,

noisy=True, findMPA=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

amp = q.piAmp21

df = q.piDf21['MHz']

if findMPA:

print 'finding measure pulse amplitude for |2>'

Q.measureAmp2 = find_mpa(sample, stats=600, target=0.05, mpa_range=(-2.0, 2.0), pi_pulse

=True,

measure=measure, pulseFunc=None, resolution=0.005, blowup=0.05,

falling=None, statsinc=1.25,

save=False, name='SCurve Search for best |2> MPA MQ', collect=True, update=True

, noisy=True)

-4-

Figure A.29: Code for qubit-resonator calibrations page 4 of 8

165

C:\workspaces\erik\pyle\pyle\dataking\AppA_QRCode.py Monday, April 30, 2012 8:39 PM

for _ in xrange(iterations):

optimize amplitude

data = rabihigh21(sample, amplitude=np.linspace(0.75*amp, 1.25*amp, npoints), detuning=

df*MHz,

measure=measure, stats=stats, collect=True, noisy=noisy, save=save)

amp_fit = np.polyfit(data[:,0], data[:,1], 2)

amp = -0.5 * amp_fit[1] / amp_fit[0]

print 'Amplitude for 1->2 transition: %g' % amp

optimize detuning

data = rabihigh21(sample, amplitude=amp, detuning=st.PQlinspace(df-20, df+20, npoints,

MHz),

measure=measure, stats=stats, collect=True, noisy=noisy, save=save)

df_fit = np.polyfit(data[:,0], data[:,1], 2)

Delta_df = -0.5 * df_fit[1] / df_fit[0]-df

if np.abs(Delta_df)>20:

df += np.sign(Delta_df)*20

else:

df += Delta_df

print 'Detuning frequency for 1->2 transition: %g MHz' % df

save updated values

if update:

Q['piAmp21'] = amp

Q['piDf21'] = df*MHz

return amp, df*MHz

def swap21tuner(sample, swapLen=None, swapAmp=None, iteration=3, measure=0, stats=600L,

name='Qfe-R10 swap tuner MQ', save=False, noisy=True, update=True, zGate='Pi'):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

if zGate is 'Pi':

if swapAmp is None:

swapAmp = q['cZTargetAmp']

if swapLen is None:

swapLen = q['cZTargetLen'][ns]

swapLen = swapLen/2 #cZTargetLen is the time for a iswap^2 so we divide by two for

this iSWAP experiment.

elif zGate is 'HalfPi':

if swapAmp is None:

swapAmp = q['cPiHalfTargetAmp']

if swapLen is None:

swapLen = q['cPiHalfTargetLen'][ns]

swapLen = swapLen/2 #cZTargetLen is the time for a iswap^2 so we divide by two for

this iSWAP experiment.

for m in range(iteration):

rf = 2**m #not sure what m is stepping over, I think it is a dummy variable, but used

in the linspace calc"

swapLenOld = swapLen

swapAmpOld = swapAmp

print 'Tuning the swap length'

results = swap21(sample, swapLen=st.PQlinspace(swapLen*(1-0.3/rf),swapLen*(1+0.3/rf),21,

ns),

-5-

Figure A.30: Code for qubit-resonator calibrations page 5 of 8

166

C:\workspaces\erik\pyle\pyle\dataking\AppA_QRCode.py Monday, April 30, 2012 8:39 PM

swapAmp=swapAmp, measure=measure, stats=stats,

name='Qfe-R10 swap MQ', save=save, collect=True, noisy=noisy)

newLen, percent = datasetMinimum(results, swapLenOld, swapLenOld-4/rf, swapLenOld+4/rf)

swapLen=newLen

if zGate is 'Pi':

print 'Old swap length was ',q['cZTargetLen'], 'ns'

if update:

Q['cZTargetLen'] = (2*swapLen)*ns #cZControlLen is the time for a iswap^2.

print 'New Target swap length is ', 2*swapLen, 'ns'

elif zGate is 'HalfPi':

print 'Old swap length was ',q['cPiHalfTargetLen'], 'ns'

if update:

Q['cPiHalfTargetLen'] = (2*swapLen)*ns #cZControlLen is the time for a iswap^2.

print 'New Half-Pi Target swap length is ', 2*swapLen, 'ns'

print 'Tuning the swap amplitude'

swapLen = newLen

results = swap21(sample, swapLen=swapLen,

swapAmp=np.linspace(swapAmp*(1-0.3/rf),swapAmp*(1+0.3/rf),21), measure=

measure, stats=stats,

name='Qfe-R10 swap MQ', save=save, collect=True, noisy=noisy)

newAmp, percent = datasetMinimum(results, swapAmpOld, swapAmpOld-4/rf, swapAmpOld+4/rf)

swapAmp = newAmp

if update:

if zGate is 'Pi':

print 'Old swap amplitude was ',q['cZTargetAmp']

Q['cZTargetAmp']= swapAmp

print 'New Target swap amplitude is ', swapAmp

else:

print 'Old swap amplitude was ',q['cPiHalfTargetAmp']

Q['cPiHalfTargetAmp']= swapAmp

print 'New Half-Pi Target swap amplitude is ', swapAmp

return swapLen, swapAmp

def swap21(sample, swapLen=st.arangePQ(0,100,2,ns), swapAmp=np.arange(-0.05,0.05,0.002), measure

=0, stats=600L,

name='Qfe-R10 swap MQ', save=True, collect=False, noisy=True, swapAmpBND=0.20,

swapAmpSteps=0.001):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

if swapAmp is None:

swapAmp = q.cZTargetAmp

swapAmp = st.r[swapAmp*(1-swapAmpBND):swapAmp*(1+swapAmpBND):swapAmpSteps]

axes = [(swapAmp, 'swap pulse amplitude'), (swapLen, 'swap pulse length')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

df = q.piDf21

def func(server, currAmp, currLen):

-6-

Figure A.31: Code for qubit-resonator calibrations page 6 of 8

167

C:\workspaces\erik\pyle\pyle\dataking\AppA_QRCode.py Monday, April 30, 2012 8:39 PM

q.xy = eh.mix(q, eh.piPulseHD(q, 0))+eh.mix(q, env.gaussian(q.piLen, q.piFWHM, q.piAmp21

,df =df), freq = 'f21')

q.z = env.rect(q['piLen']*1.5, currLen, currAmp) + eh.measurePulse2(q, q['piLen']*1.5 +

currLen)

q['readout'] = True

return runQubits(server, qubits, stats=stats, probs=[1])

return sweeps.grid(func, axes, save=save, dataset=dataset, collect=collect, noisy=noisy)

def fockTuners21(sample, n=1, iteration=3, tuneOS=False, stats=1500L, measure=0,

save=False, collect=True, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q = qubits[measure]

Q = Qubits[measure]

if len(q['cZTargetLens'])<n:

for i in np.arange(len(q['cZTargetLens']),n,1):

q['cZTargetLens'].append(q['cZTargetLens'][0]/np.sqrt(i+1/2.0))

for i in np.arange(1,n+1,1):

for iter in range(iteration):

rf = 2**iter

print 'iteration %g...' % iter

sl = q['cZTargetLens'][i-1]

sl = sl/2

results = fockScans21(sample, n=i, scanLen=st.PQlinspace(-max([0.3*sl['ns']/rf,1]),

max([0.3*sl['ns']/rf,1]),21,'ns'),

stats=stats, measure=measure, probeFlag=False,

save=False, collect=collect, noisy=noisy)

new, percent = datasetMinimum(results, 0, -max([0.3*sl['ns']/rf,1]), max([0.3*sl[

