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Abstract

Computing prime factors using a Josephson phase-qubit architecture:

15 = 3× 5

by

Erik Anthony Lucero

Josephson phase-quantum-bits, (“qubits”), together with superconducting res-

onators, comprise the essential quantum elements in a state-of-the-art quantum

processor (QuP). A QuP can be used to exploit quantum mechanics to find the

prime factors of composite numbers by running Shor’s algorithm[57].

In this thesis, I describe the first solid-state demonstration of a compiled ver-

sion of Shor’s algorithm. To meet this challenge, I designed a QuP so that I could

map the problem of factoring the number N = 15 onto a quantum circuit that

is compatible with our technological capabilities. The QuP is composed of nine

quantum elements: four phase qubits and five superconducting coplanar waveg-

uide (CPW) resonators. Using this device, I ran a three-qubit complied version of

Shor’s algorithm and successfully found the prime factors 48 % of the time (com-

pared to the ideal success rate of 50 %). In addition, the QuP produced coherent

interactions between five quantum elements, and bi- and tripartite entanglement,

xix



which was verified via quantum state tomography (QST).

Scaling up to nine quantum elements and performing these experiments rep-

resent key milestones to realizing a quantum computer. Continued improvements

in the superconducting qubit coherence times and more complex circuits should

provide the resources necessary to factor larger composite numbers and run more

intricate quantum algorithms in the near future.
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Chapter 1

Introduction

We are at a very exciting point on the experimental road to a quantum computer.

Much like the days of the first transistor, which physically occupied an entire table-

top, these coarse, or some might say crude, initial offerings of engineered quantum

systems require a lot of physical space and infrastructure (e.g. Figure 1.1). It is

not clear, nor will I speculate here on which architecture will ultimately persevere

(it is really too early to tell). Instead, in this thesis we will delve into the cur-

rent experimental challenges of building, operating, and programming a quantum

processor (QuP) -a precursor to realizing a quantum computer[49, 30]- to run a

compiled version of Shor’s Algorithm[57]. The solid-state quantum processor de-

scribed here is made up of specially engineered quantum bits herein referred to

as “qubits”. These qubits are of the superconducting phase qubit variety, along

1



with superconducting quantum memory, arranged in a quantum von Neumann

architecture[39]. This quantum architecture is analogous to the, perhaps more fa-

miliar, classical von Neumann architecture, which comprises a central processing

unit “CPU” (or quantum-CPU, “qu-CPU” for short) and random access mem-

ory “RAM” (or “qu-RAM”). And just as classical processors are built up from

a number of simpler components (transistors or “bits”), so too is this quantum

processor, which is built up from many “qubits”.

Superconducting qubits belong to a family of quantum circuits that could

be used as components in a quantum computer. These electrical circuits, like

their classical computer counterparts of bits in silicon, share the advantage of

conventional microfabrication techniques, which allows for straight-forward scaling

by simply arranging more components on a chip. Achieving this scaling with

quantum bits of any variety is a prodigious challenge, but the initial steps are now

underway with superconducting qubits. The state of the art quantum processor

described in this thesis is physically comprised of nine quantum elements: four

superconducting phase qubits and five superconducting resonators all designed to

be manipulated with microwave radiation.

The solid state quantum processor (QuP) that I will describe here builds on

the work of many successful experiments and infrastructure. For more details

on the UCSB superconducting quantum computing group’s, (herein referred to

2



Figure 1.1: UCSB QC-Group Superconducting qubit infrastructure. Picture
taken from underneath refrigerator with a wide angle lens. (Center) He3-He4

dilution refrigerator (DR) open for sample mounting. (Center) Cu-plate qubit
sample stage with qubit devices. DR is suspended on vibration isolation pylons
(edges of the black star structure). (Left) Rack of custom microwave electronics
used to control qubits. (Right near yellow ladder) Dewars of cryogens: liquid
Helium and liquid Nitrogen to operate refrigerator. (Bottom Left) Experimental
control station.
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as the “UCSB QC-group”), phase qubit fabrication, operation, and software in-

frastructure, I refer the interested reader to Markus Ansmann’s pioneering PhD

thesis[3]. Of course the complexity of the experiments have continued to evolve

and I will be providing the details on how things have changed. The backbone

to our control-software infrastructure relies on the LabRAD software1 originally

conceived and developed by Markus Ansmann and Matthew Neeley. Our custom

qubit control-electronics were developed in-house by Professor John Martinis and

myself2. Together these efforts have enabled a number of crucial advancements

and experiments in this field, including the work I describe in this thesis.

The field of quantum computing has sparked the interest of the scientific

community3 and the popular press4 as a number of exciting technological break-

throughs have been achieved. In an effort to stir the reader to investigate beyond

this thesis, Figure 1.2 highlights a handful of key devices (by no means exhaustive)

from the UCSB QC-group. These devices were chosen for their scientific relevance

and because they clearly show how the hardware has evolved over the years. I

make note of this evolution in hardware because each new device and experiment

builds upon the success of the previous devices. I will also show in Appendix A

1http://sourceforge.net/projects/labrad/
2https://commando.physics.ucsb.edu/tw/view/Electronics/PubDocs
3http://www.aaas.org/news/releases/2010/1216sp_boy.shtml?sa_campaign=

Internal_Ads/AAAS/AAAS_News/2010-12-16/jump_page
4http://www.nytimes.com/2010/11/09/science/09compute.html,http://www.bbc.

co.uk/news/science-environment-12811199,http://www.nytimes.com/2012/02/28/
technology/ibm-inch-closer-on-quantum-computer.html
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that the software has evolved in a similar fashion. When what previously would

take us months or years to calibrate and figure out, in all of the nuance and detail

important to an experiment, we can now (and need to continue to be able to!)

repeat in a few minutes on the freshest fabricated device.

Looking at the devices shown in Figure 1.2 one can see the increase in device

complexity starting at top left and moving across the row and then down the page.

The device pictured in Figure 1.2a was used to create both Fock states[24] and

arbitrary quantum states[23] using a single phase qubit (white rectangle near the

center) capacitively coupled to a superconducting resonator (long black line with

sequential gold highlights) forming a device with a total of two quantum elements.

The next device in Figure 1.2b was used to perform the first solid-state viola-

tion of Bell’s inequality[4]. It is comprised of two phase qubits (white rectangles

near the green squares at either side, left and right, of the device) coupled via a

resonator (serpent pattern in the center) forming a total of three quantum ele-

ments.

The purple colored device in Figure 1.2c was designed to show the first demon-

stration of a mechanical harmonic oscillator in its quantum ground state and in

a superposition of quantum states[50]. The device paired a phase qubit with a

mechanical resonator, analogous to the electromagnetic resonator in the previous

two devices.

5
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Figure 1.2: Evolution of UCSB Superconducting qubit devices.
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The device pictured in the black and white photomicrograph in Figure 1.2d

was used to show both classes of three qubit entanglement[47]. This device is

comprised of four phase qubits (four rectangles with the white lines extending out

at ∼ 45◦) coupled to one another via a capacitive island (white ‘X’ in the center),

for a total of four quantum elements.

The device in Figure 1.2e was used to demonstrate the first prototype of

the quantum von Neumann architecture[39] and it was used to create NOON

states[66]. The device has two phase qubits and three superconducting resonators,

where one of the resonators is shared between both qubits, for a total of five en-

gineered quantum elements.

The final device in the photomicrograph matrix in Figure 1.2f (rainbow colored

due to diffraction) was used to run the first solid sate demonstration of Shor’s

algorithm[34]. It is comprised of four phase qubits (rectangles positioned on the

edge about the center of the chip) and five superconducting resonators (serpent

patterns in the middle and splitting off from the qubit at ∼ 45◦) for a total of

nine engineered quantum elements. This device is the basis for this thesis.

In this thesis we demonstrate experimental control over the nine supercon-

ducting quantum elements that form the QuP and run a quantum algorithm,

namely Peter Shor’s prime factorization algorithm[57] appropriately compiled for

our number of qubits to factor the number N = 15 into its two prime factors

7



(wait for it). In addition, we show two-qubit entanglement and both classes of

three-qubit entanglement both via fast entangling operations, and by combining

single and coupled qubit gates. This state of the art solid-state QuP helps to

underline the promise of superconducting qubit architectures for scaling up to a

full fledged quantum computer.

1.1 Shor’s Algorithm

All this talk of quantum bits, quantum processors, and quantum computers, but

what are they good for? Many things[49] but let’s be clear, the end-game for quan-

tum computers is not one that merely replaces your desktop (or tablet) personal

computer5. Instead, the vision is more revolutionary in that a full-scale quantum

computer would use a completely new and different form of computation, one

that relies on the physics of quantum mechanics to solve problems that would

otherwise be intractable on a computer that relies merely on classical physics.

5Imagine a dilution refrigerator like the one pictured in Figure 1.1 and a group of graduate
students to run it in every home!
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1.1.1 A Practical Use of a Quantum Computer: Finding Prime

Factors

The problem of finding the prime factors of some composite number6 is considered

a “hard” problem from a computer science and mathematical perspective and is

why contemporary encryption schemes like RSA (named after the inventors, Ron

Rivest, Adi Shamir, and Leonard Adleman) make use of this fact for secure data

transmissions (e.g. sending someone your credit card information).

The problem is as follows: we are given some composite number N , like the

largest published RSA number7 shown in Table 1.1, and we seek the two con-

stituent prime numbers p and q that were multiplied together to form N . Armed

with a classical computer and the best known classical algorithm, the general num-

ber field sieve[32], it will take sub-exponential timeO(exp[(log(N))1/3(log(log(N)))2/3])

to find a solution. In other words, we can expect to wait on the order of the age of

the universe, currently estimated to be 13 billion years (4× 1017 seconds), before

we obtain p and q.

However, given a quantum computer capable of running the best known quan-

tum algorithm, Shor’s algorithm[57], which exploits quantum mechanics, we would

only have to wait polynomial time O((log(N))3)[57]. In other words, we would

6A composite number is a number that is formed by the product of multiplying prime numbers
together.

7RSA-2048 is a 2048 bit (617 decimal digit) composite number.
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RSA-Number Value
RSA-2048 = 2519590847565789349402718324004839857142928212620

4032027777137836043662020707595556264018525880784
4069182906412495150821892985591491761845028084891
2007284499268739280728777673597141834727026189637
5014971824691165077613379859095700097330459748808
4284017974291006424586918171951187461215151726546
3228221686998754918242243363725908514186546204357
6798423387184774447920739934236584823824281198163
8150106748104516603773060562016196762561338441436
0383390441495263443219011465754445417842402092461
6515723350778707749817125772467962926386356373289
9121548314381678998850404453640235273819513786365
64391212010397122822120720357

Table 1.1: The largest published RSA number, RSA-2048, 2048 bit (617 decimal
digit) composite number.

only have to wait on the order of 10’s of seconds or about the time to brew a

cup of coffee -a very practical amount of time, to factor even the largest RSA

number. Therefore, a quantum computer can solve this problem faster than a

classical computer by many orders of magnitude ∼ 1015.

This thesis was inspired by this practical application. To meet this challenge,

I designed a QuP to map the problem of factoring N = 15 onto a quantum circuit

that is compatible with our technological capabilities. N = 15 was chosen because

it is the smallest composite number that satisfies the conditions appropriate to

test Shor’s algorithm8, namely 15 is a composite number, it is not prime, and it

is not even. If any of these conditions are not satisfied Shor’s algorithm fails. The

8The next composite number being N=21, which is a significantly more complex problem.
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Integer Composite Prime Even Notes
2 No Yes Yes Shor Algo. Fails: prime, even
3 No Yes No Shor Algo. Fails: prime
4 No No Yes Shor Algo. Fails: not composite

p = q, even
5 No Yes No Shor Algo. Fails: prime
6 Yes No Yes Shor Algo. Fails: even
7 No Yes No Shor Algo. Fails: prime
8 No No Yes Shor Algo. Fails: even
9 No No No Shor Algo. Fails: not composite

p = q
10 Yes No Yes Shor Algo. Fails: even
11 No Yes No Shor Algo. Fails: prime
12 Yes No Yes Shor Algo. Fails: even
13 No Yes No Shor Algo. Fails: prime
14 Yes No Yes Shor Algo. Fails: even
15 Yes No No Shor Algo. Succeeds
16 No No Yes Shor Algo. Fails: not composite

p = q, even
17 No Yes No Shor Algo. Fails: prime
18 Yes No Yes Shor Algo. Fails: even
19 No Yes No Shor Algo. Fails: prime
20 Yes No Yes Shor Algo. Fails: even
21 Yes No No Shor Algo. Succeeds.

Table 1.2: Table of potential composite numbers to test Shor’s algorithm.

table of integers from N = 2 to N = 21 are shown in Table 1.2 along with notes

of whether or not Shor’s algorithm would succeed. Note that the integer N = 21

also meets the conditions to test Shor’s algorithm, but I leave that for a future

demonstration.

To find the prime factors of (odd) composite numbers, like N = 15 or the RSA-

2048 number, Shor’s algorithm combines the power of both classical and quantum

11
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Figure 1.3: Finding prime factors using Shor’s algorithm illustrated in a top-level
diagram.

computation in a three subroutines, which are sketched out in Figure 1.3.

1.1.2 Classical Subroutines

The first and last step in Shor’s algorithm are classical subroutines, which rely on

an efficient variant of Euclid’s greatest common divisor (GCD) algorithm. The

first step is to select the number a. This can be done by randomly selecting

a number between 1 and N and then checking that it is co-prime9 with N via

Euclid’s GCD algorithm. If it is, then the next step is to continue on to the

quantum routine. If it is not co-prime with N , another number is chosen and

9a and N being co-prime means that for 1 < a < N the greatest common divisor between a
and N is 1.
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Figure 1.4: Simple illustration of Greatest Common Divisor.

checked until this condition is satisfied. A simple illustration of finding the GCD

is shown in Figure 1.4, where we consider a rectangle with area A = a × N and

we seek the largest value of c that divides a and N exactly, GCD(a,N ) = c. For

the co-prime case between a and N , c = 1.

1.1.3 Quantum Subroutine

With the two inputs into the algorithm namely, the number N that we want to

factor and a co-prime a, we can continue on to the quantum computation. Shor’s

algorithm requires a quantum computer to find the period r of the function f(r) =

armod(N ). This subroutine utilizes the quantum computer’s power to evaluate

f(r) for many values of r simultaneously. Fortunately, for the N = 15 case, we

can check the the quantum computer’s solutions by evaluating f(r) = armod(N )

for N = 15 and its co-primes.
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r armod(N ) Result
1 71mod(15) = 7mod(15) 7
2 72mod(15) = 49mod(15) 4
3 73mod(15) = 343mod(15) 13
4 74mod(15) = 2401mod(15) 1
5 75mod(15) = 16,807mod(15) 7
6 76mod(15) = 117,649mod(15) 4
7 77mod(15) = 823,43mod(15) 13
8 78mod(15) = 5,764,801mod(15) 1
9 79mod(15) = 40,353,607mod(15) 7
...

...
...

r = 4n for integer n

Table 1.3: Table of values for evaluating armod(N ) for a = 7 and N = 15.

Consider the Example N=15

The first step is to find a co-prime a. For N = 15 it is straightforward to check the

possible co-primes for 1 < a < N , by simple division. Here is the set of co-primes

a ∈ {2, 4, 7, 8, 11, 13, 14}. For pedagogical reasons I select a = 7 and a = 4 to

illustrate two different periods.

The next step is to find the smallest power for a = 7 that satisfies the equation

armod(N ) = 1 . Table 1.3 tabulates the values of armod(N ) for a = 7, N = 15,

and increasing r. From the results in Table 1.3 it is clear that for co-prime a = 7

and N = 15, the function f(r) = armod(N ) has a period, r = 4. In other words,

the function repeats every fourth integer.

As another example, let a = 4. From the results in Table 1.4 f(r) has a period

of r = 2. Repeating these calculations for the remaining co-primes a, it can be

14



r armod(N ) Result
1 41mod(15) = 4mod(15) 4
2 42mod(15) = 16mod(15) 1
3 43mod(15) = 64mod(15) 4
4 44mod(15) = 256mod(15) 1
...

...
...

r = 2n for integer n

Table 1.4: Table of values for evaluating armod(N ) for a = 4 and N = 15.

shown that for a ∈ {2, 7, 8, 13} these co-primes all have a period r = 4 and for

a ∈ {4, 11, 14}, r = 2.

Armed with period r of the function f(r) = armod(N) we finish the computa-

tion by employing Euclid’s GCD algorithm to find the GCD between, GCD(ar/2±

1 ,N ) = {p, q}. For p = GCD(ar/2 + 1,N) (and q = GCD(ar/2 − 1,N)), the pre-

scription looks likes the following: p = rk−1 for k steps, until rk = 0.

k = 0 :

ar/2 + 1 = q0 ×N + r0

k = 1 :

N = q1 × r0 + r1

k = 2 :

r0 = q2 × r1 + r2

...

rk−2 = qk × rk−1 + rk. (1.1)

Where qk (rk) is the quotient (remainder) of the kth step.

For a = 7 and r = 4 the calculations proceed as following:
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p = GCD(50, 15)

k = 0 :

50 = 3× 15 + 5

k = 1 :

15 = 3× 5 + 0

∴ p = r0 = 5, ∵ r1 = 0. (1.2)

The algorithm finishes because r1 = 0, and therefore p = r0. Similarly, for q:

q = GCD(48, 15)

k = 0 :

48 = 3× 15 + 3

k = 1 :

15 = 5× 3 + 0

∴ q = r0 = 3, ∵ r1 = 0. (1.3)

Thereby completing the algorithm and recovering the prime factors, p and q that

were multiplied together to give N .

1.2 A Qubit and The Bloch Sphere

In order to run a quantum algorithm, we first need quantum bits, or “qubits”.

Qubits are the simplest quantum system with just two states. We will call theses

states |g〉 and |e〉, analogous to the classical binary digit or “bit” which can take

on the values 0 or 1. To completely describe the state of the qubit |ψ〉, we can

16



write |ψ〉 = α |g〉 + β |e〉 where the coefficients α and β are complex numbers,

referred to as “amplitudes” for the system to be in these two eigenstates. In other

words, the qubit state can be in some amount of |g〉 and |e〉 at the same time

dictated by the values of α and β. These coefficients satisfy the normalization

condition |α|2 + |β|2 = 1 and can be interpreted as probabilities: P0 = |α|2 is the

probability that upon measurement the system will be found to be in state |g〉,

while P1 = |β|2 is the probability that the system will be found in state |e〉.

Because of the normalization constraint |α|2 + |β|2 = 1, we can write an

arbitrary qubit state |ψ〉 = eiφα cos( θ
2
) |g〉+eiφβ sin( θ

2
) |e〉, where the angle θ varies

between 0 and π. Since global phases are unobservable in quantum mechanics, we

can restrict the amplitude, α to be real (by setting φα = 0), leaving a relative phase

on β (φβ → φ) and allowing us to rewrite the qubit state as |ψ〉 = cos( θ
2
) |g〉 +

eiφ sin( θ
2
) |e〉, where the relative phase φ can vary from 0 to 2π.

Writing the qubit state in this spherical form, with azimuthal angle φ and

polar angle θ, provides us with a nice geometric representation of a unit sphere,

also known as the Bloch sphere, as shown in Figure 1.5.

1.2.1 Qubit Control

In the Bloch sphere picture qubit control corresponds to rotations of the qubit

state |ψ〉 about some axis. These rotations are analogous to the familiar two-state
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Figure 1.5: The Bloch sphere.

spin-1
2

particle subject to a magnetic field. Rotations about the x-, y- and z-axes

of the Bloch sphere are generated by the Pauli matrices

σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 −1

)
. (1.4)

Where a rotation Rz(γ) about the z-axis by some angle γ takes the initial qubit

state |ψ〉 to |ψ′〉 via the unitary operation,

|ψ′〉 = U |ψ〉 , (1.5)

where

U = Rz(γ)

= exp(−(iγ/2)σz). (1.6)
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Consider a uniform magnetic field applied in the z-direction to a spin-1
2

parti-

cle. The Hamiltonian that describes this interaction is given by H = ~ω
2
σz, where

~ is the Planck constant over 2π and ω is the Larmor frequency proportional to

the applied magnetic field. The unitary time evolution operator is therefore given

by

U(t) = exp(−iHt/~)

= exp(−i(ωt/2)σz). (1.7)

Comparing Equation 1.6 to Equation 1.7 we note that U(t) looks just like

the rotation about the z-axis Rz(γ) with ωt replacing the angle γ. And similarly

for rotations about the x-axis Rx(γ) = exp (−(iγ/2)σx) and the y-axis Ry(γ) =

exp (−(iγ/2)σy).

Although three axes control is convenient, it turns out that with control over

just two axes, say x and z one can build up any rotation Rα(γ), where α is an

arbitrary axis. This provides complete control over the qubit state -an important

requirement for quantum computation.

1.2.2 The Density Matrix Description

Pure states map to the Bloch sphere, as described above and illustrated in Fig-

ure 1.5, but how can we describe the qubit state in a real experiment, where it
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i

Figure 1.6: Density matrix for a single qubit. Each blue arrow represents a
complex number formed by 〈g|ρ|g〉, 〈g|ρ|e〉, 〈e|ρ|g〉, and 〈e|ρ|e〉

interacts with the environment and is manipulated with imperfect controls? The

qubit can no longer be described by just a pure state, but instead it can be de-

scribed as a collection of pure states. More succinctly we can employ the density

matrix formalism, which allows for a quantum system to be in a probabilistic

mixture of different pure states. The density matrix ρ is defined as
∑

i pi |ψi〉 〈ψi|,

where pi is the probability that the system is in the (pure) state |ψi〉. The density

matrix formalism also allows for points inside the Bloch sphere, which represent

mixed states and accounts for decoherence. Another advantage to the density ma-

trix description is that it generalizes to more than one qubit. For the majority of

this thesis I will stick with the density matrix description, but wherever possible

for single qubits I will use the simpler pure state model.

To help familiarize the reader with another way the density matrix is displayed

lets look at a representative density matrix for a single qubit, as shown in Fig-
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ure 1.6. The axes drawn off to the right of the plot apply to each of the four blue

arrows. The ordinate axis is the imaginary axis that ranges from −i to i. The

abscissa axis is the real axis that ranges from −1 to 1. The four blue arrows repre-

sent the complex number formed by 〈g|ρ|g〉, 〈g|ρ|e〉, 〈e|ρ|g〉, and 〈e|ρ|e〉. The data

shown are for a qubit (theoretically) prepared in the equal superposition state,

|ψ〉 = 1√
2
(|g〉+|e〉), which can be written as ρ = |ψ〉〈ψ| = 1

2
[(|g〉+|e〉)(〈g|)+〈e|)] =

1
2
(|g〉〈g|+ |g〉〈e|+ |e〉〈g|+ |e〉〈e|). So, each of the four combinations are (theoret-

ically) represented by an arrow of length 1/2 pointing completely along the real

axis.