'ns']/rf,1]))

newLen = 2*new

q['cZTargetLens'][i-1] += newLen

if save:

fockScans21(sample, n=i, scanLen=st.arangePQ(0,500,1,'ns'),

stats=stats, measure=measure, probeFlag=True,

save=save, collect=collect, noisy=noisy)

if update:

Q['cZTargetLens'] = q['cZTargetLens']

Q['cZTargetLen'] = q['cZTargetLens'][0]

return q['cZTargetLens'][0]

def resonatorT1(sample, delay=st.arangePQ(0,1,0.01,'us')+st.arangePQ(1,7,0.1,'us'),stats=600L,

measure=0,

name='resonator T1 MQ', save=True, collect=True, noisy=True, whichRes='Coupler'):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

axes = [(delay, 'Measure pulse delay')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

if whichRes is 'Coupler':

-7-

Figure A.32: Code for qubit-resonator calibrations page 7 of 8

168

C:\workspaces\erik\pyle\pyle\dataking\AppA_QRCode.py Monday, April 30, 2012 8:39 PM

sl = q.cZControlLen

sa = q.cZControlAmp

else:

sl = q.memReadWriteLen

sa = q.memReadWriteAmp

def func(server, delay):

q.xy = eh.mix(q, eh.piPulseHD(q, 0))

q.z = env.rect(q.piLen/2, sl, sa)

q.z += env.rect(q.piLen/2+sl+delay, sl, sa)

q.z += eh.measurePulse(q, q.piLen/2+sl+delay+sl)

q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

return sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

-8-

Figure A.33: Code for qubit-resonator calibrations page 8 of 8

169

C:\workspaces\erik\pyle\pyle\dataking\AppA_GateCode.py Monday, April 30, 2012 9:17 PM

From automateDaily.py

def gate_bringup(s):

start = datetime.now()

N = len(s['config'])

for i in range(N):

print 'Begin Calibrating Single Qubit Hadamard Gates'

print 'Z-pi pulse tuner'

mq.pitunerZ(s, measure=i, save=True, stats = 1800, update=True, noisy=False)

print 'done tuning Z-pi amplitude for qubit %d' %i,

hadi.hadamardTrajectory(s, measure=i, stats=1500, useHD=True, useTomo=True, tBuf=5*ns,

save=True, noisy=False)

print 'plotting hadamard trajectory on Bloch Sphere'

print 'correcting for visibilities...generating pretty plots'

hadi.plotTrajectory(path=s._dir, dataset=None, state=None) #grabs the most recent

dataset in the current session

hadi.plotDensityArrowPlot(path=s._dir, dataset = None) #grabs most recent dataset in

the current session

end = datetime.now()

print 'start:', start

print 'end:', end

print 'elapsed time for single qubit gate bringups:', (end-start)

From multiqubit.py

def cZCalP1(sample, targetAmp=st.r[-0.25:0:0.001], measureC=0, measureT=1, zGate='Pi', stats

=1500L,

name='Control-Z Step 1 TargetCal MQ', save=True, collect=False, noisy=True, update=

False):

"""Generalized Ramsey. Performs the controlled-Z gate Z-pulse sequence

 with pi/2 pulse on target and no microwaves on control qubit [qt, qc]

 to calibrate the phase correction on the target qubit.

 Record any maximum and any minimum of the Ramsey.

 If Update, then this is semi-automatic with user-controlled sliders to update registry keys:

 cZCalP1Max

 cZCalP1Min

 zGate flag: ='Pi' is for a controlled Z-Pi

 ='HalfPi' is for a controlled Z-pi/2 (aka QFT)

 """

name = '%s zGate=%s' % (name, zGate)

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

qc = qubits[measureC] #control qubit

qt, Qt = qubits[measureT], Qubits[measureT] #target qubit

if zGate is 'Pi':

gateTime = qt.cZTargetLen

elif zGate is'HalfPi':

gateTime = qt.cPiHalfTargetLen

else:

gateTime = qt.cZTargetLen

-1-

Figure A.34: Code for qubit gate calibrations page 1 of 3

170

C:\workspaces\erik\pyle\pyle\dataking\AppA_GateCode.py Monday, April 30, 2012 9:17 PM

axes = [(targetAmp, 'target amp phase correction')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measureT, kw=kw)

def func(server, targetAmp):

start = 0

#pad time for equal state prep time in Step 2 Cal

start += qc['piLen']/2 + qc['cZControlLen']

#state prep

#Control qubit no microwaves, Target qubit pi/2

#Tighter timing. End of piHalf pulse aligns with end of iSWAP from Control

qt.xy = eh.mix(qt, eh.piHalfPulseHD(qt, start-qt['piLen']/2))

#Control is IDLE

#Target Phase swap Q21 with R21 for iswap^2 time

qt.z = env.rect(start, gateTime, qt.cZTargetAmp)

start += gateTime

#Target phase correction, time is fixed sweeping amplitude

qt.z += env.rect(start, qt.cZTargetPhaseCorrLen, targetAmp)

start += qt.cZTargetPhaseCorrLen + qt['piLen']/2

#Final pi/2 for Ramsey, rotate about X

qt.xy += eh.mix(qt, eh.piHalfPulseHD(qt, start, phase=0.0*np.pi))

start += qt['piLen']/2

#Measure only the Target

qt.z += eh.measurePulse(qt, start)

qt['readout'] = True

return runQubits(server, qubits, stats=stats, probs=[1])

return sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_cZTargetPhaseCorrAmpP1(Qt, data)

def cZCalP2(sample, targetAmp=st.r[-0.25:0:0.001], measureC=0, measureT=1, zGate='Pi', stats=

1500L,

name='Control-Z Step 2 TargetCal MQ', save=True, collect=False, noisy=True, update=

False):

"""Generalized Ramsey. Performs the controlled-Z gate Z-pulse sequence

 with pi/2 pulse on target and a pi-pulse on the control qubit [qc, qt]

 to verify the "pi" phase shift from cZCalP1 on the target qubit.

 Look for a Min, should be really close to Max from Part 1

 zGate flag: ='Pi' is for a controlled Z-Pi

 ='HalfPi' is for a controlled Z-pi/2 (aka QFT)

 """

name = '%s zGate=%s' % (name, zGate)

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

qc = qubits[measureC] #control qubit

qt, Qt = qubits[measureT], Qubits[measureT] #target qubit

-2-

Figure A.35: Code for qubit gate calibrations page 2 of 3

171

C:\workspaces\erik\pyle\pyle\dataking\AppA_GateCode.py Monday, April 30, 2012 9:17 PM

if zGate is 'Pi':

gateTime = qt.cZTargetLen

elif zGate is'HalfPi':

gateTime = qt.cPiHalfTargetLen

else:

gateTime = qt.cZTargetLen

axes = [(targetAmp, 'target amp phase correction')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measureT, kw=kw)

def func(server, targetAmp):

start = 0

#state prep

#Control g -> e

qc.xy = eh.mix(qc, eh.piPulseHD(qc, start))

start += qc['piLen']/2

#Control iSWAP with Resonator

qc.z = env.rect(start, qc.cZControlLen, qc.cZControlAmp)

start += qc.cZControlLen

#state prep Target

qt.xy = eh.mix(qt, eh.piHalfPulseHD(qt, start-qt['piLen']/2))

#Target Phase swap Q21 with R21 for iswap^2 time

qt.z = env.rect(start, gateTime, qt.cZTargetAmp)

start += gateTime

#Target phase correction, time is fixed sweeping amplitude

qt.z += env.rect(start, qt.cZTargetPhaseCorrLen, targetAmp)

start += qt.cZTargetPhaseCorrLen + qt['piLen']/2

#Final pi/2 for Ramsey, rotate about X

qt.xy += eh.mix(qt, eh.piHalfPulseHD(qt, start, phase=0.0*np.pi))

start += qt['piLen']/2

#Measure

qt.z += eh.measurePulse(qt, start)

qt['readout'] = True

return runQubits(server, qubits, stats=stats, probs=[1])

#return sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_cZTargetPhaseCorrAmpP2(Qt, data)

-3-

Figure A.36: Code for qubit gate calibrations page 3 of 3

172

Appendix B

QuP Fabrication

In this Appendix I discuss the QuP fabrication1. I also include a schedule in §B.2

to complete the QuP recipe detailed in §B.4. In §B.3 I make note of practices that

may prove to be helpful in navigating the cleanroom and successfully fabricating

devices. The Appendix concludes with the QuP recipe.

B.1 Fabrication Overview

All of the fabrication was completed at the UCSB Nanofabrication facilities. The

QuP fabrication process consists of three superconducting aluminum wiring lay-

ers, “base-wiring”, “top-wiring” and “junction” and one dielectric layer of hydro-

genated amorphous Silicon (a-Si:H) which forms the qubit shunt (parallel-plate)

1For more background and further detail on the UCSB QC-group’s fabrication process please
see [3, chap. 5].

173

capacitor and wiring crossovers. Seven patterning and etching steps define the cir-

cuit elements in the QuP. These etch steps are summarized with microphotographs

of the QuP device after each etch step in Figure B.1. Table B.1 outlines the se-

quence of deposition, etching, and oxidation steps used in the QuP fabrication

process.

All of the photolithography steps were completed on the GCA AutoStep 200

I-Line Wafer Stepper, using SPR955 photoresist and AZ300MIF developer. The

QuP was the first device (within the UCSB QC-group) that utilized the local

alignment feature on the AutoStep tool. This enabled sub-micron overlaps and

reliable 1µm2 junction areas. Dry etching was done in a Panasonic E640 induc-

tively coupled plasma (ICP) etch system. After completing the dry etches 1165

Stripper, heated to 80◦ was used to remove the photoresist. All of the Al sputter-

ing and junction oxidations were completed in a custom Kurt Lesker sputter and

ion mill system. The a-Si:H dielectric material was deposited using a UNAXIS

high density plasma enhanced chemical vapor deposition (HD PECVD) system.

B.2 Scheduling

The time to fabricate two 3” QuP wafers was spread over 4 days, the majority of

which was done during the “graveyard-shift” 6pm-6am to avoid the competition

for machines during the normal business hours. There are pros and cons to working

174

(a) (b) (c)

(d) (e) (f)

(g) (h)
100 μm

Flux Bias
SQUID

Capacitor

Inductor

Junction

cross-over

1 mm 1 mm 30 μm

30 μm

30 μm

100 μm100 μm

TW etchTW etch

strap

strap

No strap

No
strap

Figure B.1: (a-g) Photomicrographs of the QuP after each of the seven etch
steps in fabrication. (a) Base wiring etch §B.4.4. (b) Via etch §B.4.6. (c) Top
wiring etch part 1 §B.4.8. (d) Junction etch §B.4.10. (e) Top wiring etch part 2
§B.4.11. (f) Dielectric etch §B.4.12. (g) Junction protection straps etch §B.4.13.
(h) Photomicrograph of a completed qubit cell with annotations.

175

Step Layer Notes
1 Deposit Base Wiring (BW), Al 200 nm MBE grown or (Lesker)

Sputtered
2 Etch BW reactive ion etch (dry-etch)
3 Deposit Dielectric, a-Si:H 200 nm plasma enhanced chemical

vapor deposition
4 Etch Vias dry-etch
5 Deposit Top Wiring (TW), Al 250 nm sputtered
6 Etch TW Part 1 dry-etch
7 Oxidize
8 Deposit Junction, Al 150 nm sputtered
9 Etch Junction dry-etch
10 Etch TW Part 2 dry-etch
11 Etch Dielectric dry-etch
12 Etch Shorting Straps transene wet-etch to remove

junction protection

Table B.1: Overview of the fabrication process.

at these hours. You need to be able to handle machine errors with a level head and

on your own. However, because you are sharing the entire cleanroom with only a

handful of individuals it is a lot easier to define your mise en plase. Mise en plase

literally translates to “everything in its place” and is used by the culinary field to

describe a clean and orderly station ready to execute the recipes of the day and

being prepared to deal with challenges that will inevitably come up during your

shift. I like this analogy because in a lot of ways cleanroom work is like baking.

You are following a recipe with ingredients that have been precisely defined for a

reason and if you forget a step at any point you will be starting over. Mise en

place in the cleanroom means defining your work flow and workspace in a manner

176

that facilitates the most efficient way -for you- to sequence through the recipe

without missing a step and thereby completing functional devices. I found that

working through the night provided the right atmosphere for me to think clearly

with a relaxed confidence in the bunny suit.

In Table B.2 is a suggested, “relaxed” fabrication schedule. If you need to

work at an accelerated pace than just be sure to end your day on one of the

correct breaking points (before a lithographic exposure). Remember, during your

fabrication the most trusted place is the place that you have prepared. This goes

for the wet benches, the deposition chambers, the water you use, your photoresist,

the photoresist spinners, your tweezers, your glassware, your reticles, your wafer

holder, and the storage space for your sample when you end your day. At the end

of each day, it is recommended that you place your wafer in the group’s Lesker

loadlock or an equivalent vacuum space that you know is not contaminated. With

all that being said, I hope it is clear that a certain level of paranoia is natural to

successfully working in the cleanroom.

B.3 Tips For Success In The Cleanroom

Your time and the devices that you will inevitably get out are worth more than

the “consumables” (e.g. photoresist, developer, gloves, 1165, acetone, etc), so use

what you need. Don’t confuse this call to efficiency with rampant waste. I am

177

Day Fabrication Steps to Complete
1 Deposit Base Wiring. Expose, Develop, Etch, Clean BW. Store in

Lesker loadlock in Vaccuum (LLV)
2 Deposit aSi:H. Expose Develop, Etch, Clean Vias. Deposit Al Top

Wiring (TW). Store in LLV
3 Expose, Etch, Clean, TW1. Oxidize, Dep Junctions. Store in LLV
4 Expose, Develop, Etch, Clean Junctions. Expose, Develop, Etch,

Clean TW2. Expose, Develop, Etch, Clean aSiH. Store in LLV
5 Expose, Develop, Wet-Etch, Clean Straps. Store in LLV.
6 Probe Junctions, Soft-bake PR, Dice wafer. OK to store in Martinis

Group desiccator (MBE lab).