1.3 Decoherence

Although extensive efforts are made to isolate qubits from the environment so

as to protect the fragile quantum states we still have to control, measure, and

connect qubits so they can interact with one another. These additional degrees

of freedom (collectively referred to as “the environment”) provide routes for the

quantum states to leak into or “decohere”. Decoherence refers to these various

processes where the coupling to the environment deteriorates the quantum state.

One process is relaxation, where the excited state dissipates energy into the

environment and relaxes to the ground state. Consider the Bloch sphere picture,

where a qubit is prepared in the |e〉 state. As it relaxes the vector shrinks towards
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the middle of the sphere and continues to relax all the way back into the ground

state. Relaxation is described by an exponential decay time T1.

Another decoherence process is dephasing. Consider a qubit state prepared in

the equator of the Bloch sphere, |ψ〉 = 1√
2
(|0〉+eiφ |1〉) with a definite phase φ = 0.

Dephasing causes the qubit transition frequency to fluctuate, which is like applying

randomized z-rotations, thereby randomizing φ and reducing the phase coherence.

In the Bloch sphere picture, this process shrinks the state vector towards the

center. Dephasing is commonly described by an exponential decay time Tφ, but

because relaxation also causes loss of phase coherence the two times are often

expressed as one characteristic decoherence timescale, T2, where 1
T2

= 1
2T1

+ 1
Tφ

.

As one might guess decoherence is one of the main limiting factors for experi-

mentalists. The trade off between protecting the qubit on the one hand (reducing

decoherence) and being able to easily manipulate and encourage qubits to interact

on the other (which typically increases decoherence) is a continuous engineering

issue. Reducing decoherence continues to be a topic of research in all quantum

information architectures, including superconducting qubits[55, 43, 8, 17].

1.4 Multiple Quantum Elements

Because our quantum processor is comprised of quantum elements that include

qubits (which ideally have only two “computational states”) and superconducting
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resonators (which are quantum harmonic oscillators that have many levels enu-

merated by 0, 1, 2, 3 . . . n) in this thesis, I will use the notation |g〉, |e〉, to represent

the “ground” and “excited” states of a qubit and I will increment the letter ac-

cordingly for the higher excited states of the qubit, i.e. |f〉, |h〉, . . ., etc. Whereas

for the resonator states, I will use the notation |0〉 , |1〉 , . . . , |n〉 to represent the

photon number states of the resonator.

To describe the ground state of the full nine quantum element system we

simply combine the individual states for the resonators and qubits via an outer

product |00000〉⊗ |gggg〉, where the set of five “0”s represent the ground state for

the five resonators and the four “g”s represent the ground state for the respective

qubits. From this notation it should be clear when describing only a subset of

elements, like one resonator in the ground state and two qubits in the first excited

state, e.g. |0〉 ⊗ |ee〉 (or more compactly, |0ee〉).

The current state of the art in superconducting qubits is nine quantum ele-

ments, but simply placing nine isolated quantum elements on a single chip allows

for nothing more exciting than single qubit dynamics. However, with supercon-

ducting quantum elements we can make connections with superconducting wires

and capacitors. The size of the capacitors set a maximum coupling strength be-

tween the elements. Although the coupling capacitors are fixed we can still turn

the coupling interaction on and off by electronically adjusting the qubit |g〉 → |e〉
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transition frequency.

In Chapter 2, I will describe the coupling scheme implemented between the

phase qubits and the superconducting resonators that form the QuP. As a conse-

quence of this scheme, the QuP is capable of various forms of controllable multi-

quantum element interactions and the ability to build up quantum algorithms via

the standard single- and coupled-qubit gate model.

1.5 Superposition and Entanglement

Superposition, as discussed above in §1.2, refers to a physical system that must

be described by its amplitude to be in each of a set of possible eigenstates. Recall

that these amplitudes (α and β above) are complex numbers that when squared

give the probability of measuring the system in that particular state. When a

system is strongly measured (as opposed to only measured weakly [29]), it will be

found in one and only one of these eigenstates. However, all the time before and

leading up to measurement the state is described by the entire superposition.

Entanglement in quantum mechanics refers to a (two or more) multi-body

quantum state that can no longer be described as a product state. The system is

instead in a compound state where the participating components are intertwined,

or entangled. Entanglement plays a key role in quantum mechanics and by no

surprise also in quantum computation. In fact, entanglement is the underlying
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Figure 1.7: Entangled two qubit state: Bell singlet |ψs〉 = (|ge〉 − |eg〉)/
√

2. Data
are described in the text and displayed in (a) arrow plot and (b) bar plot.

phenomena that gives rise to correlations between the participating qubits that

violates correlations predicted by invoking classical physics. Entanglement is one

of the characteristics that distinguishes quantum computers from classical com-

puters and what gives rise to the speedup over classical computation.

A canonical example of a two qubit entangled state is a “Bell-singlet”, |ψs〉 =

(|ge〉 − |eg〉)/
√

2. Upon writing this state, one can glean that there is no way

to extract either qubit from the entangled state to form a product state, e.g.
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|ψs〉 6= |g1〉 (|e2〉 − |g2〉), where the subscripts refer to qubit 1 and 2 respectively.

In an experiment, where the Bell singlet is prepared and qubit 1 is measured in the

ground state |g1〉, qubit 2 will be found in the excited state |e2〉, and vice versa.

In other words, the action of measuring qubit 1 (2) determines the outcome of

qubit 2 (1). These correlations will continue to exist even when the qubits are

separated in space or time or when different measurement axes are used.

The Bell singlet can be expressed as a density matrix,

ρs = |ψs〉〈ψs|

=
1

2
(|ge〉〈ge| − |ge〉〈eg| − |eg〉〈ge|+ |eg〉〈eg|) (1.8)

and displayed like the data shown in Figure 1.7, where I introduce another more

commonly used “metropolis” or bar-graph in Figure 1.7b along with the now

familiar arrow plot in Figure 1.7a. The data here are for the ideal preparation of

the Bell singlet.

Starting with the arrow plot in Figure 1.7a, the axes drawn off to the right

of the plot apply to all sixteen origins for arrows. The ordinate axis is the imag-

inary axis that ranges from −i to i. The abscissa axis is the real axis that

ranges from −1 to 1. The sixteen arrows represent the complex numbers formed

by 〈gg|ρs|gg〉,〈gg|ρs|ge〉,〈gg|ρs|eg〉,〈gg|ρs|ee〉, . . . , 〈ee|ρs|ee〉. From Equation 1.8

there are (theoretically) four arrows of length 1
2

pointing along the positive (neg-

ative), 〈ge|ρs|ge〉, 〈eg|ρs|eg〉 (〈ge|ρs|eg〉, 〈eg|ρs|ge〉) real axis.
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The metropolis plot in Figure 1.7b breaks the data into two plots (one for the

real and one for the imaginary components). Although I have shown both real and

imaginary components, it is common to show only the real components especially

when the imaginary components are zero (or nearly vanishing experimentally). I

have also left off the middle labels |ge〉, |eg〉, 〈ge|, and 〈eg| for visual clarity. The

four bars correspond to the same four numbers as above in Figure 1.7a.

Being able to prepare and measure the existence of two-qubit and three-qubit

entanglement provides a benchmark that can be used across quantum architec-

tures. Therefore, we measure both two and three qubit entanglement and in §5.7.4,

we show that entanglement is necessary to successfully run a quantum algorithm.

1.6 The Road Ahead

With this introductory chapter behind us, the remainder of this thesis will proceed

in the following manner. In Chapter 2, I describe our superconducting resonators

and phase qubits and how they are designed, fabricated, and connected to form a

quantum processor (QuP). Since we ultimately want to run a quantum algorithm

on this QuP, which requires electronic-manipulation of the quantum elements, we

first need to understand how to optimally control the phase qubits. Therefore,

in Chapter 3, I will describe how we experimentally reduced amplitude errors,

an error associated with control, down to fault tolerant levels through accurate
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and precise manipulation of the qubit. Then in Chapter 4, I will discuss how

we experimentally implemented a control theory to reduce phase errors, which

consequently allowed us to perform even faster high fidelity single qubit gates,

and thereby reduced the overall Shor algorithm time.

With a solid handle on the single qubit material, we move on to the final

chapter, which describes our experiments with the nine quantum element (four

phase qubits and five resonators) QuP. Wherein, I will discuss the details of:

characterizing all nine-quantum elements via (“swap”) spectroscopy in §5.3.1, the

fast-entangling protocols and capabilities of the QuP to create two and three-

qubit entangled states in §5.4, the compiling of Shor’s algorithm in §5.5.1, and

the final quantum circuit that we used to find the prime factors of the composite

number N = 15 with co-prime a = 4. I also present the quantum runtime

analysis of the algorithm in §5.6, where we show, using quantum state tomography

(QST)[59] that we have quantum entanglement over the complete duration of

Shor’s algorithm in §5.6.1 and in §5.6.2. And finally, we present the output of

the algorithm from three experimental perspectives in §5.7: full three-qubit QST,

single qubit QST of the output register, and the raw output of the algorithm.

We conclude with a check experiment in §5.7.4, where we run the algorithm sans-

entanglement, thereby confirming that entanglement is necessary for the success

of the algorithm.
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This capability to build and operate a nine-quantum element device, and

demonstrate a compiled version of Shor’s algorithm, represents a significant step

toward scaling up to larger numbers of qubits with an architecture that may

eventually lead to a quantum computer.

29



Chapter 2

A Josephson Phase Qubit Quantum

Processor

In this chapter I discuss how our superconducting resonators and phase qubits

are designed, fabricated, and connected to form a quantum processor (QuP).

The chapter begins with a discription of quantum integrated circuit design and

a top-level description of the QuP. Next, I provide an overview of the QuP fab-

rication process (but leave the detailed recipe of the QuP to Appendix B). Then

in the following two sections of this chapter, I discuss the individual quantum

elements: namely, the linear harmonic oscillator that is physically realized with

a superconducting coplanar waveguide (CPW) resonator (R) and the non-linear

(anharmonic) oscillator realized with lumped inductors (L), capacitors (C), and
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Josephson junctions (JJ) combined to form the phase qubit (Q). The chapter

concludes with a discussion on how we physically connect these elements via su-

perconducting wires and capacitors to create a QuP.

2.1 Quantum Integrated Circuits

Our approach to create a QuP leverages the advantages from quantum integrated

circuit technology and the success of “off-the-shelf” quantum circuits that are

based on superconducting resonant circuits with resonant modes in the GHz range.

These quantum circuits are formed using superconducting metals patterned using

the same techniques employed in the semiconductor industry to form lumped

elements like Ls, Cs, JJs, and extended structures like transmission lines and CPW

resonators. With this toolbox of circuit elements combined with superconductivity

(a collective quantum behavior of many electrons that allows us to treat the entire

circuit quantum mechanically), we can engineer our desired quantum elements

rather than relying on naturally occurring quantum systems e.g. photons, spins,

or atoms.
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2.1.1 Large Qubits

The superconducting resonant circuits composed of lumped Ls, Cs, and JJs form

qubits1 that are relatively large O(100×100µm2) compared to atoms or ions e.g.

Be+ with a characteristic radii O(100 pm). At this larger scale it is easier to make

physical connections to the qubits. Another advantage of the quantum integrated

circuit approach is that we can engineer the impedance of the quantum elements

(qubits and resonators) to be 50 Ω. This simplifies the connection between indi-

vidual elements to a transmission line (a.k.a. a wire) and provides the capability

for long range interactions2.

Since the spatial degrees of freedom are fixed relative to the quantum elements,

and they are impedance matched to facilitate long-range interactions, we turn on

and off the interactions between the elements in frequency space via electronic

control and circuit design. The CPW resonators have a fixed length, and there-

fore fixed modes in frequency. And although the phase qubits have fixed circuit

parameters they can be biased electronically to tune them in and out of reso-

nance with the resonators. The strength of the qubit-resonator interaction is set

a capacitor between the qubits and resonators as we discuss in §2.5. In this way

the resonator can be thought of as bandpass filter: when the qubit is near or on

1The qubits are formed from Ls, and Cs with areas O(100×100µm2) and JJs with areas
O(1µm2).

2In the QuP there are interactions between elements that are separated by millimeters.
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resonance with the resonator the interaction is turned on and when the qubit is

tuned away from resonance the interaction is turned off. For the QuP design the

interaction is off when the qubit is tuned ∼ ±500 MHz away from the resonator.

Connecting these macroscopic qubits to the (meandering) extended CPW res-

onator structures and arranging them in a useful circuit design, like the com-

pleted QuP shown in Figure 2.1, results in a quantum circuit occupying an area

6.25× 6.25 mm2.

The dashed-orange rectangle labeled Q1 in Figure 2.1 highlights a representa-

tive phase qubit and its respective superconducting quantum interference device

(SQUID) measurement circuit. The meandering blue traces, labeled R1 −R5 en-

closed in a dashed-black rectangle are the CPW resonators. The qubits Qi are

connected to a respective memory resonator Ri and the shared central resonator

R5 with transmission lines and coupling capacitors. The resonator R5 is a quan-

tum bus [37, 65, 28, 56, 5, 38, 25, 58, 24, 2, 66, 39] that provides the central

connection to all of the quantum elements Q1 − Q4 (and R1 through R4 though

their respective qubits).

Around the perimeter, interrupting the blue-border in Figure 2.1, there are

12 green pads (4 squares labeled “Qi Meas” and 8 tapered microwave launch-

ers labeled “Qi Control” and “Ri Control”)3. These 12 pads provide electrical

3The 8 smaller green rectangles on the right are for test structures and are not connected to
the QuP circuit.
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Figure 2.1: CAD layout of Quantum Processor, with phase qubits (resonators)
labeled Q1−Q4 (R1-R5). The orange dotted rectangle indicates a phase qubit cell.
The black dotted rectangle encloses all 5 superconducting resonators. External
connections are made to the 12 green pads around the perimeter of the chip
consisting of 8 control and 4 measure lines.
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connections to control and measure the quantum elements.

2.2 The QuP Fabrication

The entire QuP fabrication was performed using standard thin-film deposition

and etching technologies all available in the UCSB Nanofabrication Cleanroom.

We use Al as the superconducting metal. The Al is lithographically defined to

form lumped elements, coplanar waveguide resonators, and transmission lines for

electrical connections between elements. The lumped linear inductors are formed

by loops of superconducting wires. Interdigitated capacitors are formed by breaks

in the Al wire. The parallel-plate capacitors, important for improved qubit co-

herence times[41], are fabricated by sandwiching hydrogenated amorphous Silicon

(a-Si:H) (a low-loss dielectric[51]) between two layers of Al. The a-Si:H dielectric

is also used for wiring cross-overs. The Josephson junctions (the triangular shaped

wedges in the SEM image in Figure 2.6c)4 are formed with Al-AlOx-Al. The entire

device is fabricated on a sapphire substrate (black areas in Figure 2.6b) chosen

for its low loss properties at GHz frequencies[42]. The fabrication recipe for the

QuP is in Appendix B. For more details on our fabrication process please see the

thesis by Ansmann[3, chap. 5].

4A Josephson junction is formed by interrupting a superconductor with an insulator to form
the stack-up: superconductor-insulator-superconductor.
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2.3 Superconducting Coplanar Waveguide (CPW)

Resonator: Linear Harmonic Oscillator

Resonators comprise one type of quantum element in the QuP. A resonator, or

harmonic oscillator is the simplest system that exhibits quantum behavior. Con-

sider the parallel LC circuit shown in Figure 2.2. The voltage V (t) across the

circuit drives the currents IC(t) and IL(t). Using Kirchoff’s current law,

IC(t) = −IL(t), (2.1)

where the current through the capacitor is given by

IC(t) = C
dV

dt
(2.2)

and the current through the inductor is

IL(t) = − 1

L

∫
V (t)dt. (2.3)

By substituting Equation 2.2 and 2.3 into 2.1 and differentiating

dIc
dt

= −dIL
dt

C
d2V

dt2
= − 1

L
V (2.4)

which is the equation of motion for a 1-dimensional simple harmonic oscillator,
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m
d2x

dt2
= −kx (2.5)

with m → C, x → V , k → 1
L

, and angular frequency ω =
√

1
LC

. The harmonic

oscillator solution is known, which gives equally spaced energies, ∆E = ~ω with

energy levels given by

En = ~ω(n+
1

2
) (2.6)

and illustrated schematically in Figure 2.2. The fact that the energy spacing

is degenerate means that all of the levels absorb photons of the same energy,

∆E = ~ω. This makes controlling any of the individual transitions of the resonator

challenging with only a classical driving source, which drives the resonator into

a coherent state as shown in [23]. However, with energy levels that are spaced

unevenly we can drive the individual energy levels separately. In order to engineer

a quantum system with energy levels spaced unevenly we need to introduce a non-

linear element to perturb the harmonic potential. Fortunately, we can exploit the

strong non-linearity of the Josephson effect and create a sufficiently anharmonic

potential to form a qubit that, when combined with a classical drive, provides

a classical to quantum transducer capable of addressing the individual resonator

levels [23].
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Figure 2.2: Schematic of a Linear LC harmonic oscillator. Potential energy of
the harmonic oscillator with evenly spaced energy levels |0〉 , |1〉 , |2〉 , |3〉 , . . . , |n〉.

2.3.1 Half-wavelength CPW Bus Resonator and Quarter-wavelength

CPW Quantum Memory Resonators

All of the resonators in the QuP are fabricated as either a half-wavelength (λ/2)

or quarter-wavelength (λ/4) CPW, which means the resonance frequency can be

engineered precisely. The design values used for the five resonators are: M1 =

4600µm, M2 = 4500µm, M3 = 4550µm, M4 = 4650µm, and B = 9910µm,

which are also annotated in Figure 2.3. The λ/2 CPW labeled “B” in the center

of Figure 2.3 is the coupling bus, which mediates the interaction between all four of

the phase qubits. I designed the quantum memory resonators, labeled M1 through

M4 in Figure 2.3 to be λ/4 CPWs because of the smaller footprint. Although all

of the memory resonators could have been designed the same length, I chose to

stagger their lengths to simplify the frequency identification experimentally.
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Figure 2.3: Photomicrograph of the 5 (4 quarter-wave and 1 half-wave) CPW
resonators. Unwrapped lengths indicated in yellow.
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Advantages of CPW Resonators

After the pioneering paper by Hofheinz[23], CPW resonators were integrated into

our “off-the-shelf” quantum integrated circuit designs. The CPW resonator pro-

vides a number of benefits that we describe below.

CPW resonators have long coherence times (T1 ∼ 5µs and T2 nearly 2 · T1)

compared to the phase qubit coherence times (T1 ∼ 0.5µs and T2 ∼ 0.2µs), which

makes resonators great candidates for quantum memory. Because CPW resonators

can be defined lithographically on the base-layer during our QuP fabrication, we

can deposit very high quality superconducting materials via molecular beam epi-

taxial (MBE) growth methods and begin to incorporate the recent breakthrough

materials research results[43] to further extend coherence times.

Another advantage of a CPW resonator is that it can be used as a drop-

in coupler to connect any number of (phase or other frequency-tunable variety

of) qubits. This “quantum bus” architecture also solves the frequency crowding

problem of “always on” capacitively coupled qubits by effectively dropping in a

band-pass filter so the qubits that are detuned (biased to be idling at a different

frequency away from the resonators resonant frequency) will not interact with

one another, thus creating a “frequency detuning” type of tunable coupler.5 This

band-pass filter created by the resonator also helps to protect the qubits from both

5Although, I note that the frequency detuning “on/off” ratio is inferior to the dynamically
tunable coupler as pioneered by Bialczak [12, 11].
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microwave and measurement crosstalk[4]. Microwave (measurement) crosstalk

occurs when the microwave drive (tunneling event) on the target qubit perturbs

any of the other qubits.

2.4 Phase Qubit: Nonlinear, Anharmonic Oscillator

We can engineer a nonlinear anharmonic oscillator by shunting the parallel LC-

resonator with a Josephson junction to form the phase qubit as illustrated schemat-

ically in Figure 2.4c. The Josephson junction (JJ) has classical current and voltage

relations,

IJ(t) = I0 sin δ(t) (2.7)

VJ(t) =
φ0

2π

dδ

dt
(2.8)

where I0 is the junction critical current, δ is the phase across the junction, and

φ0 is the flux quantum. By taking the canonical voltage relations for an inductor,

V = LJ(dIJ/dt), and using Equation 2.7 and 2.8 the Josephson junction can be

interpreted as a nonlinear, tunable inductor

LJ =
φ0

2πI0 cos δ
. (2.9)
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By using Kirchoff’s current law we can analyze the phase qubit circuit in a similar

fashion as we did for the parallel LC circuit.

IJ(t) + IC(t) = −IL(t). (2.10)

Inserting the Josephson relations from Equation 2.7 and 2.8 into 2.10 and differ-

entiating we obtain an equation of motion (similar to 2.4)

C

(
φ0

2π

)2
d2δ

dt2
= − ∂

∂δ
(U(δ)) (2.11)

where m→ C
(
φ0
2π

)2
, x→ δ, and U(δ) is the potential.

U(δ) = −φ0

2π
I0 cos δ +

1

2L

(
φ0

2π

)2

δ2 − φ0

2π
Ibδ (2.12)

where Ib is a dc-bias. The potential has three terms. The first term is the

nonlinear component cos δ from the JJ. The second term ∝ δ2 is from the inductor,

and the final term is a constant dc-bias linear in δ. Therefore, by inserting the JJ,

we have obtained our desired non-linear, anharmonic potential U(δ) as illustrated

in Figure 2.4d. The energy degeneracy has been lifted with a nonlinearity defined

as ∆/(2π) = ωfe/(2π) − ωeg/(2π), which is typically about 200 MHz. This is

an important feature in that it allows us to treat this potential as an effective

two-level system that can be addressed with a classical drive (shaped microwave

pulses) to excite the qubit from the ground state to the excited state (and back
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Figure 2.4: (a) Schematic of an LC-resonator. (b) Potential energy of a harmonic
oscillator with evenly spaced energy levels. (c) Schematic of phase qubit. (d)
Potential energy of the phase qubit with unevenly spaced energy levels.

again) without driving the higher excited states.6

The phase qubit circuit is designed so that the potential energy, U as a function

of the phase difference δ across the junction forms a double-well potential, as

illustrated in Figure 2.5b. The potential is tilted by applying flux via a current Ib

through the flux bias loop coupled to the qubit loop to bias the circuit near the

critical current I0 of the junction. This leads to a potential with one very shallow

6This strict two-level qubit-manifold assumption is the basis of our next two chapters where
we will show how we keep the qubit from “leaking” out into these higher excited states.
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well on the left and a deep well on the right. The shallower left-hand well is the

qubit well, where the qubit energy ~ωeg ≈ 6 GHz is set by the inductance L and

the capacitance C. The wells are separated by a single flux quantum φ0.

The finite barrier separating the left well from the right arises from the I0 sin δ

Josephson relation. The height of this barrier can be adjusted by tilting the

potential with the flux bias. Typically the phase qubit is biased to give a barrier

height ∆U ∼ 5~ωeg, so that on the order of 5 quantum levels exist in the left-hand

well during qubit operations. In addition, the flux bias can be adjusted to tilt

the potential, causing Z-rotations, and to measure the qubit state by lowering the

barrier to preferentially tunnel the excited state to be readout with a SQUID. For

more information about this potential energy description see [3, chap. 2].

2.4.1 Completed Qubit

Four phase qubits were used as quantum elements in the QuP (labeled Q1 . . . Q4

in Figure 2.1). Shown in Figure 2.6b is a photomicrograph of a fabricated phase

qubit along with its control and readout circuitry. The bottom panel Figure 2.6c

is a scanning electron micrograph (SEM) image of the Josephson junction (the

essential non-linear circuit element).

The design of the phase-qubit (and SQUID readout) circuit went through a

crucial redesign and is detailed in Ref’s [45, 48]. Here, I highlight a few of these
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Figure 2.5: (a) Phase qubit schematic with control, measurement, and readout
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measurement and readout of |g〉 and |e〉 states. (c) Qubit operation.
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features and relevant circuit parameters for the device pictured and schemati-

cally represented in Figure 2.6. The flux bias coil carries all of the qubit control

(microwave and measurement pulses) and bias down one line. This is an improve-

ment over earlier phase qubit devices, which needed 2 control lines. The mutual

inductance between qubit and flux bias coil is chosen to be Mfq ≈ 2 pH. We

aimed for phase qubit frequencies of ∼ 6 GHz with a junction critical current of

I0 ≈ 2µA (with an area of ∼ 1µm2, which is achievable with optical lithography)

and lumped parallel-plate capacitance C ≈ 1 pF. Since we want two wells in the

qubit potential and having chosen I0 and C, the inductance L is determined to

be L ≈ 720 pH.

This redesign allowed us to drop the completed phase qubit design-cell directly

into the QuP design with only minor modifications, mainly in how we connected

the phase qubit to the other quantum elements on chip.

2.4.2 Single-Shot SQUID-based Measurement and Readout

We obtain information about our qubits in a two step process, measurement and

then readout. This process begins by applying a fast (∼ 10 ns) pulse to the flux

bias line, which briefly lowers the potential barrier between the two wells such

that the excited state sees a smaller barrier and will preferentially tunnel into

the neighboring right hand well and relax, whereas the ground state will not

47



tunnel (instead it remains in the left hand well). This measurement process is

destructive, which means that at the end of our measure pulse the quantum state

is projected in either the left well “g” or right well “e”. Recall from our qubit

potential discussion that these two wells are separated by approximately a flux

quantum and it is this feature that we use for the second part of our information

extraction, readout of the state we just measured.

After encoding the left well as “g” and the right well as “e”, we use the on chip

superconducting quantum interference device (SQUID), as shown in Figure 2.6,

to detect this large flux difference. The SQUID transduces this flux into a voltage

that we amplify and record at room temperature. The measurement and readout

process is illustrated schematically in Figure 2.5b.

The SQUID-based measurement and readout scheme used here is classified

as single-shot because every qubit involved in the experiment is projected into

a definite state (“g” or “e”) upon measurement and the experiment returns one

specific state at the end of every experiment. For more details on the SQUID

design see [45, 48].
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Figure 2.7: QuP schematic with 4 phase qubits, 5 resonators, and 4 SQUIDs.

2.5 Scaling Up: Connecting Multiple Quantum El-

ements to Form The QuP

Because of the modularity of these superconducting quantum elements and the

flexibility of quantum integrated circuit design, we can arrange these quantum

elements together in a QuP like in the schematic shown in Figure 2.7. The only

element left to discuss is the capacitors that connect everything together.

Due to the low impedance of the phase qubit it is really straightforward to

couple them to CPW resonators. In fact, we only need to connect a capacitor

between the two. Of course selecting the capacitor value is critical. This qubit

- capacitor - resonator circuit, illustrated in Figure 2.8 produces an interaction

of the form[27], Hint = (~g/2)(a†σ− + aσ+), where, a† and a are respectively

the photon creation and annihilation operators for the resonator, σ+ and σ− are
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Figure 2.8: Qubit coupled to a Resonator via a capacitor.

respectively the qubit raising and lowering operators, ~ = h/2π, and g is the

coupling strength given by g = Cc/(
√
CqCr). For the qubit-to-bus resonator

coupling capacitor Cc = 4.5 fF, combined with a qubit capacitance Cq ∼ 1.0 pF,

and a resonator capacitance of Cr ∼ 50 fF (at a designed frequency of 6.2 GHz),

we expect a coupling strength g = 55 MHz.

2.6 Experimental Setup and electronics

A summary of the experimental procedure to mount our qubit chips is shown

in Figure 2.9. Once the QuP fabrication is complete, we use a diamond saw to

dice the 3” wafer into approximately 100 chips of size 6.25×6.25 mm2. Next, we

select the best device from the wafer by probing the test junctions and manually

wire-bound it in a specially microwave engineered superconducting box (discussed

in detail in [48]). This device is mounted on a Cu-plate of a He3-He4 dilution

refrigerator and connected to all 12 of the appropriate control lines (qubit control

lines Q1-Q4, resonator control lines R1,R2,R4,R5 and SQUID measurement lines
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for Q1-Q4). The control lines for the resonator drive, qubit control and readout

on each qubit are all carefully designed to be well filtered and impedance matched

to 50 Ω to allow for precise and accurate pulse shaping of the control signals.

The control lines run from the Cu-plate of the dilution refrigerator all the way

to the top of the cryostat where they connect to custom-built control electronics.

Finally, the dilution refrigerator is sealed up, evacuated, and cooled down to a

base-operating temperature of around 20− 30 mK.

For more details on the cryogenics and wiring setup see the description by

Ansmann[3, chap.6]. For the Shor algorithm experiment we scaled up all of the

wiring and electronics to control up to ten qubits (at least two QuP chips) in one

cooldown.

2.6.1 Custom Control Electronics

Shown in the bottom of Figure 2.10 is an example of our classical driving source -a

Gaussian-shaped microwave pulse taken with a high-speed sampling oscilloscope.

These pulses have nearly ideal spectral quality. As shown schematically in Fig-

ure 2.10 the pulses are created with a continuous microwave source controlled by

an IQ mixer fed by dual 1 GHz digital to analog converters (DAC). The microwave

source drives in saturation the local oscillator input of the mixer at frequency f0.

The DAC channels are generated in a custom board using AD9736 chips that
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Figure 2.9: Experimental procedure summary as explained in the text.

52



1610 1614 1618 1622

.8

  

.2

−8 −4 0 4 8
−0.04

0

0.04

8 160 t  [ns]
-0.4

0.4

µ
−
w

a
ve

 a
m

p
 [
a

.u
] (S3)

6.7

7.3

f
[G

H
z]

Iφ [a.u]

7

(S1)

20 30 40

ω10/2π = 6.75GHz

ω10/2π = 7.22GHz

TLS

0

0.2

0.4

0.6

P
tu

n
n
e

lli
n

g

0

0.6

6.05 6.25f  [GHz]

1

2

0

QubitTwo Photon2 -Error

ω10
ω20

2

ω12

(S2)

1610 1614 1618 1622

.8

  

.2

−8 −4 0 4 8
−0.04

0

0.04

8 160 t  [ns]
-0.4

0.4

µ
−
w

a
ve

 a
m

p
 [
a

.u
] (S3)

6.7

7.3

f
[G

H
z]

Iφ [a.u]

7

(S1)

20 30 40

ω10/2π = 6.75GHz

ω10/2π = 7.22GHz

TLS

0

0.2

0.4

0.6

P
tu

n
n
e

lli
n

g

0

0.6

6.05 6.25f  [GHz]

1

2

0

QubitTwo Photon2 -Error

ω10
ω20

2

ω12

(S2)

1GHz

1GHz

1GHz

Figure 2.10: Schematic of qubit x-, y-, and z-axis control electronics and an
example of an actual Gaussian-shaped microwave pulse measured with a high-
speed sampling oscilloscope. Further details are explained in §2.6.1.
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have 14 bit resolution. They drive the I and Q ports through 200 MHz (−3 dB

frequency) dissipative Gaussian lowpass filters and low distortion differential am-

plifiers. The microwave output of the mixer is filtered by a 7 pole Chebyshev

lowpass filter at 8.5 GHz to suppress harmonics of f0. The large bandwidth of

the control signal allows for sideband mixing. By applying sine and cosine waves

at fsb to the I and Q ports, the mixer generates an output signal at frequency

f0 + fsb. Sideband mixing allows for very high on/off ratios of qubit control since

the (small) carrier leakage at f0 is off resonance with the qubit. The digital control

allows imperfections of the DAC chain and the IQ mixer to be corrected by first

measuring its response function and then correcting it with deconvolution. The

relative amplitudes and phases of the I and Q mixer channels are calibrated by

minimizing the power at the opposite sideband f0 − fsb. This is done at enough

sideband frequencies so that all Fourier component of an arbitrary digital input

signal can be corrected. In total, we obtain accurate pulse shapes with greater

than 60 dB suppression of spurious frequencies and harmonics.

Qubit Control

Single qubit logic operations, corresponding to rotations about the x-, y-, and

z-axes of the Bloch sphere, are generated as follows: Rotations about the z-axis

are produced from current pulses on the qubit flux bias line that adiabatically
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change the qubit frequency, leading to phase accumulation between the states |g〉

and |e〉 [6]. Rotations about any axis in the x-y plane are produced by microwave

pulses resonant with the qubit transition frequency. The phase of the microwave

pulses defines the orientation of the rotation axis in the x-y plane, and the pulse

duration and amplitude control the rotation angle.

A note on our custom built electronics: We have made our custom electronics

available to the public on the UCSB QC-group’s TWiki7, including our ever-

growing body of knowledge related to the electronics that we have built. I am

pleased that these custom electronics have been deployed all over the world in a

number of laboratories and I look forward to their extended use in further research.

7https://commando.physics.ucsb.edu/tw/view/Electronics/PubDocs
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Chapter 3

Reducing Unwanted Transitions Into

The Phase-Qubit’s |f〉 State:

Amplitude Errors

As we learned in Chapter 2 the phase qubit has more than just two levels, but

the non-linear inductance from the Josephson junction removes the energy level

degeneracy, thereby allowing a classical microwave drive pulse (like the one gen-

erated in Figure 2.10) to address the separate transitions[46] including the lowest

two-levels |g〉 and |e〉 used for a qubit. To illustrate the importance of this con-

trol issue, we note that many experimental systems use qubit states |g〉 and |e〉,

often the ground and first excited states, chosen from a larger set of basis states
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[49, 46, 15, 21, 13, 18, 70, 67, 26, 53, 52, 40]. This encoding does not preclude un-

wanted excitations to other available states in the basis. For example, excitations

to the next higher energy state |f〉 are not necessarily small and correspond to

gate errors that may not be included in standard single qubit measurements like

T1 and T2.

Measuring only T1 and T2 assumes no loss in fidelity during a logic gate oper-

ation when the quantum state is changed, and thus it more properly corresponds

to the fidelity of a memory operation. Therefore, a full measurement of gate fi-

delity, applicable to the fault-tolerance threshold, should include gate errors that

are determined via probabilities with an absolute calibration. To that end we look

to construct individual experiments that can highlight separate error cases and

then build up their collective action to understand the complete fidelity of a gate

operation.

Therefore, in this chapter, I will describe how we separate out measurement

errors from gate errors in §3.1. Then in §3.2, I will discuss a metrology technique

based on a Ramsey interference pulses sequence that enhances a particular error

source, namely qubit excitations to the |f〉 state, and finally the chapter concludes

with a single qubit gate fidelity measurement in §3.3.
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Figure 3.1: Qubit spectroscopy. Probability of tunneling is plotted in grayscale
for qubit operating frequency ωeg/(2π) versus qubit bias Ib. A two-level state
(TLS) splitting shown at 7.1 GHz.

3.1 Probability Errors From Measurement

Non-ideal behavior of the qubit can arise from errors related to the qubit control

or in the state measurement. First, let’s focus on the physical mechanisms that

lead to measurement errors. In phase qubits, measurement fidelities below unity

are due to stray tunneling of the |g〉 state, the |e〉 state leaking energy to spurious

two-level states (TLS)[16], and T1 relaxation.

I first discuss errors due to stray transitions to the spurious TLS. Qubit spec-

troscopy is shown in Figure 3.1, where the probability of tunneling is plotted

in grayscale for qubit frequency ωeg/(2π) that is changed via the qubit bias

Ib[16]. A TLS gives a resonance at 7.05 GHz that couples to the qubit with

splitting size 50 MHz. To quantify the TLS effects as measurement errors, we
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determined the measurement fidelity above (ωeg/(2π) = 7.22 GHz) and below

(ωeg/(2π) = 6.75 GHz) it; this large TLS splitting at 7.05 GHz is highlighted in

orange in Figure 3.1.

The measurement data for the qubit operated above and below the TLS are

plotted in Figure 3.2. For each data set, the tunneling probability of the ground

state |g〉 and the first excited state |e〉 is determined versus measurement pulse

amplitude Iz. The inset in the left-panel of Figure 3.2 illustrates the pulse se-

quence. For the |g〉 state we apply no microwaves. For the |e〉 state experiment

the X pulse is calibrated for a π-rotation to give maximum probability of the |e〉

state. The tunneling probability Ptunnel for the |g〉 and |e〉 state is determined

versus Iz. After this calibration, Iz is chosen to give maximum visibility between

the states, which is displayed in each figure by an arrow.

The difference in visibility observed between the two qubit operating frequen-

cies is directly attributed to coupling to the TLS located at 7.05 GHz, as observed

in Figure 3.1. The measurement pulse lowers the barrier for increased tunneling

probabilities of the excited state, but it also reduces the qubit operating fre-

quency (as illustrated by the“measurement” arrow in Figure 3.1) and in the case

for ωeg/(2π) = 7.22 GHz the qubit is swept through the TLS at 7.05 GHz.

The theoretical predictions for the tunneling probabilities are given by the solid

black and gray lines Figure 3.2. Theory predicts that the |g〉 state is misidentified
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as a |e〉 state with a probability of 0.034. This error is consistent with theory,

and corresponds to stray tunneling events during measurement[16]. At ωeg/2π =

6.75 GHz the |e〉 state is misidentified as the |g〉 state with a probability of 0.061,

but at a higher qubit frequency, ωeg/2π = 7.22 GHz this error increases to 0.106.

The increase in measurement error with qubit frequency is attributed to the TLS

located between these two frequencies. With a measurement of the TLS splitting

from spectroscopy of size 50 MHz, we predict a |e〉 state population decrease of

0.045, a value consistent with our data.

The remaining measurement error is accounted for with an error budget of

0.010 for T1 decay, 0.050 for coupling to other TLS, and 0.011 for no tunneling
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of the |e〉 state during measurement. With good agreement between experiment

and theory, we can reliably account for measurement errors in our data.

3.2 Amplitude Errors Due to Qubit Population Leak-

ing Into The |f〉 State

We now turn to measuring and reducing errors from the qubit leaking into the

|f〉 state. There is a tradeoff between using a fast pulse for small T1 errors due to

qubit decay, or a slow pulse for small Fourier amplitude at the |e〉 → |f〉 transition

frequency, as illustrated in the inset Figure 3.5. A short Gaussian pulse, FWHM

4 ns, produces power at the transition frequency ωfe/2π which drives transitions

outside the qubit manifold causing qubit leakage error. Therefore, we aim to find

the optimal length pulse that optimizes the tradeoff between qubit relaxation and

leakage.

The measurement of the qubit leaking into the higher excited state is explicitly

shown in Figure 3.3, where the probability to tunnel the qubit Ptunnel is plotted

versus the measure pulse amplitude Iz for a single Xπ-pulse using 4, 5, and 8 ns

FWHM Gaussian pulses with the theory lines labeled for the three lowest states

|g〉 , |e〉, and |f〉. Just as in Figure 3.2 the data on the right in Figure 3.3 labeled

“|g〉” are for the case where no microwaves are applied. To preferentially tunnel
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Figure 3.3: (top) Experimental pulse sequence. Data are direct measurements of
the |f〉 error due to for τ = 4, 5, 6 ns FWHM Gaussian Xπ-pulses. Further detail
in the text.

the higher (lower) excited states a smaller (larger) Iz amplitude is applied.

Focusing on the middle curve labeled “|e〉”, an Xπ pulse of length 4, 5, and

8 ns is applied to prepare the excited state. The shoulder, labeled “|f〉 error”,

rising at smaller Iz amplitudes is the leakage error. Errors become difficult to

measure below ∼ 0.01 because of stray tunneling of the |e〉 state.

The |f〉 state error may be measured with much greater sensitivity by recog-

nizing that excitation to the |f〉 state is a coherent quantum process. Using a

two-pulse sequence with variable time delay as illustrated in Figure 3.4a, a Ram-

sey fringe may be set up between the transitions to the |f〉 state from the two
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pulses. In addition most of the qubit state is in |g〉, so there is little stray tunnel-

ing from |e〉. The two Xπ-pulses (of duration τ = 5 ns) are followed by a measure

pulse with an amplitude calibrated to tunnel only the |f〉 state. During the first

Xπ-pulse both of the states |e〉 and |f〉 are excited. The second Xπ-pulse causes

the coherent beating of the |f〉 state.

In Figure 3.4b we plot the |f〉 state probability Pf versus pulse delay time

tsep. Since the periodic oscillation is due to coherent interference between the two

pulses, the magnitude of this oscillation is four times the probability of exciting

the |f〉 state for a single pulse1. More importantly, creating an oscillating signal

of a constant error allows a determination of the amplitude with fewer systematic

errors; this error can now be reliably measured down to 10−4 using this “Ram-

sey error filter”. As a further check the oscillation frequency matches the beat

frequency (ωeg − ωfe)/2π measured via spectroscopy, as shown in Figure 3.4c.

This Ramsey error filter data was repeated for 4, 5, 6, 6.5, 7, 7.5, and 8 ns

FWHM Gaussian pulses. The |f〉 state errors determined in this manner are also

plotted in Figure 3.5. For Gaussian pulses with width 4 and 5 ns, the data from the

two methods overlap. The error drops exponentially with increasing pulse width,

reaching the value 10−4 at 8 ns (where a magnitude of 10−4 is considered to be

an error-threshold for fault tolerance). A simple Fourier-transform prediction[61]

1The first pulse populates the |f〉 with some amplitude, followed by the second pulse, which
coherently doubles the population, and since we measure a probability these amplitudes are
squared, hence four times the magnitude compared to the error from a single pulse.
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is plotted as a solid gray line, which is computed from the power spectrum of

the Gaussian pulse at frequency ωfe/(2π), normalized to the power at frequency

ωeg/(2π). The asterisks are a measurement of this normalized power taken from

the actual control pulses. This simple comparison is an excellent check on the

shaping of the microwave pulses. From this data, we can see that short pulses

with a wide frequency spectrum gives large qubit error, this is illustrated in the

inset of Figure 3.5 where a 4 ns pulse produces a significant amount of spectral

power at ωfe/(2π). The solid black line is a prediction of the error obtained from

numerical calculations [61], which shows good agreement with the data.
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3.3 High Fidelity Gates

To reduce the errors caused by unwanted |f〉 state transitions, we apply a shaped

pulse significantly long enough so as to minimize the spectral components at the

|e〉 → |f〉 transition frequency. This keeps the qubit within the two-state manifold,

with residual |f〉 state population on the order of 10−4. For example, a qubit

frequency of ωeg/(2π) = 6.5 GHz, and a nonlinearity ∆/(2π) = (ωfe−ωeg)/(2π) =

−200 MHz (ωfe = 6.3 GHz) requires an 8 ns length π-pulse to keep the |f〉 leakage

to 10−4. With this pulse length and the error budget from Section §3.1, we are

poised to measure our single qubit gate fidelity.

Because the measurement error for the |g〉 state is less dependent on systemat-

ics, we choose to measure our logic gate performance by returning the qubit to the

|g〉 state. And since a π-pulse is the maximum rotation of a single qubit operation

conducting a pulse sequence involving π-pulses gives a measure of the maximum

error for a gate. Therefore, we determine the fidelity of a gate by applying two

π-pulses that produce the transitions |g〉 → |e〉 → |g〉, followed by measurement.

This pulse sequence is illustrated in Figure 3.6a.

We apply 8 ns FWHM Xπ-pulses similar to the one represented in Figure 2.10.

We verify that we are indeed performing Xπ-pulses, by testing whether the proba-

bility for the final state is independent of the phase Θ between the two microwave

pulses, as indicated in Figure 3.6a. The two panels in Figure 3.6b show the ex-
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perimental and theoretical probability of being in the excited state Pe (color bar)

as a function of Θ and microwave detuning ∆ from the qubit transition frequency

ωeg/2π. The experimental data is in excellent correspondence with theoretical

predictions. On resonance (∆ = 0), the phase Θ has no effect, as expected, which

demonstrates that the two pulses are calibrated properly as π-pulses.

Gate error is directly measured by repeating this experiment with variable

time separation tsep between the two π-pulses, as shown in Figure 3.6c. The gate

error grows with increasing time tsep > 9 ns because the |e〉 state decays, and the

error has a slope consistent with separate measurements of T1. The error also

increases at small times due to the overlap of the two Gaussian microwave pulses.

The horizontal dashed line indicates P1 = 0.034 taken without the application

of microwaves; the difference between the data and the dashed line is the gate

error. When the pulses are separated by a time tsep = 12 ns, we find an error

∆P1 = 0.04. Since two gate operations are used for this protocol, the fidelity for

a single gate operation is 0.98.
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Chapter 4

Reducing Unwanted Virtual

Transitions Into The Phase-Qubit’s

|f〉 State: Phase Errors

In Chapter 3, I showed how we reduced the amplitude errors associated with

transitions outside of the qubit manifold by careful shaping of the control pulse

(microwave envelope) and by choosing the correct gate duration, which scales in-

versely with the qubit nonlinearity 1/∆. However, fast pulses also generate phase

errors which contribute to overall gate error, but the relative contribution differs

from amplitude-related errors. Consequently different measurement techniques

need to be employed to quantify phase errors.
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To measure possible phase error, quantum process tomography (QPT) is typi-

cally used. QPT provides a complete analysis of gate operation [45, 12, 49], but it

requires Xπ/2 and Yπ/2 pulses, which themselves can be error sources. This poses a

circular problem: quantum process tomography relies on π/2-pulses, but we need

quantum process tomography to verify that we have tuned up our π/2-pulses.

To solve this dilemma, we designed a method to separately quantify the phase

error generated by a gate, which we call Amplified Phase Error (APE). By using

a Ramsey fringe experiment, we amplified and measured this ubiquitous source

of error.1 We chose to focus on errors related to π/2 pulses, because such pulses

provide the basis for tomography and are essential in algorithms.