Table B.2: Fabrication schedule.

not suggesting that you waste any of the resources available in the cleanroom, I

am just reminding you that all of the days-worth-of-work you spent on a device

can be ruined by taking a short cut. Commit to the fact that you are going to be

in the cleanroom. Here are some tips that may help you in the cleanroom.

• Store in-progress device wafers in the Lesker load-lock chamber.

• Always pour a fresh bottle of resist when you start your fabrication. And

don’t let anyone “borrow it”.

• Always install fresh napkins in the photoresist (PR) spinners before you spin

your PR.

• For your lithography steps, Always use two spinners, one for Hexamethyld-

isilazane (HMDS) and the other for photoresist. The fumes of the HMDS

linger after spinning and the last thing you want to do is blow Nitrogen on

178

your wafer for risk of depositing the dirt from inside the spinner on your

wafer.

• Put on fresh gloves anytime you think about it. About to remove some PR

with 1165? Double up on your gloves so you can peel one pair off when you

are done with 1165.

• Clean out/off the wafer carrier and your tweezers with isopropanol followed

by acetone after each lithography step. A good time to perform this task is

while your wafer is soaking in 1165.

• Be sure to pour 1165 in a dry beaker i.e. no water inside. 1165 + H20 =

etching type solution.

B.4 QuP Fabrication Recipe

B.4.1 Reticle Set

The design files for the QuP reticles (a.k.a “masks”) are located in the QC-group’s

archive directory “\Erik\Work\Ledit\ReZQArch4Q5R”. The reticles were fabri-

cated out-of-house by Digidat on quartz . The small ∼ 1µm features, specifically

the junctions, were sharp and well defined, which was critical to making smaller

overlap junctions. The reticle set and corresponding lithographic steps are sum-

179

QuP Reticle Set
Plate Number Quadrant Lithographic Step Orientation

1

A Base Wiring
B Via Etch Rotated 90◦

C Top Wiring Etch 1 Rotated 180◦

D Base Wiring Shooters
Middle µ-wave shooters

2

A Junction Overlap Etch
B Top Wiring Etch 2 Rotated 90◦

C Dielectric Etch Rotated 180◦

D Junction protection strap removal Rotated 270◦

Table B.3: QuP Reticles and corresponding lithographic steps.

marized in Table B.3. The Orientation and corresponding rotations are due to

the GSA Autostepper program for the lithography steps. This is not a standard,

one can redefine the shutters on each step rather than rotating. However, I found

that my method required fewer things to remember once I was in the cleanroom

fabricating devices.

B.4.2 Base Wiring Al Deposition

The QuP was fabricated on a 3” c-plane sapphire (Al2Ox) substrate chosen for its

low loss tangent at GHz frequencies. The base wiring metal deposition was com-

pleted using the UCSB QC-group’s custom Kurt Lesker superconducting metal

sputtering tool. The machine is needed for 45 − 60 min/wafer. The Al deposi-

tion step consists of two actions, an ion-mill step to clean the surface of the bare

sapphire (Al2Ox) wafer followed by the sputtering of Al. The recipe is shown in

180

Base Wiring Al Deposition

Action
Experimental Controls

VB IB IN VA VD PrAr Prf t
V mA mA V V Torr W min

1. Mill Al2Ox wafer 900 16 19 100 35 2E−4 n/a 2.5
2. Sputter Al
2.a. Clean Al target 900 16 19 100 35 5E−3 200 3.0
2.b. Deposition 900 16 19 100 35 5E−3 110 20.0

Table B.4: Fabrication step 1. Al base wiring deposition on UCSB QC-group’s
Lesker superconducting metal deposition tool. Experimental controls defined in
text

Table B.4, where the experimental controls for the Kurt Lesker deposition tool

are beam voltage VB, beam current IB, neutralizing current IN , discharge current

ID, Argon pressure PrAr, rf power Prf , and time t. We experience a deposition

rate ∼ 10 nm
min

using the settings in action 2.b. deposition.

B.4.3 Base Wiring Pattern

The AutoStep tool is needed for at least 60 min/wafer to complete the 25 unique

base wiring exposures to build up the base wiring connections of the 89 potential

QuPs on the wafer. Table B.5 is a wafer map for the designed qubit-resonator

coupling strengths (all coupling strengths are in MHz). The map shows a range

of coupling strengths from 20 MHz to 100 MHz, concentrated around 50 MHz as

summarized in Table B.6. Table B.7 is the wafer map for the microwave control

line coupling strengths (all coupling strength are in attoFarrads). And Table B.8

181

Qubit-Resonator Coupling Strengths in MHz
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

R1 20 20 20
R2 40 40 40 40 40 40 40
R3 80 20 80 20 80 20 80 20 80
R4 20 80 20 80 20 80 20 80 20
R5 40 40 40 40 40 40 40 40 40 40 40
R6 50 50 50 50 50 50 50 50 50 50 50
R7 60 60 60 60 60 60 60 60 60 60 60
R8 100 100 50 50 100 100 50 50 50
R9 50 100 100 100 20 100 100 100 100
R10 50 50 60 50 60 50 60
R11 60 60 60

Table B.5: Wafer map of qubit-resonator coupling strengths

summarizes the coupling options used on the various QuP designs.

B.4.4 Base Wiring Etch

The dry Al etch that defines the base wiring is completed using the Panasonic

E640 ICP etch system using a Boron trichloride (BCl3), Chlorine (Cl2) and Car-

bon tetraflouride (CF4) recipe. The chamber is cleaned with a 10 min O2 plasma

and then conditioned for 5.5 min using a blank conditioning wafer subject to the

same conditions as the actual etch as detailed in Table B.9. As soon as the wafer

is removed from the Panasonic E640 ICP etch system it is soaked with deion-

ized (DI) H2O for 10 min to scavenge the bi-products from the Al-Cl interaction.

Figure B.1a shows a photomicrograph of the device after the base wiring etch.

182

Summary of Q-R Coupling Strengths
Coupling Strength MHz # of Devices

20 12
40 18
50 22
60 17
80 9
100 11

Total Devices 89

Table B.6: Number of devices for the various qubit-resonator coupling strength
options.

Microwave Coupling Strengths in aF
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

R1 220 170 130
R2 170 220 130 170 220 170 130
R3 170 220 130 170 220 170 130 220 170
R4 170 220 130 170 170 170 130 220 170
R5 130 170 220 130 170 220 170 130 220 170 130
R6 130 170 220 130 170 220 170 130 220 170 130
R7 130 170 220 130 170 220 170 130 220 170 130
R8 170 220 170 130 220 170 220 170 130
R9 130 170 130 170 220 220 130 220 170
R10 170 220 220 130 220 170 170
R11 130 170 130

Table B.7: Wafer map of microwave coupling strengths in attoFarrads.

183

Summary of Coupling Strengths
Qubit - Resonator Microwave Coupling Strengths

Coupling Strength MHz # of Devices 220 aF 170 aF 130 aF

20 12 4 5 3
40 18 5 7 6
50 22 5 9 8
60 17 5 6 6
80 9 3 4 2
100 11 4 5 2

Total Devices 89

Table B.8: Number of devices for the various qubit-resonator and microwave
coupling strength options.