This chapter begins with a model, expressed in quantum circuit language, for

phase errors due to virtual transitions into the higher excited states outside of

the qubit manifold. Using this quantum circuit language the chapter proceeds

onto a discussion of how to amplify phase errors in §4.1.1, measure in §4.1.2, and

correct them in §4.1.3. To correct for phase errors, specific to virtual transitions

outside of the qubit manifold, we implement “half derivative” an experimental

simplification of derivative reduction by adiabatic gate (DRAG) control theory

[44]. This solution uses two control pulses (X and Y simultaneously) and was

born out of the theory proposed by Motzoi[44]. In §4.2 we revisit amplitude errors

1The APE protocol is not specific to phase qubits, it can be used in general multi-level qubit
architectures [49, 46, 15, 21, 13, 18, 70, 67, 26, 53, 52, 40].
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associated with HD pulses. And the chapter concludes in §4.3 with demonstrations

of the improved control from HD pulses.

4.1 Phase Errors Due to Virtual Transitions

The phase error arising from virtual transitions (especially to the |f〉 state) can

be modeled as effective qubit rotations about the z-axis. We restrict ourselves to

simple gates comprising π and π/2 rotations. An Xπ/2 pulse (a rotation about

the x-axis by an angle θ = π/2) ideally produces the transformation

Xπ/2 = e−iσx
π
4 =

1√
2

(
1 −i
−i 1

)
, (4.1)

where σx is one of the Pauli matrices.

To test this for an experimental system with more than two levels, we integrate

the Schrödinger equation to explicitly calculate the time evolution for an arbitrary

input state, which is described by a 3× 3 unitary matrix U (to include the effects

from the |f〉). With a Gaussian control pulse, we find the elements of U that

connect the |g〉 or |e〉 state with the |f〉 state have small magnitude, consistent

with the negligible |f〉 state error measured in Chapter 3. Therefore, the time

evolution of the two qubit states is well described by the 2 × 2 submatrix of

U . For more details on the qubit numerical simulatuons, see Ansmann[3, chap.

3]. From these numerical simulations we find that for small phase errors, this
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submatrix can be expressed in quantum circuit language as

X ′π/2 = e−iε
′
ZεXπ/2Zε , (4.2)

where Zε is the phase error of interest and 0 < ε� 1 2.

Zε =

(
1 0
0 e−iε

)
. (4.3)

Note that Equation 4.2 differs from X?
π/2 = Z−εXπ/2Zε, which corresponds to

a rotation about a new axis ε away from the x-axis in the x− y plane.

4.1.1 Amplifying Phase Error

In order to best measure this error, we first sought a protocol that would amplify

the error ε. For an arbitrary rotation θ about the x-axis, the gate operation is

Xθ =

(
cos θ/2 −i sin θ/2
−i sin θ/2 cos θ/2

)
, (4.4)

such that X ′π/2 is

X ′π/2 =
1√
2

(
1 −ie−iε

−ie−iε e−i2ε

)
.

(4.5)

2The leading term in Equation 4.2 is a global phase and can be ignored.
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If we consider a 2π rotation generated by concatenating four π/2 pulses, this

results in

X ′4π/2 ≡ (X ′π/2)4

=
1

4

(
e−6iε(−1− e2iε − 3e4iε + eiε) −ie−7iε(−1 + e2iε)2(1 + e2iε)
−ie−7iε(−1 + e2iε)2(1 + e2iε) e−8iε(−1 + 3e2iε + e4iε + e6iε)

)
' e−i4εI , (4.6)

where I is the identity. Equation (4.6) shows that a concatenated 2π rotation

does not accumulate a relative phase error it only acquires a global phase.

We next examine the pseudo-identity operation that is formed by concatenat-

ing positive and negative θ rotations. For a first-order expansion with ε � 1 we

find

I ′θ = (ZεXθZε)(ZεX−θZε)

≈
(

1 + i(cos θ − 1)ε −(sin θ)ε
(sin θ)ε 1− i(cos θ + 3)ε

)
, (4.7)

where Xθ is an arbitrary rotation of θ about the x-axis. For θ = π we find that

I ′π = e−2iε′I, which is similar to the 2π rotation, as the phase error ε cancels.

However, for θ = π/2 we find,

I ′π/2 = X ′−π/2X
′
π/2

=

(
e−iε cos(ε) e−2iε sin(ε)
−e−2iε sin(ε) e−3iε cos(ε)

)
≈

(
1− iε ε
−ε 1− 3iε

)
. (4.8)
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Where X ′ is defined in Equation 4.5. For n applications of the pseudo-identity

operation, in the limit where 0 < ε� 1, ε→ nε

I ′nπ/2 ≈
(

1− inε nε
−nε 1− 3inε

)
, (4.9)

focusing on the relative phase along the diagonal elements, and by removing an

overall global phase

I ′nπ/2 ≈ (Z2ε)
n = Z2nε , (4.10)

shows a phase error accumulation. Thus by rotating back and forth with X ′π/2,

X ′−π/2 operations the state accumulates phase errors, which can be measured.

4.1.2 Measuring Phase Error

To measure this error, we combine the result from Equation 4.10 with a phase

measuring experiment, forming what we call an amplified phase error (APE) se-

quence. The APE sequence consists of inserting n ∈ {0, 1, 3, 5} successive I ′π/2

pseudo-identity operations between the π/2 pulses that define a Ramsey fringe

measurement, as illustrated in the left panel of Figure 4.1. All control pulses

are separated in time by 2τ and at the end of the sequence the Z control line is

pulsed to measure the probability of |e〉. The phase error is amplified by 2n for n
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applications of the pseudo-identity operation,

I ′nπ/2 ≈ (Z2ε)
n = Z2nε . (4.11)

By applying APE pulses to the state |ψ〉 = (|g〉 − i |e〉)/
√

2 followed by a final

φπ/2 pulse, we directly probe the phase error due to the Xπ/2 pulses. The data

for the single-control (X-quadrature Gaussian shaped) APE pulse sequence are

shown in Figure 4.1 along with a Bloch sphere indicating the axis of rotation and

the three-level system illustrating the phase error due to virtual transitions to the

|f〉. While performing on-resonance |g〉 ↔ |e〉 gate operations at frequency feg,

virtual transitions to |f〉 create a phase change in |e〉.

We plot the probability of measuring the |e〉 state versus rotation axis φ of the

final φπ/2 pulse, for I ′nπ/2 (n = 0, 1, 3, 5) pseudo-identity operations. Each datapoint

represents 1200 repetitions of the experiment. Fits to extract the phase shift are

plotted as lines. Consistent with Eq. (4.11), the phase error scales with n as shown

in Figure 4.2. For n = 5 the final pulse is 83◦ out of phase, corresponding to a 10×

phase error amplification from a total of 11 pulses (10 from the APE sequence

and 1 from the initial Xπ/2), yielding 7.3◦ phase error per gate. The oscillation

amplitude is also reduced, due to decoherence.
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4.1.3 Correcting Phase Error

To correct the phase error, we employ the derivative reduction by adiabatic gates

(DRAG) protocol [44]. The original DRAG prescription uses three controls, X, Y ,

and Z. The X control provides the original envelope-shaping to the microwaves,

which we implemented as a Gaussian in time with arbitrary amplitude A, X =

A exp[−4 ln(2)(t− t0)2/τ 2], where τ is the full-width-at-half-maximum (FWHM)

and t0 the time at the center of the pulse. The quadrature control Y = −Ẋ/∆ is

the time derivative of the X control scaled by the nonlinearity ∆. The Z control

produces a dynamic detuning pulse during the gate that removes the effective

z-rotations from the virtual transitions.

Half-Derivative

We find both in simulations and experiment that the Y and Z controls are not

independent. From our numerical simulations3, we plot in Figure 4.3 the gate

fidelity defined as F = Tr(χsimχideal) in a colorscale for a range of magnitudes for

the Y and Z controls. All simulated pulses are of the DRAG prescription and a

fixed length of 6 ns FWHM. The circle in Fig. 4.3 indicates the values from the

original DRAG prescription[44]. We find there is a ridge of maximum fidelity for

the two control parameters, with peak values of fidelity having a simple linear

3Three level system with ∆/(2π) = −200 MHz.

77



m
ag

ni
tu

de
 o

f Z
 c

on
tro

l 

magnitude of Y control 

-1

0

1

2
-1 0 1 20.5 1.5-0.5

0.96

0.72

0.48

ga
te

 fi
de

lit
y

Figure 4.3: Numerical simulations of gate fidelity.

relation between the Y and Z values. Along this ridge, the maximum fidelity is

insensitive to Z. Therefore, we choose to set the Z control to zero, which simplifies

the experimental control procedures as it reduces the necessary control signals

for optimal pulses from 3 to 2. By setting Z = 0 the Y control is reduced by

1/2, to give Y = −Ẋ/(2∆) forming the so-called “half-derivative” (HD) protocol

(highlighted in Figure 4.3 with white dotted lines).

For a Gaussian envelope on the X control, the HD pulses are as illustrated

in Figure 4.4 and differ from the DRAG pulses by the quadrature controls, Y =

−Ẋ/(2∆), Z = 0. The Y control provides a dynamic detuning to the qubit, which

keeps the microwave drive and the qubit on resonance during the gate operation
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Figure 4.4: APE metrology for Half-Derivative X- and Y-control pulses.

performed by the X control, similar to the role the Z control plays in the original

DRAG prescription[44]. The HD pulse sequence in Figure 4.4 is the same as

Figure 4.1, but with the addition of the Y control. Data (dots) and fits (lines)

are plotted for the same number of I ′π/2 pseudo-identity operations. We find by

simply using the analytic expression for HD, Y = −Ẋ/(2∆) the phase error is

reduced to 1.6◦ per gate. One can tune the phase error to zero by utilizing the

APE experiment to adjust the magnitude of the Y control.

4.2 Amplitude Error: The Redux

HD pulses also reduce the amplitude errors, i.e. leakage to the |f〉 state. As shown

in Figure 4.5 we plot the data from a Ramsey error filter as done in Chapter 3 for
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pulses. A 6 ns (FWHM) HD Xπ pulse gives a |f〉 state probability of 10−4, almost

an order of magnitude better than a non-HD pulse of the same width, which

consequently provides a 20% faster gate with equivalent performance to what was

shown in Chapter 3.
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4.3 Demonstrating Control

With calibrated Xπ/2 and Yπ/2 pulses, we can now perform quantum state tomog-

raphy (QST) without worry of miscalibrated measurement axes. As a practical

demonstration of how HD pulses reduce phase error, we perform QST [60] with

and without HD. Figure 4.6 shows the pulse sequence and data for the Gaus-

sian pulses (HD pulses) during an Xθ rotation. The pulses are of fixed length

(FWHM = 6 ns) with variable amplitude θ. QST is performed at each incremen-

tal increase of amplitude and the quantum state is recreated in the Bloch sphere

from two perspectives, looking down the x and the −y axes as shown to the right

of each of the respective pulse sequences. In contrast with the single control Gaus-

sian pulses, the HD pulses execute a meridian trajectory with no phase error with

increasing θ.

4.3.1 Z-pulse Calibration: For Three Axis Control

For our final HD control demonstration, we calibrate our Z pulse as shown in

Figure 4.7. The Ramsey-type pulse sequence consists of a static length (full-width

at half-max = 6ns) with an increasing amplitude Z-pulse inserted between two HD

π/2 pulses with fixed separation time tfixed = 24 ns. The separation time is chosen

to minimize overlap of the pulses. The Zamp increases incrementally. We plot

the probability of measuring the |e〉 state P1 as a function of Z-pulse amplitude,
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Zamp. The data are plotted as points with best fit as a line. The probability of

measuring the |e〉 state P1 oscillates with increasing Zamp[60]. The arrow indicates

the Zamp that corresponds to a rotation angle of π about the z-axis.

The final demonstration of our single qubit control using the HD protocol is an

(off-equator) Hadamard gate, shown in Fig. 4.8, which uses all three x−,y−,and

z− control axes. We incrementally increase the amplitude of all three control lines

using fixed length (FWHM = 6 ns) pulses to perform rotations from 0 to π/
√

2

about both the x and z axes, which at full amplitude gives the Hadamard gate

H (|g〉 → (|g〉 + |e〉)/
√

2). The trajectory concludes with a second set of pulses

to complete the identity operation I = HH, and returning to the initial state

(|g〉+ |e〉)/
√

2→ |g〉.
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Chapter 5

15 = 3× 5, Some of The Time

In this chapter, we pull everything together, including the concepts covered in the

introductory chapter, the design characteristics of the QuP discussed in Chap-

ter 2, and the qubit control details covered in Chapters 3 and 4, to demonstrate

the capabilities of our Josephson phase-qubit quantum processor (QuP) as shown

in Figure 5.1. The chapter begins with a description of the QuP and its capabili-

ties. In Section §5.3, I show swap spectroscopy [39], experimentally verifying the

existence of all nine of the engineered quantum elements. In §5.4, I show the fast

entangling operations to create Bell and |W〉 states, and simultaneous coherent

interactions of the four phase qubits with the bus resonator. In §5.5, I introduce

the quantum circuit for the compiled version of Shor’s algorithm, folllowed by the

quantum runtime analysis of the algorithm in §5.6. I conclude with the results
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from the Shor algorithm, and finish the computation to find the prime factors p

and q of N = 15.

5.1 The QuP

The QuP pictured and schematically illustrated in Figure 5.1 was scaled-up to nine

quantum elements from an architecture of two qubits and three resonators [39]

(like the device pictured in Figure 1.2e). The QuP was fabricated with aluminum

(colored regions in the photomicrograph) on a sapphire substrate (black regions)

using Al/AlOx/Al Josephson junctions.

The bottom panel of Figure 5.1 shows a complete schematic of the device. As

described in Chapter 2, the device is designed with four phase qubits and five

superconducting coplanar waveguide (CPW) resonators. Each qubit Qi is indi-

vidually controlled using a bias coil that carries dc, rf- and GHz-pulses to adjust

the qubit frequency and to pulse microwaves for manipulating and measuring the

qubit state. The GHz microwave pulses produce single qubit operations, capable

of performing HD pulses as described in Chapter 4. The rf-pulses provide the

control to adjust each qubit’s frequency over an operating range of ∼ 2 GHz, al-

lowing each qubit to couple to the other quantum elements on the chip. Each

qubit Qi is connected to a λ/4 memory resonator Mi, as well as the central λ/2

bus resonator B, via interdigitated capacitors. Each Qi is inductively coupled to
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a superconducting quantum interference device (SQUID) for single-shot readout.

5.2 Device Description and Capabilities

To help illustrate the various operations available on the QuP, consider the “ball-

and-stick” operation models in the following sections.

5.2.1 IDLE Bias

As depicted in Figure 5.2, the phase qubits can be tuned in frequency (colored

ball moving up and down on the stick) to couple to other quantum elements that

are static in frequency e.g. the bus and memory resonators (rectangles labeled B,

M1, . . . ,M4). The so called “IDLE Bias” is where the qubits (Q1 . . . Q4) start at

the beginning of an experiment and ultimately return to just prior to measure-

ment. This state is off resonance from both the bus and memory resonators so

as not to interact with them. Although the qubits are drawn as having unique

IDLE biases, they can be operated at the same qubit frequency ωeg/2π = feg

provided that they are all off-resonance with the bus (memory) resonator to re-

duce the qubit-resonator coupling interaction by a factor of ∼ 100. For a bus

resonator at fB = 6.1 GHz (memory resonator at fM1 = 6.8 GHz), and a qubit
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IDLE bias frequency1 of feg = 6.6 GHz, the qubit-bus resonator coupling strength

of g = 55 MHz (qubit-memory resonator gM1 = 20 MHz) is reduced by a factor of

(fB−feg)2

g2
= 83,

(
(fM1

−feg)2

g2M1

= 100
)

.

Due to the reduced effective coupling between the qubits and resonators, the

IDLE bias is where single qubit gates are performed, as illustrated in the bottom

panel of Figure 5.2. The outlined arrows indicate single qubit rotations by apply-

ing GHz and (small-amplitude) rf-pulses to the respective qubit control lines, as

discussed in Chapters 3 and 4.

5.2.2 Memory and Coupling Operations

As shown in the QuP circuit schematic in Figure 5.1 and recreated in the “ball-

and-stick” operation model in Figure 5.3, each qubit Qi is capacitively connected

to the bus B (and respective memory Mi) resonator. The capacitive coupling is

drawn as dotted lines between the quantum elements in Figure 5.3. Although the

coupling capacitors are fixed, Figure 5.3 illustrates how the effective interaction

can be controlled by tuning the qubits into or near resonance with the coupling bus

to turn the coupling “on”, or detuning Qi to fB ± 500 MHz to turn the coupling

“off” [23]. This tuning/detuning is controlled via fast rf-pulses (represented as

dotted arrows in Figure 5.3) on the qubit control lines, with pulse rise times

1In practice this IDLE bias varies from day to day, but typically only on the order of a few
MHz, which is automatically adjusted via the daily calibrations as discussed in Chapter A.
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Figure 5.3: Ball-and-stick model of the Josephson quantum processor. Memory
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∼ 1 ns and pulse durations O(10 ns). By applying rf-pulses on the respective

control line, each qubit is tuned in and out of resonance with B (M) to perform

entangling (memory) operations. In the case illustrated in Figure 5.3 an rf-pulse

is applied to the control line of Q4 (Q1) to tune it into resonance with the bus

resonator B (memory resonator M1) for a coupling (memory) operation.

5.2.3 Simultaneous Measurement

The rf-pulses are also used for measuring the qubits. Because each phase qubit

is separately coupled to its own readout SQUID we can perform simultaneous

measurement of all four qubits. The capability for simultaneous measurement is

an important distinction between our previous capacitively coupled devices which

suffered from measurement crosstalk [3, 48]. The rf-measurement-pulses are illus-
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trated in Figure 5.4 as dotted arrows next to each qubit indicating the application

of the appropriate rf-pulse to measure the qubit as discussed in Chapter 2.

5.2.4 High-Level QuP Operations

Creating entanglement and executing quantum algorithms [49, 7] constitute high-

level QuP operations built upon lower-level single and coupled qubit operations.

The QuP runs quantum algorithms by a sequence of high-fidelity single-qubit

gates (X, Y , Z, and H), [35, 36] (controlled by applying GHz- and rf-pulses to

the respective qubit control lines at the qubit “IDLE Bias” frequency) combined

with controlled-phase (Cφ) gates [18, 69, 39], which are composed of single qubit

gates and qubit-resonator coupling operations (controlled by applying rf-pulses).
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The QuP can also create entanglement by utilizing “fast-entangling logic”. Fast-

entanglement is realized by applying rf-pulses to the respective qubits to bring all

of the participating qubits on resonance with the bus resonator at the same time

[63].

5.3 Experimentally Verifying The QuP

The QuP is mounted and wirebonded into a superconducting aluminum sample

holder2 and cooled in a dilution refrigerator to ∼ 25 mK, as outlined in §2.6. The

individual qubit operation and calibrations are similar to previous works[24, 4, 47,

69, 39], with additional automated calibrations detailed in Appendix A. At this

point, we have verified that each qubit can perform high fidelity single qubit gates

and to that end, we are ready to characterize the remaining quantum elements

and use the QuP.

5.3.1 Swap Spectroscopy: Phase Qubit as a Spectrum Ana-

lyzer

With the individual phase qubits tuned up at the nominal “IDLE Bias” we perform

swap spectroscopy[39] to calibrate all nine of the engineered quantum elements

on the QuP. The protocol for swap spectroscopy illustrated in the bottom panel

2This is a microwave engineered cavity, whose details are discussed in [48, Chapter 2]
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of Figure 5.5, is as following: First we prepare the qubit in the excited state |e〉,

by applying a π-pulse at the IDLE Bias, we then detune the qubit away from

its IDLE bias point via a fast rf-pulse and allow the quanta of energy to swap

with whatever modes exists in the spectrum. Thereby demonstrating that swap

spectroscopy uses the qubit as a quantum-limited spectrum-analyzer.

The top panel of Figure 5.5 shows the probability of the qubit in the exited

state, Pe (color scale) versus frequency (vertical axis) and interaction time ∆τ for

each qubit Q1 . . . Q4. For each individual swap spectroscopy experiment only the

respective qubit is pulsed into the excited |e〉 state, all other qubits are operated at

the IDLE bias so as not to participate. As a representative example, let us focus

on the data for the green qubit Q1. Initially, Q1 is pulsed into the excited |e〉 state

at its IDLE bias (dark blue on the Pe colorscale) and then detuned (f = ∆f±feg)

from the IDLE bias. At 6.1 GHz, Q1 is on resonance with the bus resonator B.

As the qubit and resonator interact for duration ∆τ , the excitation originally in

Q1 is swapped to the bus resonator B (red data). As the interaction continues,

the excitation is transferred back-and-forth (red-to-blue-to-red . . .) between the

qubit and the bus resonator resulting in the chevron patterns centered about

f = 6.1 GHz for the bus resonator B and f = 6.8 GHz for the memory resonator

M1 (f = 7.2, 7.1, 6.9 GHz for the memory resonators M2 −M4 respectively). The

oscillation periods of the chevrons give the coupling strengths between Qi and
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B (Mi), which for the four qubits are all ∼= 55 MHz (∼= 20 MHz). The coupling

strengths between Qi and B (Mi) were measured to be within 5 % (10 %) of the

design values. Swap spectroscopy is repeated for each qubit to map out all of the

intentionally engineered modes (B and Mi) and the unintentional TLS defects.

With a complete qubit spectrum and all of the modes accounted for an optimal

IDLE bias is chosen for each qubit to minimize the stray coupling to the various

modes in the spectrum.

5.4 Fast Entangling Logic

With all of the quantum elements accounted for we can move on to more inter-

esting demonstrations of the QuP. For the fast entangling logic demonstrations

we will be using all four phase qubits and the bus resonator. The dynamics of

the qubit-resonator interactions can be described by the Jaynes-Cummings model

Hamiltonian[27]

Hinteraction =
∑
i

~gi
2

(a†σ−i + aσ+
i ), (5.1)

where gi is the coupling strength between the bus resonator B and the qubit Qi,

a† and a are respectively the photon creation and annihilation operators for the

resonator, σ+
i and σ−i are respectively the qubit Qi raising and lowering operators,

and ~ = h/2π. This Hamiltonian Hinteraction describes the swapping of excitations

96



between two (or more) modes when on resonance.

At the beginning of the fast entangling operations the qubits Q1 − Q4 are

initialized in the ground state |gggg〉 and tuned off-resonance from the bus res-

onator B at an idle frequency f ∼ 6.6 GHz. Qubit Q1 is prepared in the excited

state |e〉 via a π-pulse. The bus resonator B is then pumped into the first Fock

state n = 1 by tuning Q1 on resonance (f ∼ 6.1 GHz) via a fast rf-pulse of dura-

tion 1/(2g1) = τ ∼ 9 ns, calibrated for an iSWAP operation between B and Q1,

|0〉⊗|eggg〉 → |1〉⊗|gggg〉 [24] as illustrated in the top panel ball-and-stick model

in Figure 5.6.

The participating qubits are then tuned on resonance (f ∼ 6.1 GHz) and left

to interact with B for an interaction time ∆τ as illustrated in the bottom-panel

of Figure 5.6. The dynamics during the interaction between the i = {1, 2, 3, 4}

qubits and the bus resonator are shown in the top panel of Figure 5.5 for N = 1,

and Figure 5.7 (left panels labeled) for N = 2, N = 3, N = 4.

The three panels on the left of Figure 5.7 show the probability PQi of measuring

the participating qubits in the excited state, and the probability PB of B being

in the n = 1 Fock state, versus ∆τ . At the beginning of the interaction the

excitation is initially concentrated in B (PB maximum) then spreads between

the participating qubits (PB minimum) and returns back to B, continuing as a

coherent oscillation during the interaction time ∆τ . As shown in the N = 2 panel,
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the bus resonator (black data) and the qubits Q1 and Q4 (green and orange data)

coherently share the single excitation. The deviation from an equivalent sharing

between the participating qubits results in a beat frequency, which is apparent

after 40 ns of interaction. This is due to the difference in coupling strengths of the

qubits and can be compensated for by adjusting the detuning of the participating

qubits (not shown).

As the number of participating qubits increase to N = 3 and N = 4 the period

of the coherent oscillation increases as shown in the left panels labeled N = 3 and

N = 4 in Figure 5.7. With more qubits interacting with the bus resonator the time

to swap an excitation back-and-forth is reduced. For the N = 2 qubits interacting

with the bus resonator a single swap is (from B to Q1 and Q4) takes 6.5 ns, while

for N = 3 (N = 4) qubits it takes 5.1 ns (4.5 ns).

5.4.1 Enhanced Coupling Strength with The Number of Qubits

Interacting with The Bus Resonator

When the qubits are simultaneously tuned on resonance with B they interact

with an effective coupling strength ḡN that scales with the number N of qubits

as
√
N [20], analogous to a single qubit coupled to a resonator in a n-photon

Fock state[24]. These coherent oscillations continue for a time ∆τ and increase

in frequency with each additional qubit. For N qubits, ḡN =
√
Nḡ, where ḡ =
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[1/N(
∑

i=1,N g
2
i )]

1/2. The oscillation frequency of PB for each of the four cases

i = {1, 2, 3, 4} is shown in the right panel of Figure 5.7. The inset schematics

illustrate which qubits participate. These results are similar to Ref.[20], but with

a larger number N of qubits interacting with the resonator, we can confirm the

√
N scaling of the coupling strength with N. From these data we find a mean

value of ḡ = 56.5 ± 0.05 MHz. The error bars on the data in the right panel of

Figure 5.7 indicate the −3 dB point of the Fourier transformed PB data.

5.4.2 Rapid Entanglement: Bell and W-States

By tuning the qubits on resonance for a specific interaction time τ , corresponding

to the first minimum of PB in Figure 5.7 (for N = 2 and N = 3) we can generate

Bell singlets |ψS〉 = (|ge〉 − |eg〉)/
√

2 and |W〉 states |W〉 = (|gge〉 + |geg〉 +

|egg〉)/
√

3. Stopping the interaction at this time (τBell = 6.5 ns and τW = 5.1 ns)

leaves the single excitation evenly distributed among the participating qubits and

places the qubits in the desired equal superposition state similar to the protocol in

Ref.[2], but with the full quantum state tomography (QST) we are able to further

analyze these states.

Figure 5.8 show the real part of reconstructed density matrices from this

analysis[60]. The Bell singlet |ψs〉 = (|ge〉 − |eg〉)/
√

2 is formed with fidelity

FBell = 〈ψs| ρBell |ψs〉 = 0.89 ± 0.01 and entanglement of formation[22] EOF =
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0.70. The three-qubit state |W〉 = (|gge〉 + |geg〉 + |egg〉)/
√

3 is formed with

fidelity FW = 〈W | ρW |W〉 = 0.69± 0.01, which satisfies the entanglement witness

inequality FW > 2/3 for three-qubit entanglement [1]. The measured imaginary

parts, which are not displayed are found to be small, with |Im ρψs| < 0.05 and

|Im ρW| < 0.06, as expected theoretically.

Generating either of these classes of entangled states (bi- and tri-partite) re-

quires only a single entangling operation that is short relative to the characteristic

time for two-qubit gates (tg ∼ 50 ns). This entanglement protocol has the further

advantage that it can be scaled to an arbitrary number of qubits by connecting

more qubits to the resonator and tuning them on resonance for the appropriate

interaction time.

5.5 Compiled Version of Shor’s Algorithm

The initial motivation for creating this QuP was to perform a compiled version

of Shor’s algorithm as proposed in [9], which was used in formulating the quan-

tum circuit for the pioneering Shor algorithm demonstration in nuclear magnetic

resonance (NMR)[64], and more recently in photonic systems[31, 33, 54]. A refor-

mulated proposal for electrons in semiconductor nanostructures [14] also discusses

the details of the quantum circuit compilation. Here, we use these previous pro-

posals and demonstrations and map the compiled version of Shor’s algorithm to
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our superconducitng QuP. This makes for an interestingt demonstration of our

QuP’s capabilities as it combines the challenge of precise and accurate individual

qubit control (as discussed in Chapter 3 and Chapter 4), with entangling opera-

tions (discussed here) to form a sequence of quantum operations that perform a

meaningful quantum algorithm.

Of particular importance to the success of this experimental demonstration

(and also for the success of the next generation of quantum algorithms) were

the automated calibrations, which we leave for discussion in Chapter A. For now

we mention that the full factoring sequence that we describe was executed after

performing automatic calibration of the individual gates. We then combined them,

without additional tuning, so as to factor the composite number N = 15 with co-

prime a = 4, (where 1 < a < N and the greatest common divisor between a and

N is 1).

5.5.1 Four Qubit Quantum Circuit

The quantum circuit for a compiled version of Shor’s algorithm is shown in Fig-

ure 5.9 for factoring the number N = 15 with a = 4 co-prime [9, 14], which returns

the period r = 2 (“10” in binary) with a theoretical success rate of 50 %. The

three steps in the quantum algorithm are initialization, modular exponentiation,
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and the quantum Fourier transform3. Once we have r from this routine, we can

use a classical computer to calculate the prime factors, p and q (as demonstrated

in Chapter 1).

In Figure 5.9, computation moves from left to right and the participating

qubits labeled on the left Q1,Q2,Q3, and Q4 each have a line that represents their

progression through the algorithm. Single qubit operations are represented as

boxes, although in this algorithm only H-gates are used, one would represent X,

Y or Z rotations of any arbitrary angle (though typically the angles are some

fractions of π) with a box around the letter and a subscript for the angle. The H-

gate is performed like what we saw in Chapter 4. Entangling operations between

qubits are represented with a black dot for the control qubit(s), which is connected

to a circle with a cross in it (just like a target) for the target qubit(s)4. For

the entangling operations used here, we employ the Cπ gate, or more commonly

referred to as the Cz gate as proposed by[62] and detailed in [39]. Combined

with single qubit gates, i.e. Hadamard-gates, we can form the more familiar

controlled NOT (CNOT) gate. The CNOT action is to flip the the target qubit

if and only if the control qubit is in the excited state. The algorithm ends with a

projective measurement of the qubits of interest, which is represented as a meter

3Although we did not need to use the quantum Fourier transform (QFT) in this demonstra-
tion, this QuP architecture can perform the QFT as demonstrated in [39].

4There are controlled gates with more qubits, like a Toffoli gate which requires three qubits,
two controls and one target [39].
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Figure 5.9: Quantum circuit of Shor’s Algorithm, using four qubits to factor
N = 15, with co-prime a = 4.

that returns either “0” or “1”. Recall that this quantum algorithm will run for

∼ 105 repetitions to build up the final probabilities.

5.5.2 Recompiling The Quantum Circuit

The algorithm can be further simplified by noticing that qubit Q1 is initialized

via a Hadamarad (H) gate and then idles until the next H-gate. This sequence is

highlighted in Figure 5.10. Since the Hadamard gate is self-inverse, i.e. H ·H = I,

we can replace these two gates with an Identity I gate as illustrated in Figure 5.10.

Still looking at the actions of Q1, we notice that Q1 is the control qubit for

the controlled Cπ/2 gate. Because Q1 is initialized in the |g〉 and idles until the

Cπ/2 gate it therefore does not invoke the controlled action on the target qubit Q2.
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This action is highlighted in Figure 5.11. When the control qubit is |g〉, the target

qubit’s initial state |ψ〉 equals its final state |ψ′〉 such that |ψ′〉 = U |ψ〉 → |ψ′〉 =

I |ψ〉. So, we can replace the Cπ/2 with two I-gates as highlighted in Figure 5.11.

5.5.3 Three Qubit Quantum Circuit

The final step in the “recompiling” is to remove the redundant qubit Q1 by noting

that we always measure Q1 in the |g〉 state. Removing Q1 forms the three qubit

version of Shor’s algorithm as shown in Figure 5.12 and Figure 5.13. The quantum

circuits in Figure 5.9 and Figure 5.13 are equivalent for the specific case of N = 15

with a = 4 co-prime. As discussed in Chapter 1, entanglement plays a key role

in the success of a quantum algorithm therefore, we perform a quantum runtime
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analysis to check for entanglement throughout the algorithm at the three points

labeled “Bell”, “GHZ” and “Output” in Figure 5.13.

5.6 Quantum Runtime Analysis

5.6.1 Step 1: Bell States via C-Phase Gate

The first breakpoint in the algorithm verifies the existence of bipartite entanglement[3].

A Bell-singlet |ψs〉 is formed after a H gate [36] on Q2 and a CNOT[69, 39] between

Q2 and Q3. Figure 5.14 shows the actual pulse sequence used. The traces are for

all three control pulses (X, Y, and Z) for both qubits Q2 and Q3. The Hadamard

gates are labeled above the X-,Y- and Z-pulses (although the Z-pulses are hard
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to make out on this scale, they are indeed used). The CNOT gate is realized

by sandwiching a Cz gate between two H-gates, as illustrated in the top panel of

Figure 5.14 and in the actual pulse traces (captured on a high-speed oscilloscope)

shown below. The gray region labeled “QST” for quantum state topography is

used to reconstruct the density matrices used to analyze the quantum state.

The Z-pulses for the control qubit Q2 do the following: The first pulse tunes

Q2 on resonance with the bus resonator (not shown) and stays on resonance long

enough (∼ 9 ns) to execute an iSWAP operation |Q2B〉 = |e 0〉 → i |g1〉, which

swaps the excited state of the qubit into the resonator. Later in the sequence,

the second Z-pulse applied to Q2 returns the excitation back to the qubit via a

second iSWAP operation. The third Z-pulse pulse is a small Gaussian-smoothed

rectangular bump right after the second iSWAP operation that corrects for the

dynamically acquired phase of Q2. And the final Z-pulse is the measurement

pulse.

The Z-pulses for the target qubit Q3 do the following: The first pulse tunes

the second excited level |e〉 ↔ |f〉 (this is the “|e〉 ↔ |f〉 transition”, typically

about −200 MHz from the qubits |g〉 ↔ |e〉 transition frequency) of the qubit on

resonance with the bus resonator (not shown) and stays on resonance for the time

(∼ 15 ns) required to do a 2π rotation i.e. ×2 iSWAP operations between the

states |Q3B〉 : |e1〉 ↔ |f0〉. This action is conditioned on the state of Q2. If Q2
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was excited and transferred that excitation to B (as described above) then Q3

picks up the phase φ = π. The second Z-pulse is the bump to correct for the

dynamic phase acquired from detuning Q3 from its IDLE bias. The final Z-pulse

is the measurement pulse.

Figure 5.15, is the real part of the density matrix reconstructed from QST

on |ψs〉. The singlet is formed with fidelity FBell = 〈ψs| ρBell |ψs〉 = 0.75 ± 0.01

(|Im ρψs| < 0.05 not shown) and entanglement of formation EOF = 0.43.

5.6.2 Step 2: GHZ States After Two CNOT Gates

The algorithm is paused after the second CNOT gate between Q2 and Q4 to check

for tripartite entanglement[48, 47, 19]. The actual pulse sequence used to generate

this state is shown in Figure 5.16. The sequence builds on the previous sequence

for the Bell state with the additional qubit Q4, H-gates and second Cz.

At this breakpoint in the algorithm a three-qubit |GHZ〉 = (|ggg〉+ |eee〉)/
√

2,

with fidelity FGHZ = 〈GHZ| ρGHZ |GHZ〉 = 0.59 ± 0.01 (|Im ρGHZ| < 0.06 not

shown) is formed between Q2, Q3, and Q4 as shown in Figure 5.17. This state is

found to satisfy the entanglement witness inequality, FGHZ > 1/2 [1] indicating

three-qubit entanglement. We note that this |GHZ〉 measurement together with

the |W〉 measurement above in §5.4.2 is the first measurement employing simul-

taneous measurement with single-shot readout of the qubits for both classes of
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Figure 5.14: Control pulse sequence for the first breakpoint in the quantum
runtime analysis. Bell state created followed by QST. Note that the CNOT gate
is realized by equivalent Controlled-Z gate sandwiched between two H-gates.
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Figure 5.15: Reconstructed density matrix from QST.
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Figure 5.16: Control pulse sequence for the second breakpoint in the quantum
runtime analysis. GHZ state created followed by QST.

three-qubit entanglement.

5.6.3 Step 3: Three Qubit QST

The third step in the runtime analysis captures all three qubits at the end of

the algorithm, where the final H-gate on Q2, rotates the three-qubit |GHZ〉 into

|ψ3〉 = H2 |GHZ〉 = (|ggg〉 + |egg〉 + |gee〉 − |eee〉)/2. The actual control pulses

are shown and labeled in Figure 5.18.
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Figure 5.17: Reconstructed density matrix from QST.
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Figure 5.18: Control pulse sequence for thee-qubit Shor algorithm.

The middle panel in Figure 5.19 is the real part of the density matrix with

fidelity F = 〈ψ3| ρ3 |ψ3〉 = 0.54± 0.01. Because the state is locally equivalent to a

|GHZ〉 state we still have violate the three qubit entanglement witness F > 1/2.

From the three-qubit QST we can trace out the register qubit to compare with

the experiment, where we measure only the single qubit register and the raw

probabilities of the algorithm output, which we discuss next.
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5.7 Shor’s Algorithm Output

Although the success of the algorithm hinges on quantum entanglement, the final

output is ideally a completely mixed state, σm = (1/2)(|g〉〈0|+|e〉〈1|). Therefore,

measuring only the raw probabilities of the output register does not reveal the

underlying quantum entanglement necessary for the success of the computation.

Thus, we perform QST at the end of the algorithm in addition to recording the

raw probabilities of the output register.

Ideally, the algorithm returns the binary output“00” or “10” (including the

redundant qubit) with equal probability, where the former represents a failure

and the latter indicates the successful determination of r = 2. We use three

methods to analyze the output of the algorithm: Three-qubit QST, single-qubit

QST, and the raw probabilities of the output register state.

5.7.1 Three-Qubit QST and Single-Qubit QST

Single qubit QST captures only what happens to the output register qubit and

disregards (does not measure) the functional qubits (Q3 and Q4). However, QST

on the output register does provide phase information which can be useful in

verifying the correct behavior of the algorithm.

The bottom two panels in Figure 5.19 are the real part of the density matrices

for the single qubit output register from three-qubit QST and one-qubit QST
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with fidelity F =
√
ρ σm

√
ρ = 0.92± 0.01 for both density matrices. The density

matrices were formed by: tracing-out Q3 and Q4 from from the data shown in

the middle panel (blue bars), and directly measuring Q2 with QST. The data are

equivalent, as we expect.

5.7.2 Raw Probabilities

The raw probabilities of the output register provide the direct answer of the al-

gorithm. From the raw probabilities calculated from 150,000 repetitions of the

algorithm, we measure the output “10” with probability 0.483 ± 0.003, yielding

r = 2, and after classical processing we compute the prime factors of N = 15,

with a co-prime via GCD[(ar/2 ± 1), N ]:

p = GCD[42/2 + 1, 15] = 3

q = GCD[42/2 − 1, 15] = 5, (5.2)

and we find

N = p× q
15 = 3× 5 (5.3)
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Figure 5.19: Output of the Shor Algorithm. Reconstructed density matrices:
from full three-qubit QST, single-qubit density matrix via tracing out Q2 and Q3,
and single-qubit density matrix from single-qubit QST.

119



5.7.3 Linear Entropy of The Output Register

The linear entropy SL = 4[1 − Tr(ρ2)]/3 is another metric for comparing the

observed output to the ideal mixed state, where SL = 1 for a completely mixed

state[68]. We find SL = 0.78 for both the reduced density matrix from the third

step of the runtime analysis (three-qubit QST), and from direct single-qubit QST

of the register qubit.

5.7.4 Check Experiment: No Entangling Operations

As a final check, we run the algorithm without any of the entangling operations and

compare the output, both single QST and raw probabilities to those of the actual

algorithm. The top panel in Figure 5.20 shows the reduced quantum circuit, with

entangling operations removed. The algorithm reduces to two H-gates separated

by the time of the two entangling gates. Ideally Q2 returns to the ground state

and the algorithm fails (returns “0”) 100 % of the time. The bottom panel in

Figure 5.20 is the real part of the density matrix for the register qubit after

running this check experiment. The fidelity of measuring the register qubit in |g〉

is Fcheck = 〈g| ρcheck |g〉 = 0.83 ± 0.01. The algorithm fails, as expected, without

the entangling operations.
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Figure 5.20: Check experiment. Run algorithm without entanglement.

5.8 Sources of Error

Short coherence times, both T1 and T2, are the largest sources of error, followed by

the presence of two-level states (TLS) that the qubits inevitably couple to while

tuning the qubits on and off resonance with the resonators. Smaller junctions

were engineered to help reduce the density of TLS in the qubit spectrum, however

the density of TLS in the QuP are still a source of decoherence. Perhaps even

smaller junctions (with areas less than 1µm2) will reduce the density of TLS to

the point that the errors they cause can be neglected. Another option is to deploy

a control scheme that does not require the qubits to be tuned or detuned for
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coupling interactions, thereby reducing the participation of the TLS.

5.9 Conclusion: 15 = 3× 5

In conclusion, we have implemented a compiled version of Shor’s algorithm on a

modular nine quantum element QuP that correctly finds the prime factors p = 3,

q = 5 of the composite number N = 15. We showed that the QuP can create

Bell states, both classes of three-qubit entanglement |GHZ〉 and |W 〉, and the

requisite entanglement to execute Shor’s algorithm. In addition, we produce co-

herent interactions between four qubits and the bus resonator with a protocol that

can be scaled to rapidly create an N -qubit |W〉 state. During these multi-qubit

coherent interactions we also observe a
√
N dependence of the effective coupling

strength with the number N of participating qubits consistent with theoretical

predictions. These demonstrations represent an important milestone for super-

conducting qubits, further proving this architecture for quantum computation

and quantum simulations.
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Appendix A

Daily Automated Calibrations

In this chapter, I discuss the software automation developed over the years to

calibrate phase qubits. The software is general enough to accommodate a variety

of quantum elements, e.g. transmon-type qubits, tunable resonators, resonator

readout schemes, etc., although such a discussion is left for another thesis. We

have found that automating the repetitive calibration tasks is, and will continue

to be, essential to the success of any quantum architecture that is serious about

scaling. A characteristic for any software infrastructure is the flexibility to evolve

so as to continue to meet the needs of future experiments, as opposed to recreating

the framework for every subsequent evolution in hardware. To that end, I am

pleased to note that just as this thesis was built on previous experiments, the code

I review here is already evolving with further automation for future experiments
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in the laboratory. I stress that the capability for this automation has been a

UCSB QC-group effort, but is largely due to the foresight of Markus Ansmann

and Matthew Neeley, who birthed LabRAD1 to provide the infrastructure for

this continuos software evolution, and Max Hofheinz for the initial automated

microwave electronics calibrations.

What I name the “manual” procedure for single-qubit calibration has been

described in great detail previously in [3, chap. 8]; here, l focus on the sequence of

the experiments2, show which parameters are calibrated, and provide the (com-

mented) code used for the calibrations. This appendix begins with a brief outline

of the current state of the LabRAD infrastructure (for more on the origin and

philosophy of LabRAD please see[3, chap. 6]) and how it constitutes the qubit

control channels. The rest of the appendix is dedicated to the automated phase

qubit calibrations beginning in §A.3. In §A.3.1, using a top-level diagram, I de-

scribe the experimental software interface and how a calibration script updates

qubit parameters. In §A.3.2, I detail the 41 separate parameters that need to be

calibrated for every qubit before running a quantum algorithm. I categorize the

automation into functional blocks of the phase qubit calibrations starting with the

dc-bias parameters in §A.4.2, then the measurement parameters in §A.4.3, qubit

1http://sourceforge.net/projects/labrad/
2The sequence of experiments has been constructed to facilitate bootstrapping. In this con-

text bootstrapping means the experiments are executed such that the results from the current
experiment feed into the next.
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X,Y pulse control calibrations in §A.4.4, the single qubit scans in§A.4.5, qubit-

resonators calibrations in §A.4.6, and finally the coupled qubit gate calibrations

in §A.4.7.

A.1 The Correct (Software) Tool For The Job

A high-level block diagram in Figure A.1 shows the software tools that we have

chosen to facilitate the various tasks related to data-taking.3 Within the UCSB

QC-group there continues to be significant development to make as much of

LabRAD rely on free-open-source software and phase-out the closed-source soft-

ware (i.e. Labview and Delphi). As can be seen in Fig.A.1, Python plays a

dominate role in our experiments. Here, I will be focusing solely on the Python

scripts that have been created to run the qubit calibrations and experiments.

A.2 Qubit Control Channels and The Pyle

The point of this software infrastructure is to abstract-away the hardware to the

point where one can still accurately, yet easily, program the experiment at a

high-level, while still having access to all of the low-lying constituents for precise

3I’ll save everyone from the long winded debate over which language is best suited for which
task, and instead just comment that there were strong opinions rooted from the original creators
of LabRAD. More importantly, LabRAD is an opensource project so if you think you can make
any portion better with another language we all encourage you to do it and share it!
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Figure A.1: The software languages and their use in experiments.

modifications to the calibrations when necessary. At a high-level this is a quantum-

circuit-schematic, where the underlying qubits and control electronics have been

completely calibrated and abstracted away such that all the experimenter needs

to be aware of are the “quantum-resources” available to them. This abstraction is

akin to programming a field programmable gate array (FPGA) using a schematic

capture of boolean logic, where details of the interior gate connections are not

needed. In the experimental scripts described here, the level of abstraction is to

the point where we build up individual pulse sequences to form the calibrations.

Therefore, the high-level coding of quantum circuit control software is well within

reach.

Figure A.2 illustrates the current level of abstraction of our qubit channels.