Dry Al Etch Recipe using BCl3, Cl2, CF4

Step
BCl3 Cl2 CF4 P Prf Pb t
sccm sccm sccm Pa W W sec

1 20 40 0 3.0 300 0 5
2 20 40 0 0.7 300 0 5
3 20 40 0 0.7 300 70 30
4 0 0 50 2.0 700 0 5
5 0 0 50 2.0 700 20 5

Table B.9: Dry Al etch recipe using Boron trichloride (BCl3), Chlorine (Cl2)
and Carbon tetraflouride (CF4) with chamber pressure P , plasma rf power Prf ,
substrate forward bias Pb, and step time t.

184

B.4.5 Hydrogenated Amorphous Silicon Deposition

After the base wiring has been defined the a-Si:H dielectric layer is deposited

using the UNAXIS HD PECVD system. The UNAXIS needs to be reserved for 3

hours for 1 wafer (add an hour for every additional wafer) because the chamber

needs to be cleaned at a temperature of 250◦C with Sulfur hexafluoride (SF6)

and allowed to cool back down to the deposition temperature of 100◦C. Once the

chamber is clean and has cooled down to 100◦C, the deposition is preceded by a

seasoning step that mimics the deposition recipe. This seasoning step is used to

prepare the chamber and to verify correct machine operation (e.g. to verify that

the plasma ignites). The a-Si:H recipe is summarized in Table B.10 it consists of

two main steps, the first is an Argon (Ar) mill that is used to remove the native

Al oxide and prepare the surface for the dielectric deposition. The second is the

multi-stage deposition process that results in a deposition rate of ∼ 1.3 nm/sec of

a-Si:H.

B.4.6 Pattern and Etch Vias in Dielectric

The vias are lithographically defined with the AutoStepper (by exposing reticle 1,

quadrant B across the wafer) and finish the patterning with a dry CF4, O2 etch.

The dry etch on Panasonic E640 ICP etch system punches holes through the

dielectric and exposes the base wiring for via connections between the base wiring

185

a-Si:H Dielectric Deposition

Step
SiH4 Ar P Prf Pb t
sccm sccm mTorr W W sec

1. Ar mill 0 30 1.0 600 100 15
2. Deposition
2.a. Gas Stabilization 40 5 10.0 0 0 20
2.b. Ignition 40 5 10.0 10 20 4000
2.c. Dep. low power 30 15 2.0 400 30 15
2.d. Dep. full power 30 15 2.0 400 50 180

Table B.10: a-Si:H Dielectric deposition recipe using a HD PECVD system with
chamber pressure P , plasma rf power Prf , substrate forward bias Pb, and step
time t.

Dry a-Si:H Etch Recipe using CF4, O2

Step
CF4 O2 N2 P Prf Pb t
sccm sccm sccm Pa W W sec

1 40 5 0 1.0 500 0 5
2 40 5 0 1.0 700 0 5
3 40 5 0 1.0 700 50 160
4 0 0 50 2.5 100 0 10
5 0 0 50 2.5 50 0 5

Table B.11: Dry a-SI:H etch recipe.

and top wiring Al. The chamber of the Panasonic is cleaned with a 10 min O2

plasma and then conditioned for 5.5 min using a blank conditioning wafer subject

to the same conditions as the actual etch as detailed in Table B.11. The holes

etched in the dielectric can be seen in Figure B.1b, where the red colored area is

the blanket of a-Si:H and the black regions are the holes.

186

B.4.7 Top Wiring Al Deposition

After defining the vias in the a-Si:H dielectric the wafer is covered with another

layer of Al that will become the top wiring. The deposition is carried out in

the Kurt Lesker tool and uses the same experimental parameters as detailed in

Table B.4 with an extended time (∼ 30 min) so as to deposit enough Al (∼

250− 300 nm) to fill in the voids of the a-Si:H.

B.4.8 Pattern and Etch Top Wiring Part 1

The AutoStepper exposes reticle 1, quadrant C across the wafer and finish the

patterning with the same BCl3, Cl2 and CF4 Al dry etch recipe detailed in Ta-

ble B.9. The dry etch is also followed by a 10 min DI H2O soak. Note that the

dry Al etch is nonlinear, so the etch time in step 3 of Table B.9 only needs to be

increased from 30 sec to 34 sec since most of the etch time is spent removing the

Al oxide. This etch of the top wiring (part 1 of 2) cuts holes for the junctions as

seen in Figure B.1c where the white arrows are pointing at the top wiring holes

for the three SQUID junctions.

B.4.9 Josephson Junction Al Oxidation and Deposition

After defining the holes in the top wiring the wafer is inserted into the Kurt

Lesker tool to mill, then oxidize the Al, and deposit the counter electrode of the

187

Junction Oxidation

Wafer
Chamber P [mTorr] at time t [min]
t = 0 3 5 7 9 10 11

A 86 75 71 69 66 66 66
B 100 97 96 94 93

Table B.12: Oxidations for two wafers A and B of the QuP. Wafer B oxidation
ended at t = 9 min.

Josephson junction. The milling step uses the same experimental parameters as

detailed in Table B.4 (action 1. Mill) with the exception of a reduced milling time

from 2.5 min to 2.0 min. This ion mill step removes the dirty native Al oxide that

will be replaced with a controlled oxide growth as detailed in Table B.122. After

oxidizing the Al, a fresh layer of Al is sputtered for the junction counter electrode

using the same parameters as detailed in Table B.4 (action 2.b. deposition) with

a sputtering time of15 min.

B.4.10 Pattern and Etch Junctions

The AutoStepper exposes reticle 2, quadrant A with the appropriate shifts in the

exposures across the wafer. The shifts are detailed in Table B.13. The junctions

are etched in the Panasonic E640 ICP etch system with an Ar mill combined with

Cl2. This is a slower and more controllable etch as compared to the BCl3, Cl2 and

CF4 Al dry etch. The junction etch recipe is detailed in Table B.14. The dry etch

2Ideally, both wafers have the same oxidation parameters. Since the critical current depends
both on the oxide thickness and the junction area, a higher (lower) oxidation can be compensated
for in the exposure shifts by increasing (decreasing) the overlap.

188

Junction Exposure Shifts in [nm]
Wafer C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

A 600 600 500 200 150 0 100 300 400 600 600
B 2400 2400 2000 800 600 0 400 1200 1600 2400 2400

Table B.13: Table summarizing the shift of Josephson junction overlaps across
the two wafers A and B. The junction is designed for a 2.3µm overlap. After
calibrating an etch-back of 1.1 − 1.4µm a shift of 0 nm resulted in 0.9 − 1.2µm
of overlap. All shifts indicated in the table are positive, resulting in additional
overlap. Note, this does not follow standard shift procedures of bracketing above
and below 0 nm.

Dry Junction Etch Recipe using Ar, Cl2

Step
Ar Cl2 CF4 P Prf Pb t

sccm sccm sccm Pa W W sec
1 40 3 0 3.0 400 0 5
2 40 3 0 0.2 400 0 5
3 40 3 0 0.2 400 150 160
4 0 0 50 2.0 700 0 5
5 0 0 50 2.0 700 20 10

Table B.14: Junciton etch recipe.

is followed by a 10 min DI H2O soak. This etch defines the junctions which are

the four (3 for the SQUID and 1 for the qubit) wedge shaped elements covering

the black rectangles in Figure B.1d.