The mid-line in the figure provides a boundary between the software and the
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Figure A.2: Qubit Control channels in Software and Hardware.
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hardware, which are nearly mirror-images of one another. The symmetry fades

as we get to the top-level abstraction in the software, titled “Pyle”. Pyle (as in

a “pile” of code) is a repository for our experimental scripts. When composing

an experiment, to later become an experimental calibration, the experimenter has

access to all of the resources shown in Fig.A.2. Typically, the scripts stay within

the qubit server abstraction, but one of the advantages of LabRAD is the user-

defined level of granularity. One can make a call to the underlying abstraction

layers, like the lower-level general purpose interface bus (GPIB) server if needed.

For our discussions here we will be operating at the “Pyle” level where we are only

concerned with making calls to qubit parameters handled in the Qubit Server.

A.3 Automated Qubit Calibrations

A.3.1 Experimental Interface

An experiment is run by initiating a script via a (python) command window

(step 1 in Figure A.3). Upon execution of the script the existing calibrations

are applied to the system (step 1.a in Figure A.3) and the qubit responds (step

2 in Figure A.3). The data are recorded in the Data Vault (step 3), plotted in

the grapher (step 3.a) if desired, and the desired data values are returned to the

script for calibrations and immediate analysis. If an update flag is set true, the
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registry values are updated with the new calibration values (step 4). The registry

contains the ever growing qubit parameters that describe the experiments. The

list of qubit parameters (or “registry keys”) are tabulated in Table A.1, A.2, A.3,

A.4, and A.5.

A.3.2 41 Automatic Calibrations per Qubit

Figure A.4 shows a representative pulse sequence for a single repetition of a single

qubit experiment. All of the arrows (and numbers) indicate a qubit parameter

that must be calibrated. The relevant experimental times are indicated in each

section, one repetition of an experiment takes ∼ 100µs to complete. Typically

each data point is repeated ×1000. Therefore, a fast one-parameter ( “1-D”)

sweep, consisting of ∼ 1000 points, takes O(100 sec) or a couple of minutes. Typi-

cally the calibration analyses consists of finding a min (max), calculating a period

(via a fast Fourier transform), or fitting a well defined function -all of which are

relatively quick calculations on a modest desktop computer - adding a O(100 sec)

to the experiment. For two-parameter (“2-D”) sweeps one may need to optimize

the range of values so as to help reduce the calibration time. These scans are

typically are preceded by quick 1-D scans to find the appropriate range.4

4When possible, it is usually desirable and more efficient to substitute a series of 1-D scans
for a a single 2-D calibration.
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Figure A.3: Qubit Calibration Flow illustration. Steps 1 through 4 are detailed
in the text. Control channels refers to the hardware and software infrastructure
shown in Figure A.2.

130



Qubit X

Qubit Y

Qubit Z

20*

fm

fb

16

17 25 27{ }

28

29

30

31

32

33

35

36

34

37

39

38

41
40

Reset Operate Readout

total time ~ 100 μs
t

memory

bus

time ~ 1 μs

Algorithm QST Measure

Qubit Bias 
dc control

dc control

response
VSQUID

SQUID Bias 

1

3
5

2 4 6

7

8

9
10

11

12

13

14 15

21 24{ }

18
19

20

Δ/2π
fegffe

rf control

rf control

Figure A.4: Qubit parameters annotated by number, corresponding to registry
keys in Table A.1, A.2, A.3, A.4, and A.5. Scales are exaggerated for clarity.
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Daily Qubit Bias Calibrations
Parameter Calibration Fine Cal. Typical

Value

1 biasReset SQUID
steps

0.110 V

2 biasResetSettling SQUID
steps

8µs

3 biasOperate SQUID
steps

Step edge 0.513 V

4 biasOperateSettling SQUID
steps

40µs

5 biasReadout SQUID
steps

0.740 V

6 biasReadoutSettling SQUID
steps

20µs

7 biasStepEdge SQUID
steps

Step edge 0.455 V

8∗ SQUIDReadoutDelay SQUID
steps

10µs

9 SQUIDRampBegin SQUID
steps

0.1 V

10 SQUIDRampEnd SQUID
steps

0.5 V

11 SQUIDRampLength SQUID
steps

50µs

12 SQUIDSwitchTime SQUID
steps

37µs

Table A.1: Table of qubit experimental bias parameters (written as they ap-
pear in the registry) for a typical qubit in the QuP. The Calibration and “Fine
Cal.” columns refer to the experimental calibration script detailed in Figure A.10.
∗Parameter 8 does not need to be calibrated day to day.
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Daily Qubit Measurement Calibrations
Parameter Calibration Fine Cal. Typical

Value

13 measAmp scurve findMPA −0.85 DAC
Ampl.

14 measLenTop scurve findMPA 5 ns
15 measLenFall scurve findMPA 30 ns

Table A.2: Table of qubit experimental measurement parameters (written as they
appear in the registry) for a typical qubit in the QuP.

Daily Qubit X,Y Pulse Calibrations
Parameter Calibration Fine Cal. Typical

Value

16 feg Spectroscopy
low power

Ramsey via
freqTuner

6.54 GHz∗

17 ffe Spectroscopy
high power

Ramsey eror
filter (REF)

6.44 GHz∗

18∗ piLength * 14 ns
19∗ piFWHM * 7 ns
20 piAmp piTunerHD 0.70
21 measEg Visibility 0.054
22 measEe Visibility 0.090
23 measFg Visibility 0.946
24 measFe Visibility 0.910
25 calRabiOvrUw 2-D Spec,

Pituner
0.19 GHz

26 calZpaFunc 2-D Spec,
findZpa-
Func

(0.0, 0.994)

27 calDfOvrZpa calZpaFunc,
feg

−1.645 GHz

Table A.3: Table of qubit pulse parameters (written as they appear in the registry)
for a typical qubit in the QuP.
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Daily Qubit-Resonator Calibrations
Parameter Calibration Fine Cal. Typical

Value

28 fB SWAP10 SWAP10-Tuner,
fockTuner

6.10 GHz∗

29 cZContrlLen SWAP10-
Tuner

fockTuner 12.56 ns

30 cZContrlAmp SWAP10-
Tuner

fockTuner −0.239 DAC
Ampl.

31 piAmpfe piTunerHDfe 0.492 DAC
Ampl.

32 cZTargetAmp SWAP21-
Tuner,
piTuner21

fockTuner n = 2 −0.160 DAC
Ampl.

33 cZTargetLen SWAP21-
Tuner,
piTuner21

fockTuner n = 2 15.40 ns

34 fM SWAP10 fockTuner 7.0 GHz
35 memRWAmp SWAP10-

Tuner
fockTuner 0.147 DAC

Ampl.
36 memRWLen SWAP10-

Tuner
fockTuner 22.38 ns

Table A.4: Table of qubit experimental parameters for qubit-resonator calibra-
tions.
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Daily Qubit Gate Calibrations
Parameter Calibration Fine Cal. Typical

Value

37 piAmpZ piTunerZ 0.042 DAC
Ampl.

38 cZContrlPhaseCorAmp cZCalP1 semi-auto 0.129 DAC
Ampl.

39 cZContrlPhaseCorLen * 5 ns
40 cZTargetPhaseCorAmp cZCalP2 semi-auto 0.223 DAC

Ampl.
41 cZTargetPhaseCorLen * 5 ns

Table A.5: Table of qubit experimental parameters for gate calibrations.
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A.4 Daily Automation Code

A.4.1 Top Level Function Calls

Figure A.5 shows the code for the daily automations. The header (all of the

“from” and “import” statements) is for proper linking of resources. The function

titled “daily bringup” defines the sequence of calibration experiments that are

run at the beginning of everyday. For four qubits and five resonators the daily

calibrations were completed after ∼ 4 hrs.5

A.4.2 Bias Calibrations

Figure A.6 through A.9 shows the code for the automated bias experiments. These

experiments calibrate the parameters summarized in Table A.1. The biasReset

parameter is the voltage to reset the qubit. The biasResetSettling parameter is the

time to wait for the qubit bias to settle at its reset voltage. The biasOperate pa-

rameter is the qubit operating voltage. The biasOperateSettling parameter is the

time to wait for the qubit bias to settle at its operating voltage. The biasReadout

parameter is the qubit readout voltage. The biasReadoutSettling parameter is the

time to wait for the qubit bias to settle at its readout voltage. The biasStepEdge

5Typically, my days started by waking up, logging-in remotely to initiate the “daily bringup”
script. Then I would enjoy a cup of coffee, some breakfast, and commute (ride my bike) into
the laboratory in time to verify the end of the calibrations and begin the higher level Shor
experiments.
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parameter sets the maximum bias voltage before the qubit well disappears. The

SQUIDReadoutDelay parameter is the time to wait before ramping the SQUID

voltage for readout of the qubit state. The SQUIDRampBegin (SQUIDRampEnd)

is the beginning (ending) voltage of the SQUID ramp. The SQUIDRampLength is

the length of the SQUID ramp. The SQUIDSwitchTime is the the time at which

the SQUID switches into the voltage state (based on a the comparator threshold

voltage).

A.4.3 Measurement Calibrations

Figure A.10 and A.11 shows the code for the automated measurement experi-

ments. These experiments calibrate the parameters summarized in Table A.2.

The measAmp parameter is the DAC amplitude set to measure the excited |e〉

state. The measLenTop parameter is the length of time that the measAmp is

sustained. The measLenFall parameter is the length of time until the measAmp

returns to zero.

A.4.4 Qubit X,Y Pulse Control Calibrations

Figure A.12 through A.21 shows the code for the qubit X,Y pulse calibrations

for the parameters summarized in Table A.3. The parameter feg is the qubit

|g〉 ↔ |e〉 transition frequency. The parameter ffe is the qubit |e〉 ↔ |f〉 transi-
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tion frequency. The piLength parameter is the full length of a π-pulse, which is

set manually and is no less than twice piFWHM. The piFWHM is the FWHM

length of a π-pulse, which is also set manually (see Chapter 4 for more details

on how the appropriate length for these values). The piAmp parameter is the

DAC amplitude caibrated for a π-pulse. The measEg parameter corresponds to

the stray tunneling of the |g〉 state. The measFg parameter corresponds to the

probability of measuring the |g〉 state (1 − measEg = measFg). The meas Fe

parameter is the probability of measuring the excited |e〉 state. The measEe pa-

rameter is the amount that the |e〉 state is misidentified as the ground |g〉 state.

The calRabiOvrUw parameter is the calibration that converts Rabi-amplitude to

a frequency. The calZpaFunc parameter is the calibration that fits (a polynomial

to) the spectroscopy curve, which is used for the calDfOverZpa calibration. The

calDfOverZpa parameter is the calibration that converts z-amplitude to detuning

frequency.

A.4.5 Single Qubit Scans

Figure A.22 through A.25 shows the code for the standard single qubit scans, T1,

T2, and spin echo.
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A.4.6 Qubit-Resonator Calibrations: Bus and Memory

Figure A.26 through A.33 shows the code for the qubit-resonator calibrations

for the parameters summarized in Table A.4. The fB parameter is the resonant

frequency of the bus resonator. The cZContrlLen parameter is the length to

perform an iSWAP between the qubit and bus resonator. The cZContrlAmp

parameter is the z-amplitude to tune the qubit frequency feg on resonance with

the bus resonator (to perform an iSWAP between the qubit and bus resonator).

The piAmpfe parameter is the DAC amplitude to drive the a π-pulse between the

|e〉 → |f〉 states. The cZTargetAmp parameter is the z-amplitude to tune the

qubit frequency ffe on resonance with the bus resonator (to perform an iSWAP2

operation between the qubit and bus resonator). The cZTargetLen parameter is

the length to perform an iSWAP2 between the qubit and bus resonator. The fM

parameter is the resonant frequency of the memory resonator. The memRWAmp

parameter is the z-amplitude to tune the qubit frequency feg on resonance with

the memory resonator (to perform an iSWAP between the qubit and memory

resonator for memory read and write operation). The memRWLen parameter is

the length to perform an iSWAP between the qubit and memory resonator.

139



A.4.7 Gate Calibrations

Figure A.34 through A.36 shows the code for the gate calibrations for the param-

eters summarized in Table A.5. The piAmpZ parameter is the DAC amplitude to

perform a π-pulse about the z-axis. The cZControlPhaseCorAmp parameter is the

DAC amplitude to adjust the phase after completing a Controlled-Z gate for the

control qubit. The cZControlPhaseCorLen is the length of the phase correction

detuning pulse, which is set manually. The cZTargetPhaseCorAmp parameter is

the DAC amplitude to adjust the phase after completing a Controlled-Z gate for

the target qubit. The cZTargetPhaseCorLen is the length of the phase correction

detuning pulse, which is set manually.
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C:\workspaces\erik\pyle\pyle\dataking\automateDaily.py Sunday, April 22, 2012 1:11 PM

from datetime import datetime

import itertools

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import numpy as np

from scipy.optimize import leastsq, fsolve

import time

import random

import labrad

from labrad.units import Unit

ns, us, GHz, MHz = [Unit(s) for s in ('ns', 'us', 'GHz', 'MHz')]

#from labrad.scripts.test import GHz_DAC_brinigup_all

from pyle.dataking import measurement

from pyle.dataking import multiqubit as mq

from pyle.dataking import util

from pyle.util import sweeptools as st

from pyle.dataking import noon

from pyle.dataking import ghz

from pyle.dataking import werner

from pyle.dataking import shor as shor

from pyle.dataking import hadamard as hadi

from pyle.plotting import dstools as ds

from pyle import tomo

def daily_bringup(s, pause=True):

bringupAll(s._cxn) #brings up the GHz_DACs first

bringup_squidsteps(s, pause=pause)

bringup_stepedge(s, pause=pause)

bringup_scurve(s, pause=pause)

bringup_sample(s, pause=pause)

single_qubit_scans(s)

qubit_coupling_resonator_scans(s)

qubit_memory_resonator_scans(s)

gate_bringup(s)

create_bell_state_iswap(s,zSweep=False)

def bringupAll(cxn):

print 'Bringup script: started bringup'

if True: #Didn't want to unindent

fpga = cxn.ghz_fpgas

boardList = [b[1] for b in fpga.list_devices()]

successList = [True]*len(boardList)

-1-

Figure A.5: Automate Daily scripts.
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C:\workspaces\erik\pyle\pyle\dataking\AppA_BiasCode.py Monday, April 30, 2012 3:55 PM

###### From automateDaily.py ########

def daily_bringup(s, pause=True):

bringupAll(s._cxn) #brings up the GHz_DACs first

bringup_squidsteps(s, pause=pause)

bringup_stepedge(s, pause=pause)

# bringup_scurve(s, pause=pause)

# bringup_sample(s, pause=pause)

# single_qubit_scans(s)

# qubit_coupling_resonator_scans(s)

# qubit_memory_resonator_scans(s)

# gate_bringup(s)

# create_bell_state_iswap(s,zSweep=False)

def bringup_squidsteps(s, pause=True):

N = len(s['config']) #N=4 for the four phase qubits in the QuP

for i in range(N):

print 'measuring squidsteps for qubit %d...' % i,

mq.squidsteps(s, measure=i, noisy=False, update=pause)

print 'done.'

N = len(s['config'])

for i in range(N):

print 'measuring step edge, qubit %d...' % i,

mq.stepedge(s, measure=i, noisy=False, update=pause)

print 'done.'

for i in range(N):

print 'binary searching to find step edge %d...' % i

mq.find_step_edge(s, measure=i, noisy=False)

print 'done.'

##### From multiqubit.py ####

def squidsteps(sample, bias=st.r[-2.5:2.5:0.05, V], resets=(-2.5*V, 2.5*V), measure=0, stats=150,

save=True, name='SquidSteps MQ', collect=False, noisy=False, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

if 'squidBiasLimits' in q:

default = (-2.5*V, 2.5*V)

bias_lim = q['squidBiasLimits']

if bias_lim != default:

print 'limiting bias range to (%s, %s)' % tuple(bias_lim)

resets = max(resets[0], bias_lim[0]), min(resets[1], bias_lim[1])

bias = st.r[bias_lim[0]:bias_lim[1]:bias.range.step, V]

axes = [(bias, 'Flux Bias')]

deps = [('Switching Time', 'Reset: %s' % (reset,), us) for reset in resets]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

def func(server, fb):

reqs = []

-1-

Figure A.6: Automated SQUIDsteps page 1 of 2.
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C:\workspaces\erik\pyle\pyle\dataking\AppA_BiasCode.py Monday, April 30, 2012 4:30 PM

for reset in resets:

q['biasOperate'] = fb

q['biasReadout'] = fb

q['biasReset'] = [reset]

q['readout'] = True

reqs.append(runQubits(server, qubits, stats, raw=True))

data = yield FutureList(reqs)

if noisy: print fb

returnValue(np.vstack(data).T)

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=False)

if update:

squid.adjust_squid_steps(Q, data)

if collect:

return data

-2-

Figure A.7: Automated SQUIDsteps page 2 of 2.
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C:\workspaces\erik\pyle\pyle\dataking\AppA_Stepedge.py Monday, April 30, 2012 4:11 PM

###### From automateDaily.py ########

def bringup_stepedge(s, pause=True):

N = len(s['config'])

for i in range(N):

print 'measuring step edge, qubit %d...' % i,

mq.stepedge(s, measure=i, noisy=False, update=pause)

print 'done.'

for i in range(N):

print 'binary searching to find step edge %d...' % i

mq.find_step_edge(s, measure=i, noisy=False)

print 'done.'

##### From multiqubit.py ####

def stepedge(sample, bias=None, stats=300L, measure=0,

save=True, name='StepEdge MQ', collect=False, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

if bias is None:

stepedge = q['biasOperate'][mV]

stepedge = st.nearest(stepedge, 2.0)

bias = st.r[stepedge-100:stepedge+100:2, mV]

axes = [(bias, 'Operating bias')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, fb):

q['biasOperate'] = fb

q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_operate_bias(Q, data)

if collect:

return data

def find_step_edge(sample, stats=60, target=0.5, bias_range=None,

measure=0, resolution=0.1, blowup=0.05,

falling=None, statsinc=1.25,

save=False, name='StepEdge Search MQ', collect=False, update=True, noisy=True

):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

axes = [('Flux Bias', 'mV')]

dataset = sweeps.prepDataset(sample, name, axes, measure=measure)

if falling is None:

falling = q['biasOperate'][V] > q['biasStepEdge'][V]

-1-

Figure A.8: Step edge code page 1 of 2
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C:\workspaces\erik\pyle\pyle\dataking\AppA_Stepedge.py Monday, April 30, 2012 4:11 PM

if bias_range is None:

stepedge = q['biasOperate'][mV]

stepedge = st.nearest(stepedge, 2.0)

bias_range = (stepedge-100, stepedge+100)

interval = list(bias_range)

def sweep(stats=stats):

yield 0.5*(interval[0]+interval[1]), stats

lower = True

coeffs = 0.25, 0.75

while interval[1] - interval[0] > resolution:

stats *= statsinc

fb = coeffs[lower]*interval[0] + coeffs[not lower]*interval[1]

fb = st.nearest(fb, 0.2*resolution)

yield fb, min(int((stats+29)/30)*30, 30000)

lower = not lower

def func(server, args):

fb, stats = args

q['biasOperate'] = fb*mV

q['readout'] = True

prob = yield runQubits(server, qubits, stats, probs=[1])

if (prob[0] > target) ^ falling:

interval[1] = min(fb, interval[1])

else:

interval[0] = max(fb, interval[0])

inc = blowup * (interval[1] - interval[0])

interval[0] -= inc

interval[1] += inc

if noisy:

print fb, prob[0]

returnValue([fb, prob[0]])

sweeps.run(func, sweep(), save, dataset, pipesize=2, noisy=False)

fb = 0.5 * (interval[0] + interval[1])*mV

if 'biasStepEdge' in q:

print 'Old bias_step_edge: %.3f' % Q['biasStepEdge']

print 'New biasStepEdge: %.3f' % fb

if update:

Q['biasStepEdge'] = fb

return fb

-2-

Figure A.9: Step edge code page 2 of 2
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C:\workspaces\erik\pyle\pyle\dataking\AppA_Scurve.py Monday, April 30, 2012 4:46 PM

###### From automateDaily.py ########

def bringup_scurve(s, pause=True):

N = len(s['config'])

for i in range(N):

print 'measuring scurve, qubit %d...' % i

mpa05 = mq.find_mpa(s, measure=i, target=0.05, noisy=False, update=False)

print '5% tunneling at mpa =', mpa05

mpa95 = mq.find_mpa(s, measure=i, target=0.95, noisy=False, update=False)

print '95% tunneling at mpa =', mpa95

low = st.nearest(mpa05 - (mpa95 - mpa05) * 1.0, 0.002)

high = st.nearest(mpa95 + (mpa95 - mpa05) * 1.0, 0.002)

step = 0.002 * np.sign(high - low)

mpa_range = st.r[low:high:step]

mq.scurve(s, mpa_range, measure=i, stats=1200, noisy=False, update=pause)

print 'done.'

for i in range(N):

print 'binary searching to find mpa %d...' % i

mq.find_mpa(s, measure=i, noisy=False, update=True)

mq.find_mpa_func(s, measure=i, noisy=False, update=True)

print 'done.'

##### From multiqubit.py ####

def scurve(sample, mpa=st.r[0:2:0.05], stats=300, measure=0,

save=True, name='SCurve MQ', collect=True, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

axes = [(mpa, 'Measure pulse amplitude')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, mpa):

q['measureAmp'] = mpa

q.z = eh.measurePulse(q, 0)

q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_scurve(Q, data)

if collect:

return data

def find_mpa(sample, stats=60, target=0.05, mpa_range=(-2.0, 2.0), pi_pulse=False,

measure=0, pulseFunc=None, resolution=0.005, blowup=0.05,

falling=None, statsinc=1.25,

save=False, name='SCurve Search MQ', collect=True, update=True, noisy=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

-1-

Figure A.10: Measurement calibrations code page 1 of 2
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axes = [('Measure Pulse Amplitude', '')]

dataset = sweeps.prepDataset(sample, name, axes, measure=measure)

if falling is None:

falling = q['biasOperate'][V] > q['biasStepEdge'][V]

interval = [min(mpa_range), max(mpa_range)]

def sweep(stats=stats):

mpa = 0.5 * (interval[0] + interval[1])

yield mpa, min(int((stats+29)/30)*30, 30000)

lower = True

coeffs = 0.25, 0.75

while interval[1] - interval[0] > resolution:

stats *= statsinc

mpa = coeffs[lower]*interval[0] + coeffs[not lower]*interval[1]

mpa = st.nearest(mpa, 0.2*resolution)

yield mpa, min(int((stats+29)/30)*30, 30000)

lower = not lower

def func(server, args):

mpa, stats = args

q['measureAmp'] = mpa

if pi_pulse:

q.xy = eh.mix(q, eh.piPulse(q, 0))

q.z = eh.measurePulse(q, q['piLen']/2.0)

else:

q.xy = env.NOTHING

q.z = eh.measurePulse(q, 0)

q['readout'] = True

probs = yield runQubits(server, qubits, stats, probs=[1])

prob = probs[0]

if (prob > target) ^ falling:

interval[1] = min(mpa, interval[1])

else:

interval[0] = max(mpa, interval[0])

inc = blowup * (interval[1] - interval[0])

interval[0] -= inc

interval[1] += inc

if noisy:

print mpa, prob

returnValue([mpa, prob])

sweeps.run(func, sweep(), save, dataset, pipesize=2, noisy=False)

mpa = 0.5 * (interval[0] + interval[1])

key = 'measureAmp' if not pi_pulse else 'measureAmp2'

if key in q:

print 'Old %s: %.3f' % (key, Q[key])

print 'New %s: %.3f' % (key, mpa)

if update:

Q[key] = mpa

return mpa
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Figure A.11: Measurement calibrations code page 2 of 2
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C:\workspaces\erik\pyle\pyle\dataking\AppA_BrigupSample.py Monday, April 30, 2012 5:28 PM

###### From automateDaily.py ########

def bringup_sample(s, pause=False, fine_tune=True):

N = len(s['config'])

bringup_pi_pulses(s, pause=pause)

if fine_tune:

for i in range(N):

# choose frequency range to cover all qubits

fmin = min(s[qubit]['f10'] for qubit in s['config']) - 0.1*GHz

fmax = max(s[qubit]['f10'] for qubit in s['config']) + 0.1*GHz

print 'measuring flux func, qubit %d...' % i,

mq.find_flux_func(s, (fmin, fmax), measure=i, noisy=False)

print 'done.'

print 'measuring zpa func, qubit %d...' % i,

mq.find_zpa_func(s, (fmin, fmax), measure=i, noisy=False)

print 'done.'