B.4.11 Pattern and Etch Top Wiring Part 2

To complete the second part of the top wiring pattern and etch the AutoStepper

exposes reticle 2, quadrant B across the wafer and the Al is etched with the same

BCl3, Cl2 and CF4 recipe detailed in Table B.9. The dry etch is also followed

189

by a 10 min DI H2O soak. This etch removes the majority of the Al that capped

the dielectric layer as seen in Figure B.1e. The purple-green colored region is the

a-Si:H dielectric that will be removed in the next etch.

B.4.12 Pattern and Etch Dielectric

After patterning the regions defined in retciel 2, quadrant C for the dielectric

removal using the AutoStepper the final dry etch removes the excess a-Si:H. The

same dry CF4, O2 etch used for the via Table B.11 clears the remaining dielectric

except for the crossovers and parallel-plate capacitors. The nearly completed

device is shown in Figure B.1f, where all that remains to be removed are the

protection straps around the junctions.

B.4.13 Pattern and Wet Etch Junction Protection Straps

The final etch is a wet etch to remove the grounding protection straps around

the junctions, which are indicated with white arrows in Figure B.1f. This etch

uses 100 mL of Transene Al etch type A, warmed on a hotplate to a temperature

of T = 50◦C. At this T and with soft agitation the Al is etched at a rate ∼

10 nm/sec. The shorting straps are removed (compare the voids of Figure B.1g and

Figure B.1f) and a completed device is shown (with annotations of the elements)

in Figure B.1h.

190

Bibliography

[1] A. Aćın, D. Bruss, M. Lewenstein, and A. Sanpera. Classification of Mixed
Three-Qubit States. Physical Review Letters, 87(4):040401, Jul 2001.

[2] F. Altomare, J. I. Park, K. Cicak, M. A. Sillanpää, M. S. Allman, D. Li,
A. Sirois, J. A. Strong, J. D. Whittaker, and R. W. Simmonds. Tripartite
interactions between two phase qubits and a resonant cavity. Nature Physics,
6(10):777–781, Aug. 2010.

[3] M. Ansmann. Benchmarking the Superconducting Josephson Phase Qubit:
The Violation of Bell’s Inequality. PhD thesis, University of California, Santa
Barbara, 2009.

[4] M. Ansmann, H. Wang, R. C. Bialczak, M. Hofheinz, E. Lucero, M. Neeley,
A. D. O’Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, and J. M.
Martinis. Violation of Bell’s inequality in Josephson phase qubits. Nature,
461(7263):504–506, September 2009.

[5] O. Astafiev, K. Inomata, a. O. Niskanen, T. Yamamoto, Y. a. Pashkin,
Y. Nakamura, and J. S. Tsai. Single artificial-atom lasing. Nature,
449(7162):588–90, Oct. 2007.

[6] O. Astafiev, Y. Pashkin, T. Yamamoto, Y. Nakamura, and J. Tsai. Single-
shot measurement of the Josephson charge qubit. Physical Review B,
69(18):2–5, May 2004.

[7] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor,
T. Sleator, J. A. Smolin, and H. Weinfurter. Elementary gates for quantum
computation. Physical Review A, 52(5):3457–3467, Nov 1995.

191

[8] R. Barends, J. Wenner, M. Lenander, Y. Chen, R. C. Bialczak, J. Kelly,
E. Lucero, P. OMalley, M. Mariantoni, D. Sank, H. Wang, T. C. White,
Y. Yin, J. Zhao, A. N. Cleland, J. M. Martinis, and J. J. A. Baselmans. Min-
imizing quasiparticle generation from stray infrared light in superconducting
quantum circuits. Applied Physics Letters, 99(11):113507, 2011.

[9] D. Beckman, A. Chari, S. Devabhaktuni, and J. Preskill. Efficient networks
for quantum factoring. Physical Review A, 54(2):1034–1063, Aug. 1996.

[10] R. Bialczak, R. McDermott, M. Ansmann, M. Hofheinz, N. Katz, E. Lucero,
M. Neeley, A. O‘Connell, H. Wang, A. Cleland, and J. Martinis. 1/f Flux
Noise in Josephson Phase Qubits. Physical Review Letters, 99(18):1–4, Nov.
2007.

[11] R. C. Bialczak. Development of the Fundamental Components of A Super-
conducting Qubit Quantum Computer. PhD thesis, University of California,
Santa Barbara, 2011.

[12] R. C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero, M. Neeley, A. D.
O‘Connell, D. Sank, H. Wang, J. Wenner, M. Steffen, A. N. Cleland, and
J. M. Martinis. Quantum process tomography of a universal entangling gate
implemented with Josephson phase qubits. Nature Physics, 6(6):409–413,
Apr. 2010.

[13] R. Bianchetti, S. Filipp, M. Baur, J. Fink, C. Lang, L. Steffen, M. Boisson-
neault, A. Blais, and A. Wallraff. Control and Tomography of a Three Level
Superconducting Artificial Atom. Physical Review Letters, 105(22):1–4, Nov.
2010.

[14] F. Buscemi. Shors quantum algorithm using electrons in semiconductor
nanostructures. Physical Review A, 83(1), Jan. 2011.

[15] J. Cirac and P. Zoller. Quantum Computations with Cold Trapped Ions.
Physical Review Letters, 74(20):4091–4094, 1995.

[16] K. Cooper, M. Steffen, R. McDermott, R. Simmonds, S. Oh, D. Hite, D. Pap-
pas, and J. Martinis. Observation of Quantum Oscillations between a Joseph-
son Phase Qubit and a Microscopic Resonator Using Fast Readout. Physical
Review Letters, 93(18):2–5, Oct. 2004.

[17] A. D. Corcoles, J. M. Chow, J. M. Gambetta, C. Rigetti, J. R. Rozen, G. A.
Keefe, M. Beth Rothwell, M. B. Ketchen, and M. Steffen. Protecting super-
conducting qubits from radiation. Applied Physics Letters, 99(18):181906,
2011.

192

[18] L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I.
Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf.
Demonstration of two-qubit algorithms with a superconducting quantum pro-
cessor. Nature, 460(7252):240–244, June 2009.

[19] L. Dicarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta,
L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Preparation
and measurement of three-qubit entanglement in a superconducting circuit.
Nature, 467(7315):574–8, Sept. 2010.

[20] J. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. Leek,
A. Blais, and A. Wallraff. Dressed Collective Qubit States and the Tavis-
Cummings Model in Circuit QED. Physical Review Letters, 103(8):1–4, Aug.
2009.

[21] N. A. Gershenfeld and I. L. Chuang. Bulk Spin-Resonance Quantum Com-
putation. Science, 275(5298):350–356, Jan. 1997.

[22] S. Hill and W. Wootters. Entanglement of a Pair of Quantum Bits. Physical
Review Letters, 78(26):5022–5025, June 1997.

[23] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley,
A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland. Syn-
thesizing arbitrary quantum states in a superconducting resonator. Nature,
459(7246):546–549, May 2009.

[24] M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley,
A. D. O’Connell, H. Wang, J. M. Martinis, and a. N. Cleland. Generation of
Fock states in a superconducting quantum circuit. Nature, 454(7202):310–4,
July 2008.

[25] A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier, B. R. John-
son, J. M. Chow, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and
R. J. Schoelkopf. Generating single microwave photons in a circuit. Nature,
449(7160):328–31, Sept. 2007.

[26] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. Divincenzo, D. Loss,
M. Sherwin, and A. Small. Quantum Information Processing Using Quantum
Dot Spins and Cavity QED. Physical Review Letters, 83(20):4204, 1999.

[27] E. Jaynes and F. Cummings. Comparison of quantum and semiclassical radi-
ation theories with application to the beam maser. Proceedings of the IEEE,
51(1):89–109, 1963.

193

[28] J. Johansson, S. Saito, T. Meno, H. Nakano, M. Ueda, K. Semba, and
H. Takayanagi. Vacuum Rabi Oscillations in a Macroscopic Superconducting
Qubit LC Oscillator System. Physical Review Letters, 96(12):127006, Mar.
2006.

[29] N. Katz, M. Ansmann, R. C. Bialczak, E. Lucero, R. McDermott, M. Neeley,
M. Steffen, E. M. Weig, A. N. Cleland, J. M. Martinis, and A. N. Korotkov.
Coherent state evolution in a superconducting qubit from partial-collapse
measurement. Science (New York, N.Y.), 312(5779):1498–500, June 2006.

[30] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien. Quantum computers. Nature, 464(7285):45–53, March 2010.

[31] B. Lanyon, T. Weinhold, N. Langford, M. Barbieri, D. James, A. Gilchrist,
and A. White. Experimental Demonstration of a Compiled Version of Shors
Algorithm with Quantum Entanglement. Physical Review Letters, 99(25),
Dec. 2007.

[32] A. Lenstra and H. W. Lenstra. The development of the number field sieve.
Springer-Verlag Berlin Heidelberg, 1993.

[33] C.-Y. Lu, D. Browne, T. Yang, and J.-W. Pan. Demonstration of a Com-
piled Version of Shors Quantum Factoring Algorithm Using Photonic Qubits.
Physical Review Letters, 99(25), Dec. 2007.

[34] E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O.
Malley, A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and
J. M. Martinis. Computing prime factors with a Josephson phase qubit
quantum processor. arXiv:1202.5707v1, pages 1–5, 2012.

[35] E. Lucero, M. Hofheinz, M. Ansmann, R. C. Bialczak, N. Katz, M. Neeley,
A. D. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis. High-Fidelity
Gates in a Single Josephson Qubit. Physical Review Letters, 100(24):247001,
2008.

[36] E. Lucero, J. Kelly, R. Bialczak, M. Lenander, M. Mariantoni, M. Neeley,
A. D. O‘Connell, D. Sank, H. Wang, M. Weides, J. Wenner, T. Yamamoto,
A. Cleland, and J. M. Martinis. Reduced phase error through optimized
control of a superconducting qubit. Physical Review A, 82(4):1–7, Oct. 2010.

[37] H. Mabuchi and A. C. Doherty. Cavity quantum electrodynamics: coherence
in context. Science (New York, N.Y.), 298(5597):1372–7, Nov. 2002.

194

[38] J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier,
L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf. Coupling superconducting qubits via a
cavity bus. Nature, 449(7161):443–7, Sept. 2007.

[39] M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C. Bialczak, Y. Chen,
M. Lenander, E. Lucero, A. D. O’Connell, D. Sank, M. Weides, J. Wenner,
Y. Yin, J. Zhao, A. N. Korotkov, A. N. Cleland, and J. M. Martinis. Im-
plementing the Quantum von Neumann Architecture with Superconducting
Circuits. Science, 334(6052):61–65, Sept. 2011.

[40] J. Martinis, S. Nam, J. Aumentado, and C. Urbina. Rabi Oscillations in a
Large Josephson-Junction Qubit. Physical Review Letters, 89(11):9–12, Aug.
2002.

[41] J. M. Martinis, K. B. Cooper, R. McDermott, M. Steffen, M. Ansmann,
K. D. Osborn, K. Cicak, S. Oh, D. P. Pappas, R. W. Simmonds, and C. C.
Yu. Decoherence in josephson qubits from dielectric loss. Physical Review
Letters, 95(21):210503, 2005.

[42] R. Mcdermott. Materials Origins of Decoherence in Superconducting Qubits.
IEEE Transactions on Applied Superconductivity, 19(1):2–13, 2009.

[43] A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly,
E. Lucero, M. Mariantoni, P. J. J. O. Malley, D. Sank, A. Vainsencher,
J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrø m, and J. M.
Martinis. Planar superconducting resonators with internal quality factors
above one million. Applied Physics Letters, 100:113510, 2012.

[44] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm. Simple Pulses
for Elimination of Leakage in Weakly Nonlinear Qubits. Physical Review
Letters, 103(11):110501, 2009.

[45] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero,
A. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis. Process tomog-
raphy of quantum memory in a josephson-phase qubit coupled to a two-level
state. Nature Physics, 4:523–526, April 2008.

[46] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D.
O’Connell, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, and
J. M. Martinis. Emulation of a Quantum Spin with a Superconducting Phase
Qudit. Science, 325(5941):722–725, August 2009.

195

[47] M. Neeley, R. C. Bialczak, M. Lenander, E. Lucero, M. Mariantoni, A. D.
O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, Y. Yin, T. Yamamoto,
A. N. Cleland, and J. M. Martinis. Generation of three-qubit entangled states
using superconducting phase qubits. Nature, 467(7315):570–3, Sept. 2010.

[48] M. G. Neeley. Generation of Three-Qubit Entanglement Using Josephson
Phase Qubits. PhD thesis, University of California at Santa Barbara, 2010.

[49] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum In-
formation. Cambridge University Press, October 2000.

[50] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander,
E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Mar-
tinis, and A. N. Cleland. Quantum ground state and single-phonon control
of a mechanical resonator. Nature, 464(7289):697–703, 2010.

[51] A. D. OConnell, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz,
E. Lucero, C. McKenney, M. Neeley, H. Wang, E. M. Weig, A. N. Cleland,
and J. M. Martinis. Microwave dielectric loss at single photon energies and
millikelvin temperatures. Applied Physics Letters, 92(11):112903, 2008.

[52] J. R. Petta, a. C. Johnson, J. M. Taylor, E. a. Laird, a. Yacoby, M. D. Lukin,
C. M. Marcus, M. P. Hanson, and a. C. Gossard. Coherent manipulation of
coupled electron spins in semiconductor quantum dots. Science (New York,
N.Y.), 309(5744):2180–4, Sept. 2005.

[53] P. M. Platzman and M. I. Dykman. Quantum Computing with Electrons
Floating on Liquid Helium. Science, 284(5422):1967–1969, June 1999.

[54] A. Politi, J. C. F. Matthews, and J. L. O’Brien. Shor’s quantum factoring
algorithm on a photonic chip. Science, 325(5945):1221, Sept. 2009.

[55] C. Rigetti, S. Poletto, J. M. Gambetta, B. L. T. Plourde, J. M. Chow,
A. John, S. T. Merkel, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B.
Ketchen, and M. Steffen. Superconducting qubit in waveguide cavity with
coherence time approaching 0.1ms. arXiv:1202.5533v1, pages 1–4, 2012.