# update the calibrated ratio of DAC amplitudes to detuning and rabi freqs

update_cal_ratios(s)

def bringup_pi_pulses(s, pause=False):

N = len(s['config'])

for i in range(N):

print 'measuring spectroscopy, qubit %d...' % i,

mq.spectroscopy(s, measure=i, noisy=False, update=pause) # zoom in on resonance peak

mq.spectroscopy_two_state(s, measure=i, noisy=False, update=pause)

print 'done.'

for i in range(N):

print 'calibrating pi pulse, qubit %d...' % i,

mq.pitunerHD(s, measure=i, noisy=False)

print 'done.'

print 'fine-tuning frequency, qubit %d...' % i,

mq.freqtuner(s, iterations=1, measure=i, save=True)

print 'done.'

print 'redoing pi pulse calibration, qubit %d...' % i,

mq.pitunerHD(s, measure=i, noisy=False)

print 'done.'

print 'checking visibility, qubit %d...' % i

mpa1_05 = mq.find_mpa(s, measure=i, pi_pulse=True, target=0.05, noisy=False, update=

False)

print '5% tunneling of 1 at mpa =', mpa1_05

mpa0_95 = mq.find_mpa(s, measure=i, pi_pulse=False, target=0.95, noisy=False, update=

False)

print '95% tunneling of 0 at mpa =', mpa0_95
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Figure A.12: Qubit X,Y pulse calibration code page 1 of 10
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low = max(st.nearest(mpa1_05 - (mpa0_95 - mpa1_05) * 0.5, 0.002), 0)

high = min(st.nearest(mpa0_95 + (mpa0_95 - mpa1_05) * 0.5, 0.002), 2)

step = 0.002 * np.sign(high - low)

mpa_range = st.r[low:high:step]

mq.visibility(s, mpa_range, stats=1200, measure=i, noisy=False)

print 'done.'

# measure e0, e1 and visibility very carefully at the correct measure-pulse amplitude

print 'measuring visibility at calibrated mpa %d...' % i,

Q = s[s['config'][i]]

data = mq.visibility(s, [Q['measureAmp']]*100, stats=600, measure=i, noisy=False, name=

'Measurement Fidelity', collect=True)

e0, f1 = np.mean(data[:,1]), np.mean(data[:,2])

print 'done.'

print '  e0: %g, f0: %g' % (e0, 1-e0)

print '  e1: %g, f1: %g' % (1-f1, f1)

Q['measureE0'] = e0

Q['measureF0'] = 1-e0

Q['measureE1'] = 1-f1

Q['measureF1'] = f1

##### From multiqubit.py ####

def spectroscopy(sample, freq=None, stats=300L, measure=0, sb_freq=0*GHz, detunings=None,

uwave_amp=None,

save=True, name='Spectroscopy MQ', collect=False, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

q['readout'] = True

if freq is None:

f = st.nearest(q['f10'][GHz], 0.001)

freq = st.r[f-0.04:f+0.04:0.001, GHz]

if uwave_amp is None:

uwave_amp = q['spectroscopyAmp']

if detunings is None:

zpas = [0.0] * len(qubits)

else:

zpas = []

for i, (q, df) in enumerate(zip(qubits, detunings)):

print 'qubit %d will be detuned by %s' % (i, df)

zpafunc = get_zpa_func(q)

zpa = zpafunc(q['f10'] + df)

zpas.append(zpa)

axes = [(uwave_amp, 'Microwave Amplitude'), (freq, 'Frequency')]

deps = [('Probability', '|1>', '')]

kw = {

'stats': stats,

'sideband': sb_freq

}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

def func(server, amp, f):
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Figure A.13: Qubit X,Y pulse calibration code page 2 of 10
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for i, (q, zpa) in enumerate(zip(qubits, zpas)):

q['fc'] = f - sb_freq

if zpa:

q.z = env.rect(-100, qubits[measure]['spectroscopyLen'] + 100, zpa)

else:

q.z = env.NOTHING

if i == measure:

q['spectroscopyAmp'] = amp

q.xy = eh.spectroscopyPulse(q, 0, sb_freq)

q.z += eh.measurePulse(q, q['spectroscopyLen'])

eh.correctCrosstalkZ(qubits)

return runQubits(server, qubits, stats, probs=[1])

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_frequency(Q, data)

if collect:

return data

def spectroscopy_two_state(sample, freq=None, stats=300L, measure=0, sb_freq=0*GHz, detunings=

None, uwave_amps=None,

save=True, name='Two-state finder spectroscopy MQ', collect=False,

noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

q['readout'] = True

if freq is None:

f = st.nearest(q['f10'][GHz], 0.001)

freq = st.r[f-0.20:f+0.04:0.002, GHz]

if uwave_amps is None:

uwave_amps = q['spectroscopyAmp'], q['spectroscopyAmp']*10, q['spectroscopyAmp']*15

if detunings is None:

zpas = [0.0] * len(qubits)

else:

zpas = []

for i, (q, df) in enumerate(zip(qubits, detunings)):

print 'qubit %d will be detuned by %s' % (i, df)

zpafunc = get_zpa_func(q)

zpa = zpafunc(q['f10'] + df)

zpas.append(zpa)

axes = [(freq, 'Frequency')]

deps = [('Probability', '|1>, uwa=%g' % amp, '') for amp in uwave_amps]

kw = {

'stats': stats,

'sideband': sb_freq

}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

def func(server, f):

reqs = []

for amp in uwave_amps:

for i, (q, zpa) in enumerate(zip(qubits, zpas)):
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Figure A.14: Qubit X,Y pulse calibration code page 3 of 10
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q['fc'] = f - sb_freq

if zpa:

q.z = env.rect(-100, qubits[measure]['spectroscopyLen'] + 100, zpa)

else:

q.z = env.NOTHING

if i == measure:

q['spectroscopyAmp'] = amp

q.xy = eh.spectroscopyPulse(q, 0, sb_freq)

q.z += eh.measurePulse(q, q['spectroscopyLen'])

eh.correctCrosstalkZ(qubits)

reqs.append(runQubits(server, qubits, stats, probs=[1]))

probs = yield FutureList(reqs)

returnValue([p[0] for p in probs])

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_frequency_02(Q, data)

if collect:

return data

def pitunerHD(sample, measure=0, iterations=2, npoints=21, stats=1200, save=False, update=True,

noisy=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

amp = q['piAmp']

for _ in xrange(iterations):

# optimize amplitude

data = rabihigh_hd(sample, amplitude=np.linspace(0.6*amp, 1.4*amp, npoints),

measure=measure, stats=stats, collect=True, noisy=noisy)

amp_fit = np.polyfit(data[:,0], data[:,1], 2)

amp = -0.5 * amp_fit[1] / amp_fit[0]

print 'Amplitude: %g' % amp

# save updated values

if update:

Q['piAmp'] = amp

return amp

def rabihigh_hd(sample, amplitude=st.r[0.0:1.5:0.05], measureDelay=None, measure=0, stats=1500L,

name='Rabi-pulse height HD MQ', save=True, collect=False, noisy=True):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

if amplitude is None: amplitude = q['piAmp']

if measureDelay is None: measureDelay = q['piLen'] # /2.0    

axes = [(amplitude, 'pulse height'),

(measureDelay, 'measure delay')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, amp, delay):

q['piAmp'] = amp

q.xy = eh.mix(q, eh.piPulseHD(q, 0))

q.z = eh.measurePulse(q, delay)
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q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

return sweeps.grid(func, axes, dataset=save and dataset, collect=collect, noisy=noisy)

def freqtuner(sample, iterations=1, tEnd=100*ns, timeRes=1*ns, nfftpoints=4000, stats=1200, df=

50*MHz,

measure=0, save=False, plot=False, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

#Automatically finds best f10, using ramsey can plot the FFT of the Ramsey fringe to 

extract true f10

# works for sweeps with time steps that are all equivalent (i.e. not concatenated sweeps 

with diff time steps)

# Time resolution should be at least at the Nyquist frequency, but better to oversample

# nyfreq=float(fringeFreq)*2*10e6

# timeRes = (1.0/float(nyfreq))*1e9

if plot:

fig = plt.figure()

for i in xrange(iterations):

data = ramsey(sample, measure=measure, delay=st.r[0:tEnd:timeRes,ns], fringeFreq = df,

stats=stats, name='Ramsey Freq Tuner MQ', save = save, noisy=noisy,

collect = True, randomize=False, averages = 1, tomo=False)

ts, ps = data.T

y = ps - np.polyval(np.polyfit(ts, ps, 1), ts) # detrend

timestep = ts[1] - ts[0]

freq = np.fft.fftfreq(nfftpoints, timestep)

fourier = abs(np.fft.fft(y, nfftpoints))

fringe = abs(freq[np.argmax(fourier)])*1e3*MHz

delta_freq = df - fringe

if plot:

ax = fig.add_subplot(iterations,1,i)

ax.plot(np.fft.fftshift(freq), np.fft.fftshift(fourier))

print 'Desired Fringe Frequency: %s' % df

print 'Actual Fringe Frequency: %s' % fringe

print 'Qubit frequency adjusted by %s' % delta_freq

q['f10'] -= delta_freq

print 'new resonance frequency: %g' % q['f10']

if update:

Q['f10'] = st.nearest(q['f10'][GHz], 0.0001)*GHz

return Q['f10']

def visibility(sample, mpa=st.r[0:2:0.05], stats=300, measure=0, level=1,

save=True, name='Visibility MQ', collect=True, update=False, noisy=True):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

axes = [(mpa, 'Measure pulse amplitude')]

if level==1:

deps = [('Probability', '|0>', ''),

('Probability', '|1>', ''),
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('Visibility', '|1> - |0>', ''),

]

elif level==2:

deps = [('Probability', '|0>', ''),

('Probability', '|1>', ''),

('Visibility', '|1> - |0>', ''),

('Probability', '|2>', ''),

('Visibility', '|2> - |1>', '')

]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

def func(server, mpa):

t_pi = 0

t_meas = q['piLen']/2.0

# without pi-pulse

q['readout'] = True

q['measureAmp'] = mpa

q.xy = env.NOTHING

q.z = eh.measurePulse(q, t_meas)

req0 = runQubits(server, qubits, stats, probs=[1])

# with pi-pulse

q['readout'] = True

q['measureAmp'] = mpa

q.xy = eh.mix(q, eh.piPulseHD(q, t_pi))

q.z = eh.measurePulse(q, t_meas)

req1 = runQubits(server, qubits, stats, probs=[1])

if level == 2:

# |2> with pi-pulse

q['readout'] = True

q['measureAmp'] = mpa

q.xy = eh.mix(q, eh.piPulseHD(q, t_pi-q.piLen))+eh.mix(q, env.gaussian(t_pi, q.

piFWHM, q.piAmp21, df=q.piDf21), freq = 'f21')

q.z = eh.measurePulse(q, t_meas)

req2 = runQubits(server, qubits, stats, probs=[1])

probs = yield FutureList([req0, req1, req2])

p0, p1, p2 = [p[0] for p in probs]

returnValue([p0, p1, p1-p0, p2, p2-p1])

elif level == 1:

probs = yield FutureList([req0, req1])

p0, p1 = [p[0] for p in probs]

returnValue([p0, p1, p1-p0])

return sweeps.grid(func, axes, dataset=save and dataset, collect=collect, noisy=noisy)

def find_flux_func(sample, freqScan=None, measAmplFunc=None, measure=0,
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fluxBelow=2*mV, fluxAbove=2*mV, fluxStep=0.1*mV, sb_freq=0*GHz, stats=300L,

save=True, name='Flux func search MQ', collect=False, update=True, noisy=True

):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

qubit, Qubit = qubits[measure], Qubits[measure]

if measAmplFunc is None:

measAmplFunc = get_mpa_func(qubit)

if freqScan is None:

freq = st.nearest(qubit['f10'][GHz], 0.001)

dfs = np.logspace(-3, 0, 25)

freqScan = freq + np.hstack(([0], dfs, -dfs))

elif isinstance(freqScan, tuple) and len(freqScan) == 2:

freq = st.nearest(qubit['f10'][GHz], 0.001)

rng = freqScan

dfs = np.logspace(-3, 0, 25)

freqScan = freq + np.hstack(([0], dfs, -dfs))

freqScan = np.array([st.nearest(f, 0.001) for f in freqScan])

freqScan = np.unique(freqScan)

freqScan = np.compress((rng[0][GHz] < freqScan) * (freqScan < rng[1][GHz]), freqScan)

else:

freqScan = np.array([f[GHz] for f in freqScan])

freqScan = freqScan[np.argsort(abs(freqScan-qubit['f10'][GHz]))]

fluxBelow = fluxBelow[V]

fluxAbove = fluxAbove[V]

fluxStep = fluxStep[V]

fluxScan = np.arange(-fluxBelow, fluxAbove, fluxStep)

fluxScan = fluxScan[np.argsort(abs(fluxScan))]

fluxPoints = len(fluxScan)

step_edge = qubit['biasStepEdge'][V]

sweepData = {

'fluxFunc': np.array([st.nearest(qubit['biasOperate'][V], fluxStep) - step_edge]),

'fluxIndex': 0,

'freqIndex': 0,

'flux': 0*fluxScan,

'prob': 0*fluxScan,

'maxima': 0*freqScan,

}

axes = [('Flux Bias', 'V'), ('Frequency', 'GHz')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def sweep():

for f in freqScan:

center = np.polyval(sweepData['fluxFunc'], f**4) + step_edge

center = st.nearest(center, fluxStep)

for flx in center + fluxScan:

yield flx*V, f*GHz
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def func(server, args):

flux, freq = args

for q in qubits:

q['fc'] = freq - sb_freq # set all frequencies since they share a common microwave 

source

qubit['biasOperate'] = flux

qubit['measureAmp'] = measAmplFunc(flux)

qubit.xy = eh.spectroscopyPulse(qubit, 0, sb_freq)

qubit.z = eh.measurePulse(qubit, qubit['spectroscopyLen'] + qubit['piLen'])

qubit['readout'] = True

prob = yield runQubits(server, qubits, stats, probs=[1])

flux_idx = sweepData['fluxIndex']

sweepData['flux'][flux_idx] = flux[V]

sweepData['prob'][flux_idx] = prob[0]

if flux_idx + 1 == fluxPoints:

# one row is done.  find the maximum and update the spectroscopy fit

freq_idx = sweepData['freqIndex']

sweepData['maxima'][freq_idx] = sweepData['flux'][np.argmax(sweepData['prob'])]

sweepData['fluxFunc'] = np.polyfit(freqScan[:freq_idx+1]**4,

sweepData['maxima'][:freq_idx+1] - step_edge,

(freq_idx > 5))

sweepData['fluxIndex'] = 0

sweepData['freqIndex'] += 1

else:

# just go to the next point

sweepData['fluxIndex'] = flux_idx + 1

returnValue([flux, freq, prob])

sweeps.run(func, sweep(), dataset=save and dataset, collect=collect, noisy=noisy)

# create a flux function and return it

p = sweepData['fluxFunc']

if update:

Qubit['calFluxFunc'] = p

return get_flux_func(Qubit, p, step_edge*V)

def get_flux_func(qubit, p=None, step_edge=None):

if p is None:

p = qubit['calFluxFunc']

if step_edge is None:

step_edge = qubit['biasStepEdge']

return lambda f: np.polyval(p, f[GHz]**4)*V + step_edge

def find_zpa_func(sample, freqScan=None, measure=0,

fluxBelow=0.01, fluxAbove=0.01, fluxStep=0.0005, sb_freq=0*GHz, stats=300L,

name='ZPA func search MQ', save=True, collect=False, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

qubit = qubits[measure]

if freqScan is None:

freq = st.nearest(qubit['f10'][GHz], 0.001)
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freqScan = np.arange(freq-0.1, freq+1.0, 0.005)

elif isinstance(freqScan, tuple) and len(freqScan) == 2:

freq = st.nearest(qubit['f10'][GHz], 0.001)

rng = freqScan

dfs = np.logspace(-3, 0, 25)

freqScan = freq + np.hstack(([0], dfs, -dfs))

freqScan = np.array([st.nearest(f, 0.001) for f in freqScan])

freqScan = np.unique(freqScan)

freqScan = np.compress((rng[0][GHz] < freqScan) * (freqScan < rng[1][GHz]), freqScan)

else:

freqScan = np.array([f[GHz] for f in freqScan])

freqScan = freqScan[np.argsort(abs(freqScan-qubit['f10'][GHz]))]

fluxScan = np.arange(-fluxBelow, fluxAbove, fluxStep)

fluxScan = fluxScan[np.argsort(abs(fluxScan))]

fluxPoints = len(fluxScan)

sweepData = {

'fluxFunc': np.array([0]),

'fluxIndex': 0,

'freqIndex': 0,

'flux': 0*fluxScan,

'prob': 0*fluxScan,

'maxima': 0*freqScan,

}

axes = [('Z-pulse amplitude', ''), ('Frequency', 'GHz')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def sweep():

for f in freqScan:

center = np.polyval(sweepData['fluxFunc'], f**4)

center = st.nearest(center, fluxStep)

for zpa in center + fluxScan:

yield zpa, f*GHz

def func(server, args):

zpa, freq = args

for q in qubits:

q['fc'] = freq - sb_freq # set all frequencies since they share a common microwave 

source

dt = qubit['spectroscopyLen']

qubit.xy = eh.spectroscopyPulse(qubit, 0, sb_freq)

qubit.z = env.rect(0, dt, zpa) + eh.measurePulse(qubit, dt)

qubit['readout'] = True

prob = yield runQubits(server, qubits, stats, probs=[1])

flux_idx = sweepData['fluxIndex']

sweepData['flux'][flux_idx] = zpa

sweepData['prob'][flux_idx] = prob[0]

if flux_idx + 1 == fluxPoints:

# one row is done.  find the maximum and update the spectroscopy fit
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freq_idx = sweepData['freqIndex']

sweepData['maxima'][freq_idx] = sweepData['flux'][np.argmax(sweepData['prob'])]

sweepData['fluxFunc'] = np.polyfit(freqScan[:freq_idx+1]**4,

sweepData['maxima'][:freq_idx+1],

freq_idx > 5)

sweepData['fluxIndex'] = 0

sweepData['freqIndex'] += 1

else:

# just go to the next point

sweepData['fluxIndex'] = flux_idx + 1

returnValue([zpa, freq, prob])

sweeps.run(func, sweep(), dataset=save and dataset, collect=collect, noisy=noisy)

# create a flux function and return it

poly = sweepData['fluxFunc']

if update:

Qubits[measure]['calZpaFunc'] = poly

return get_zpa_func(Qubits[measure], poly)

###### From automateDaily.py ########

def update_cal_ratios(s):

s, _qubits, Qubits = util.loadQubits(s, write_access=True)

# single-qubit bringup

for Q in Qubits:

# convert microwave amplitude to rabi frequency

fwhm = Q['piFWHM'][ns]

A = float(Q['piAmp'])

Q['calRabiOverUwa'] = 2*np.sqrt(np.log(2)/np.pi)/(A*fwhm)*GHz # total area is 1 cycle

# convert z amplitude to detuning frequency

a = float(Q['calZpaFunc'][0])

f = Q['f10'][GHz]

Q['calDfOverZpa'] = 1/(4*a*f**3)*GHz
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###### From automateDaily.py ########

def single_qubit_scans(s):

N = len(s['config'])

for i in range(N):

print 'measuring T1, qubit %d' % i,

mq.t1(s, stats=1800, measure=i, noisy=False)

#TODO add T1 fits

print 'done.'

print 'measuring ramsey fringe, qubit %d' % i,

#TODO bring T1 fit from above and turn on T2 fit

mq.ramsey(s, stats=1800, measure=i, noisy=False)

print 'done.'

print 'measuring spin_echo, qubit %d' % i,

mq.spinEcho(s, stats=1800, measure=i, noisy=False)

print 'done.'

##### From multiqubit.py ####

def t1(sample, delay=st.r[-10:1000:2,ns], stats=600L, measure=0,

name='T1 MQ', save=True, collect=True, noisy=True):

"""A single pi-pulse on one qubit, with other qubits also operated."""

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

axes = [(delay, 'Measure pulse delay')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, delay):

q.xy = eh.mix(q, eh.piPulse(q, 0))

q.z = eh.measurePulse(q, delay)

q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

return sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

def ramsey(sample, measure=0, delay=st.r[0:500:1,ns], fringeFreq = 50*MHz,

stats=300L, name='Ramsey MQ', save = True, noisy=True,

collect = False, randomize=False, averages = 1, tomo=True, fitPlot=False, t1=None,

tRange=None):

"""Ramsey sequence on one qubit. Can be single phase or 4-axis tomo, and

    can have randomized time axis and/or averaging over the time axis multiple

    times

    PARAMETERS

    sample: object defining qubits to measure, loaded from registry

    measure - scalar: number of qubit to measure. Only one qubit allowed.

    delay - iterable: time axis

    fringeFreq - value [Mhz]: Desired frequency of Ramsey fringes

    stats - scalar: number of times a point will be measured per iteration over

            the time axis. That the actual number of times a point will be
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            measured is stats*averages

    name - string: Name of dataset.

    save - bool: Whether or not to save data to the datavault

    noisy - bool: Whether or not to print out probabilities while the scan runs

    collect - bool: Whether or not to return data to the local scope.

    randomize - bool: Whether or not to randomize the time axis.

    averages - scalar: Number of times to iterate over the time axis.

    tomo - bool: Set True if you want to measure all four tomo axes, False if

                 you only want the X axis (normal Ramsey fringes).

    fitPlot - plots and returns fit for T2. Requires a value for T1, so for now you need to be 

around to input the value.

    t1 - T1 for the qubit. You should have this from a fit and then you can just enter it e.g. 

t1=400.0*ns

    tRange - the time range you want to use to fit T2. Enter as a tuple (0,100).