[56] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta,
A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf. Resolving photon number states in a superconducting
circuit. Nature, 445(7127):515–8, Feb. 2007.

196

[57] P. Shor. Algorithms for Quantum Computation : Discrete Logarithms and
Factoring. Proceedings of the 35th Annual Symposium on the Foundations of
Computer Science, pages 124–134, 1994.

[58] M. a. Sillanpää, J. I. Park, and R. W. Simmonds. Coherent quantum state
storage and transfer between two phase qubits via a resonant cavity. Nature,
449(7161):438–42, Sept. 2007.

[59] M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott,
M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis. Measurement of
the Entanglement of Two Superconducting Qubits via State Tomography.
Science, 313(5792):1423–1425, 2006.

[60] M. Steffen, M. Ansmann, R. McDermott, N. Katz, R. Bialczak, E. Lucero,
M. Neeley, E. Weig, A. Cleland, and J. Martinis. State Tomography of Ca-
pacitively Shunted Phase Qubits with High Fidelity. Physical Review Letters,
97(5):4–7, Aug. 2006.

[61] M. Steffen, J. M. Martinis, and I. L. Chuang. Accurate control of josephson
phase qubits. Phys. Rev. B, 68(22):224518, Dec 2003.

[62] F. Strauch, P. Johnson, A. Dragt, C. Lobb, J. Anderson, and F. Wellstood.
Quantum Logic Gates for Coupled Superconducting Phase Qubits. Physical
Review Letters, 91(16):2–5, Oct. 2003.

[63] T. Tessier, I. Deutsch, a. Delgado, and I. Fuentes-Guridi. Entanglement
sharing in the two-atom Tavis-Cummings model. Physical Review A, 68(6):1–
10, Dec. 2003.

[64] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood,
and I. L. Chuang. Experimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance. Nature, 414(6866):883–7, Jan.
2001.

[65] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, S. Kumar,
S. M. Girvin, and R. J. Schoelkopf. Strong coupling of a single photon to
a superconducting qubit using circuit quantum electrodynamics. Nature,
431(September):162–167, 2004.

[66] H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley,
A. D. O. Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin,
J. Zhao, J. M. Martinis, and A. N. Cleland. Deterministic Entanglement of
Photons in Two Superconducting Microwave Resonators. Physical Review
Letters, 106(February):060401, 2011.

197

[67] J. R. Weber, W. F. Koehl, J. B. Varley, a. Janotti, B. B. Buckley, C. G. Van
de Walle, and D. D. Awschalom. Quantum computing with defects. Proceed-
ings of the National Academy of Sciences of the United States of America,
107(19):8513–8, May 2010.

[68] A. G. White, A. Gilchrist, G. J. Pryde, J. L. O’Brien, M. J. Bremner, and
N. K. Langford. Measuring two-qubit gates. Journal of the Optical Society
of America B, 24(2):172, 2007.

[69] T. Yamamoto, M. Neeley, E. Lucero, R. Bialczak, J. Kelly, M. Lenander,
M. Mariantoni, a. OConnell, D. Sank, H. Wang, M. Weides, J. Wenner,
Y. Yin, a. Cleland, and J. Martinis. Quantum process tomography of two-
qubit controlled-Z and controlled-NOT gates using superconducting phase
qubits. Physical Review B, 82(18):1–8, Nov. 2010.

[70] J. Q. You and F. Nori. Superconducting Circuits and Quantum Information.
Physics Today, November:42–47, 2005.

198

	Contents
	Introduction
	Shor's Algorithm
	A Practical Use of a Quantum Computer: Finding Prime Factors
	Classical Subroutines
	Quantum Subroutine

	A Qubit and The Bloch Sphere
	Qubit Control
	The Density Matrix Description

	Decoherence
	Multiple Quantum Elements
	Superposition and Entanglement
	The Road Ahead

	A Josephson Phase Qubit Quantum Processor
	Quantum Integrated Circuits
	Large Qubits

	The QuP Fabrication
	Superconducting Coplanar Waveguide (CPW) Resonator: Linear Harmonic Oscillator
	Half-wavelength CPW Bus Resonator and Quarter-wavelength CPW Quantum Memory Resonators

	Phase Qubit: Nonlinear, Anharmonic Oscillator
	Completed Qubit
	Single-Shot SQUID-based Measurement and Readout

	Scaling Up: Connecting Multiple Quantum Elements to Form The QuP
	Experimental Setup and electronics
	Custom Control Electronics

	Reducing Unwanted Transitions Into The Phase-Qubit's |f"526930B State: Amplitude Errors
	Probability Errors From Measurement
	Amplitude Errors Due to Qubit Population Leaking Into The |f"526930B State
	High Fidelity Gates

	Reducing Unwanted Virtual Transitions Into The Phase-Qubit's |f"526930B State: Phase Errors
	Phase Errors Due to Virtual Transitions
	Amplifying Phase Error
	Measuring Phase Error
	Correcting Phase Error

	Amplitude Error: The Redux
	Demonstrating Control
	Z-pulse Calibration: For Three Axis Control

	15=35, Some of The Time
	The QuP
	Device Description and Capabilities
	IDLE Bias
	Memory and Coupling Operations
	Simultaneous Measurement
	High-Level QuP Operations

	Experimentally Verifying The QuP
	Swap Spectroscopy: Phase Qubit as a Spectrum Analyzer

	Fast Entangling Logic
	Enhanced Coupling Strength with The Number of Qubits Interacting with The Bus Resonator
	Rapid Entanglement: Bell and W-States

	Compiled Version of Shor's Algorithm
	Four Qubit Quantum Circuit
	Recompiling The Quantum Circuit
	Three Qubit Quantum Circuit

	Quantum Runtime Analysis
	Step 1: Bell States via C-Phase Gate
	Step 2: GHZ States After Two CNOT Gates
	Step 3: Three Qubit QST

	Shor's Algorithm Output
	Three-Qubit QST and Single-Qubit QST
	Raw Probabilities
	Linear Entropy of The Output Register
	Check Experiment: No Entangling Operations

	Sources of Error
	Conclusion: 15 = 35

	Daily Automated Calibrations
	The Correct (Software) Tool For The Job
	Qubit Control Channels and The Pyle
	Automated Qubit Calibrations
	Experimental Interface
	41 Automatic Calibrations per Qubit

	Daily Automation Code
	Top Level Function Calls
	Bias Calibrations
	Measurement Calibrations
	Qubit X,Y Pulse Control Calibrations
	Single Qubit Scans
	Qubit-Resonator Calibrations: Bus and Memory
	Gate Calibrations

	QuP Fabrication
	Fabrication Overview
	Scheduling
	Tips For Success In The Cleanroom
	QuP Fabrication Recipe
	Reticle Set
	Base Wiring Al Deposition
	Base Wiring Pattern
	Base Wiring Etch
	Hydrogenated Amorphous Silicon Deposition
	Pattern and Etch Vias in Dielectric
	Top Wiring Al Deposition
	Pattern and Etch Top Wiring Part 1
	Josephson Junction Al Oxidation and Deposition
	Pattern and Etch Junctions
	Pattern and Etch Top Wiring Part 2
	Pattern and Etch Dielectric
	Pattern and Wet Etch Junction Protection Straps

	Bibliography