    """

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

q['readout'] = True

#Randomize time axis

if fitPlot:

print 'will make pretty plots, just you wait and see!'

if randomize:

delay = st.shuffle(delay)

#Generator that produces time delays. Iterates over the list of delays as many times as 

specified by averages.

def delay_gen():

for _ in range(averages):

for d in delay:

yield d

axes = [(delay_gen(), 'Delay')]

#If you want XY state tomography then we use all four pi/2 pulse phases

if tomo:

deps = [('Probability', '+X', ''),('Probability', '+Y', ''),

('Probability', '-X', ''),('Probability', '-Y', '')]

tomoPhases = {'+X': 0.0, '+Y': 0.25, '-X': -0.5, '-Y': -0.25} #[+X, +Y, -X, -Y] in CYCLES

#Otherwise we only do a final pi/2 pulse about the +X axis.

else:

deps = [('Probability', '', '')]

tomoPhases = {'+X': 0.0}

kw = {'averages': averages, 'stats': stats, 'fringeFrequency': fringeFreq}

dataset = sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

#Pump pulse is at time=0 with phase=0

pump = eh.piHalfPulse(q, 0, phase=0.0)

#Probe is at variable time with variable phase

def probe(time, tomoPhase):

return eh.piHalfPulse(q, time, phase = 2*np.pi*(fringeFreq['GHz']*time['ns']+tomoPhases[

tomoPhase]))

def func(server, delay):
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reqs = []

for tomoPhase in tomoPhases.keys():

print delay

q.xy = eh.mix(q, pump + probe(delay, tomoPhase = tomoPhase))

q.z = eh.measurePulse(q,delay+20*ns)

reqs.append(runQubits(server, qubits, stats, probs=[1]))

probs = yield FutureList(reqs)

data = [p[0] for p in probs]

returnValue(data)

result = sweeps.grid(func, axes, dataset = save and dataset, collect=collect, noisy=noisy)

if fitPlot:

print 'Making pretty plots'

with labrad.connect() as cxn:

ds = cxn.data_vault

dataset = pyle.plotting.dstools.getOneDeviceDataset(ds, datasetNumber=None, session=

sample._dir, deviceName=None,

averaged=averages>1)

pyle.fitting.dephasing.ramseyTomo(dataset, T1=t1, timeRange=tRange)

return result

def spinEcho(sample, measure=0, delay=st.r[0:1000:10,ns], df=50*MHz,

stats=300L, name='Spin Echo MQ', save=True,

collect=True, noisy=True, randomize=False, averages=1,

tomo=True):

"""Spin echo sequence on one qubit. Can be single phase or 4-axis tomo, and

    can have randomized time axis and/or averaging over the time axis multiple

    times

    PARAMETERS

    sample: object defining qubits to measure, loaded from registry

    measure - scalar: number of qubit to measure. Only one qubit allowed.

    delay - iterable: time axis

    fringeFreq - value [Mhz]: Desired frequency of Ramsey fringes

    stats - scalar: number of times a point will be measured per iteration over

            the time axis. That the actual number of times a point will be

            measured is stats*averages

    name - string: Name of dataset.

    save - bool: Whether or not to save data to the datavault

    noisy - bool: Whether or not to print out probabilities while the scan runs

    collect - bool: Whether or not to return data to the local scope.

    randomize - bool: Whether or not to randomize the time axis.

    averages - scalar: Number of times to iterate over the time axis.

    tomo - bool: Set True if you want to measure all four tomo axes, False if

                 you only want the X axis (normal Ramsey fringes).

    """

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

q['readout']=True

#Randomize time axis

if randomize:
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delay=st.shuffle(delay)

def delayGen():

for _ in range(averages):

for d in delay:

yield d

axes = [(delayGen(), 'Delay')]

if tomo:

deps = [('Probability', '+X', ''), ('Probability', '+Y', ''),

('Probability', '-X', ''), ('Probability', '-Y', '')]

tomoPhases = {'+X': 0.0, '+Y':0.25, '-X': -0.5, '-Y':-0.25}

else:

deps = [('Probability','','')]

tomoPhases={'+X':0.0}

kw={'averages':averages, 'stats':stats, 'fringeFrequency':df}

dataset=sweeps.prepDataset(sample, name, axes, deps, measure=measure, kw=kw)

#Pump pulse is at time=0 with phase=0

pump = eh.piHalfPulse(q, 0, phase=0.0)

#Probe is at variable time with variable phase

def probe(time, tomoPhase):

return eh.piHalfPulse(q, time, phase=2.0*np.pi*tomoPhases[tomoPhase])

def func(server, delay):

reqs=[]

dt=q['piLen']

tpi = dt/2.0 + delay/2.0

tProbe = dt/2.0 + delay + dt/2.0

tMeas = tProbe + dt/2.0

piPhase = 2*np.pi*df[GHz]*delay[ns]/2.0

for tomoPhase in tomoPhases.keys():

q.xy = eh.mix(q, pump +

eh.piPulse(q, tpi, phase=piPhase) +

probe(tProbe, tomoPhase))

q.z = eh.measurePulse(q, tMeas)

reqs.append(runQubits(server, qubits, stats, probs=[1]))

probs = yield FutureList(reqs)

data = [p[0] for p in probs]

returnValue(data)

return sweeps.grid(func, axes, dataset=save and dataset, collect=collect, noisy=noisy)
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###### From automateDaily.py ########

def qubit_coupling_resonator_scans(s):

start = datetime.now()

N = len(s['config'])

for i in range(N):

print 'measuring SWAP10 Spectroscopy, qubit %d' % i,

mq.swap10tuner(s, measure=i, stats=1800, noisy=False, whichRes='Coupler')

print 'measuring 2D-SWAP Spec around Coupling resonator, for qubit %d' % i,

mq.swap10(s, swapLen=st.arangePQ(0,75,2,ns), swapAmp=None, measure=i, save=True, noisy=

False, swapAmpBND=0.2, swapAmpSteps=0.001)

#run focktuner level =1

print 'fock tuner for fine calibratin of cZControlLen'

mq.fockTuner(s, n=1, iteration=3, tuneOS=False, stats=1800, measure=i, save=True, noisy=

False)

print 'done. Calibrated Control qubits'

print 'Tuning up pi-pulse for |2> of qubit %d' % i,

mq.pituner21(s, stats = 1800, measure=i, noisy=False, findMPA=True)

print 'done'

print 'measuring SWAP21 Spectroscopy'

mq.swap21tuner(s, measure=i, stats=1800, noisy=False)

print 'measuring 2D-SWAP Spec around resonator, for qubit %d' % i,

mq.swap21(s, swapLen=st.arangePQ(0,60,2,ns), swapAmp=None, measure=i, save=True, noisy=

False, swapAmpBND=0.2, swapAmpSteps=0.001)

mq.fockTuners21(s, n=1, iteration=3, tuneOS=False, stats=1800, measure=i, save=True,

noisy=False)

print 'done. Calibrated Target qubits'

print 'now starting qubit-qubit timing calibrations...'

print 'measuring qubit-qubit delay via the resonator'

for j,k in [(0,1),(1,0), (0,2),(2,0), (1,2),(2,1), (0,3),(3,0), (1,3),(3,1), (2,3),(3,2)]:

mq.testQubResDelayCmp(s,measureC=j, measureT=k)

print 'now measuring resonator T1 using q0 for photon exchange'

mq.resonatorT1(s, stats=1800, measure=0, whichRes='Coupler')

end = datetime.now()

print 'start:', start

print 'end:', end

print 'elapsed time for qubit-resonator scans:', (end-start)

def qubit_memory_resonator_scans(s, stats=1800):

start = datetime.now()

N = len(s['config'])

for i in range(N):

print 'measuring SWAP10 Spectroscopy, qubit %d' % i,

mq.swap10tuner(s, measure=i, stats=stats, noisy=False, whichRes='Memory')

print 'measuring 2D-SWAP Spec around Memory resonator, for qubit %d' % i,

mq.swap10(s, swapLen=st.arangePQ(0,300,5,ns), swapAmp=None, measure=i,

save=True, noisy=False, swapAmpBND=0.2, swapAmpSteps=0.001, stats=stats,
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whichRes='Memory')

#run focktuner level =1

print 'fock tuner for fine calibratin of memoryReadWriteLen'

mq.fockTuner(s, n=1, iteration=3, tuneOS=False, stats=stats, measure=i, save=True, noisy

=False, whichRes='Memory')

print 'done. Memory resonator tuned up'

print 'now measuring memory resonator T1 for resonator %d' %i,

noon.resonatorT1(s, stats=stats, measure=i, whichRes='Memory')

end = datetime.now()

print 'start:', start

print 'end:', end

print 'elapsed time for qubit-mem-resonator scans:', (end-start)

##### From multiqubit.py ####

def swap10tuner(sample, swapLen=None, swapAmp=None, swapAmpBND=0.01, iteration=3, measure=0,

stats=600L,

name='Qeg-R10 swap tuner MQ', save=False, noisy=True, update=True, whichRes='Coupler'):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

if whichRes is 'Coupler':

if swapAmp is None:

swapAmp = q['cZControlAmp']

if swapLen is None:

swapLen = q['cZControlLen'][ns]

elif whichRes is 'Memory':

if swapAmp is None:

swapAmp = q['memReadWriteAmp']

if swapLen is None:

swapLen = q['memReadWriteLen'][ns]

for i in range(iteration):

rf = 2**i

swapLenOld = swapLen

swapAmpOld = swapAmp

print 'Tuning the swap length'

results = swap10(sample, swapLen=st.PQlinspace(swapLen*(1-0.3/rf),swapLen*(1+0.3/rf),21,

ns),

swapAmp=swapAmp, measure=measure, stats=stats,

name='Qeg-R10 swap MQ', save=save, collect=True, noisy=noisy)

newLen, percent = datasetMinimum(results, swapLenOld, swapLenOld-4/rf, swapLenOld+4/rf)

swapLen = newLen

if whichRes is 'Coupler':

print 'Old swap length was ',q['cZControlLen']

if update:

Q['cZControlLen'] = swapLen*ns

print 'New Control swap length is ', swapLen, 'ns'

else:

print 'Old Memory Read/Write length was ',q['memReadWriteLen']

if update:
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Q['memReadWriteLen'] = swapLen*ns

print 'New Memory Read/Write length is ', swapLen, 'ns'

print 'Tuning the swap amplitude'

results = swap10(sample, swapLen=swapLen,

swapAmp=np.linspace(max([swapAmp*(1-0.3/rf),swapAmp-swapAmpBND]),

min([swapAmp*(1+0.3/rf),swapAmp+swapAmpBND]),21), measure=

measure, stats=stats,

name='Qeg-R10 swap MQ', save=save, collect=True, noisy=noisy)

newAmp, percent = datasetMinimum(results, swapAmpOld, swapAmpOld-4/rf, swapAmpOld+4/rf)

swapAmp = newAmp

if whichRes is 'Coupler':

print 'Old Control swap amplitude was ',q['cZControlAmp']

if update:

Q['cZControlAmp']= swapAmp

print 'New swap amplitude is ', swapAmp

else:

print 'Old Memory Read/Write amplitude was ',q['memReadWriteAmp']

if update:

Q['memReadWriteAmp']= swapAmp

print 'New Read/Write amplitude is ', swapAmp

return swapLen, swapAmp

def swap10(sample, swapLen=st.arangePQ(0,200,4,ns), swapAmp=np.arange(-0.05,0.05,0.002), measure

=0, stats=600L,

name='Qeg-R10 swap MQ', save=True, collect=False, noisy=True, swapAmpBND=0.20,

swapAmpSteps=0.001, whichRes='Coupler'):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

if whichRes is 'Coupler':

if swapAmp is None:

swapAmp = q.cZControlAmp

coarseSet = np.arange(0,swapAmp*(1-swapAmpBND),swapAmpSteps*5)

fineSet = np.arange(swapAmp*(1-swapAmpBND),swapAmp*(1+swapAmpBND), swapAmpSteps)

swapAmp = np.hstack((coarseSet,fineSet))

#swapAmp   = st.r[swapAmp*(1-swapAmpBND):swapAmp*(1+swapAmpBND):swapAmpSteps]

elif whichRes is 'Memory':

if swapAmp is None:

swapAmp = q.memReadWriteAmp

fineSet = np.arange(swapAmp*(1+swapAmpBND),swapAmp*(1-swapAmpBND), swapAmpSteps)

swapAmp = fineSet

axes = [(swapAmp, 'swap pulse amplitude'), (swapLen, 'swap pulse length')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

def func(server, currAmp, currLen):

q.xy = eh.mix(q, eh.piPulseHD(q, 0))

q.z = env.rect(q['piLen']/2, currLen, currAmp) + eh.measurePulse(q, q['piLen']/2 +

currLen)

q['readout'] = True

return runQubits(server, qubits, stats=stats, probs=[1])
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return sweeps.grid(func, axes, save=save, dataset=dataset, collect=collect, noisy=noisy)

def fockTuner(sample, n=1, iteration=3, tuneOS=False,stats=1500L, measure=0, delay=0*ns,

save=False, collect=True, noisy=True, update=True, whichRes='Coupler'):

sample, qubits, Qubits = util.loadQubits(sample,write_access=True)

q = qubits[measure]

Q = Qubits[measure]

for iter in range(iteration):

rf = 2**iter

print 'iteration %g...' % iter

if whichRes is 'Coupler':

sl = q['cZControlLen']

else:

sl = q['memReadWriteLen']

results = fockScan(sample, n=1, scanLen=st.PQlinspace(-max([0.3*sl['ns']/rf,1]),max([0.3

*sl['ns']/rf,1]),21,'ns'),

stats=stats,measure=measure,probeFlag=False,delay=delay,

save=False, collect=collect, noisy=noisy, whichRes=whichRes)

newLen, percent = datasetMinimum(results, 0, -max([0.3*sl['ns']/rf,1]), max([0.3*sl['ns'

]/rf,1]))

if whichRes is 'Coupler':

q['cZControlLen'] += newLen

else:

q['memReadWriteLen'] += newLen

if save:

fockScan(sample, n=1, scanLen=st.arangePQ(0,300,2,'ns'),

stats=stats,measure=measure,probeFlag=True,delay=delay,

save=save, collect=collect, noisy=noisy, whichRes=whichRes)

if update:

if whichRes is 'Coupler':

Q['cZControlLen'] = q['cZControlLen']

else:

Q['memReadWriteLen'] = q['memReadWriteLen']

return newLen

def pituner21(sample, measure=0, iterations=2, npoints=21, stats=1500L, save=False, update=True,

noisy=True, findMPA=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

amp = q.piAmp21

df = q.piDf21['MHz']

if findMPA:

print 'finding measure pulse amplitude for |2>'

Q.measureAmp2 = find_mpa(sample, stats=600, target=0.05, mpa_range=(-2.0, 2.0), pi_pulse

=True,

measure=measure, pulseFunc=None, resolution=0.005, blowup=0.05,

falling=None, statsinc=1.25,

save=False, name='SCurve Search for best |2> MPA MQ', collect=True, update=True

, noisy=True)
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for _ in xrange(iterations):

# optimize amplitude

data = rabihigh21(sample, amplitude=np.linspace(0.75*amp, 1.25*amp, npoints), detuning=

df*MHz,

measure=measure, stats=stats, collect=True, noisy=noisy, save=save)

amp_fit = np.polyfit(data[:,0], data[:,1], 2)

amp = -0.5 * amp_fit[1] / amp_fit[0]

print 'Amplitude for 1->2 transition: %g' % amp

# optimize detuning

data = rabihigh21(sample, amplitude=amp, detuning=st.PQlinspace(df-20, df+20, npoints,

MHz),

measure=measure, stats=stats, collect=True, noisy=noisy, save=save)

df_fit = np.polyfit(data[:,0], data[:,1], 2)

Delta_df = -0.5 * df_fit[1] / df_fit[0]-df

if np.abs(Delta_df)>20:

df += np.sign(Delta_df)*20

else:

df += Delta_df

print 'Detuning frequency for 1->2 transition: %g MHz' % df

# save updated values

if update:

Q['piAmp21'] = amp

Q['piDf21'] = df*MHz

return amp, df*MHz

def swap21tuner(sample, swapLen=None, swapAmp=None, iteration=3, measure=0, stats=600L,

name='Qfe-R10 swap tuner MQ', save=False, noisy=True, update=True, zGate='Pi'):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q, Q = qubits[measure], Qubits[measure]

if zGate is 'Pi':

if swapAmp is None:

swapAmp = q['cZTargetAmp']

if swapLen is None:

swapLen = q['cZTargetLen'][ns]

swapLen = swapLen/2 #cZTargetLen is the time for a iswap^2 so we divide by two for 

this iSWAP experiment.

elif zGate is 'HalfPi':

if swapAmp is None:

swapAmp = q['cPiHalfTargetAmp']

if swapLen is None:

swapLen = q['cPiHalfTargetLen'][ns]

swapLen = swapLen/2 #cZTargetLen is the time for a iswap^2 so we divide by two for 

this iSWAP experiment.

for m in range(iteration):

rf = 2**m #not sure what m is stepping over, I think it is a dummy variable, but used 

in the linspace calc"

swapLenOld = swapLen

swapAmpOld = swapAmp

print 'Tuning the swap length'

results = swap21(sample, swapLen=st.PQlinspace(swapLen*(1-0.3/rf),swapLen*(1+0.3/rf),21,

ns),
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swapAmp=swapAmp, measure=measure, stats=stats,

name='Qfe-R10 swap MQ', save=save, collect=True, noisy=noisy)

newLen, percent = datasetMinimum(results, swapLenOld, swapLenOld-4/rf, swapLenOld+4/rf)

swapLen=newLen

if zGate is 'Pi':

print 'Old swap length was ',q['cZTargetLen'], 'ns'

if update:

Q['cZTargetLen'] = (2*swapLen)*ns #cZControlLen is the time for a iswap^2.

print 'New Target swap length is ', 2*swapLen, 'ns'

elif zGate is 'HalfPi':

print 'Old swap length was ',q['cPiHalfTargetLen'], 'ns'

if update:

Q['cPiHalfTargetLen'] = (2*swapLen)*ns #cZControlLen is the time for a iswap^2.

print 'New Half-Pi Target swap length is ', 2*swapLen, 'ns'

print 'Tuning the swap amplitude'

swapLen = newLen

results = swap21(sample, swapLen=swapLen,

swapAmp=np.linspace(swapAmp*(1-0.3/rf),swapAmp*(1+0.3/rf),21), measure=

measure, stats=stats,

name='Qfe-R10 swap MQ', save=save, collect=True, noisy=noisy)

newAmp, percent = datasetMinimum(results, swapAmpOld, swapAmpOld-4/rf, swapAmpOld+4/rf)

swapAmp = newAmp

if update:

if zGate is 'Pi':

print 'Old swap amplitude was ',q['cZTargetAmp']

Q['cZTargetAmp']= swapAmp

print 'New Target swap amplitude is ', swapAmp

else:

print 'Old swap amplitude was ',q['cPiHalfTargetAmp']

Q['cPiHalfTargetAmp']= swapAmp

print 'New Half-Pi Target swap amplitude is ', swapAmp

return swapLen, swapAmp

def swap21(sample, swapLen=st.arangePQ(0,100,2,ns), swapAmp=np.arange(-0.05,0.05,0.002), measure

=0, stats=600L,

name='Qfe-R10 swap MQ', save=True, collect=False, noisy=True, swapAmpBND=0.20,

swapAmpSteps=0.001):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

if swapAmp is None:

swapAmp = q.cZTargetAmp

swapAmp = st.r[swapAmp*(1-swapAmpBND):swapAmp*(1+swapAmpBND):swapAmpSteps]

axes = [(swapAmp, 'swap pulse amplitude'), (swapLen, 'swap pulse length')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

df = q.piDf21

def func(server, currAmp, currLen):
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q.xy = eh.mix(q, eh.piPulseHD(q, 0))+eh.mix(q, env.gaussian(q.piLen, q.piFWHM, q.piAmp21

,df =df), freq = 'f21')

q.z = env.rect(q['piLen']*1.5, currLen, currAmp) + eh.measurePulse2(q, q['piLen']*1.5 +

currLen)

q['readout'] = True

return runQubits(server, qubits, stats=stats, probs=[1])

return sweeps.grid(func, axes, save=save, dataset=dataset, collect=collect, noisy=noisy)

def fockTuners21(sample, n=1, iteration=3, tuneOS=False, stats=1500L, measure=0,

save=False, collect=True, noisy=True, update=True):

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

q = qubits[measure]

Q = Qubits[measure]

if len(q['cZTargetLens'])<n:

for i in np.arange(len(q['cZTargetLens']),n,1):

q['cZTargetLens'].append(q['cZTargetLens'][0]/np.sqrt(i+1/2.0))

for i in np.arange(1,n+1,1):

for iter in range(iteration):

rf = 2**iter

print 'iteration %g...' % iter

sl = q['cZTargetLens'][i-1]

sl = sl/2

results = fockScans21(sample, n=i, scanLen=st.PQlinspace(-max([0.3*sl['ns']/rf,1]),

max([0.3*sl['ns']/rf,1]),21,'ns'),

stats=stats, measure=measure, probeFlag=False,

save=False, collect=collect, noisy=noisy)

new, percent = datasetMinimum(results, 0, -max([0.3*sl['ns']/rf,1]), max([0.3*sl[

'ns']/rf,1]))

newLen = 2*new

q['cZTargetLens'][i-1] += newLen

if save:

fockScans21(sample, n=i, scanLen=st.arangePQ(0,500,1,'ns'),

stats=stats, measure=measure, probeFlag=True,

save=save, collect=collect, noisy=noisy)

if update:

Q['cZTargetLens'] = q['cZTargetLens']

Q['cZTargetLen'] = q['cZTargetLens'][0]

return q['cZTargetLens'][0]

def resonatorT1(sample, delay=st.arangePQ(0,1,0.01,'us')+st.arangePQ(1,7,0.1,'us'),stats=600L,

measure=0,

name='resonator T1 MQ', save=True, collect=True, noisy=True, whichRes='Coupler'):

sample, qubits = util.loadQubits(sample)

q = qubits[measure]

axes = [(delay, 'Measure pulse delay')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measure, kw=kw)

if whichRes is 'Coupler':
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sl = q.cZControlLen

sa = q.cZControlAmp

else:

sl = q.memReadWriteLen

sa = q.memReadWriteAmp

def func(server, delay):

q.xy = eh.mix(q, eh.piPulseHD(q, 0))

q.z = env.rect(q.piLen/2, sl, sa)

q.z += env.rect(q.piLen/2+sl+delay, sl, sa)

q.z += eh.measurePulse(q, q.piLen/2+sl+delay+sl)

q['readout'] = True

return runQubits(server, qubits, stats, probs=[1])

return sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)
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###### From automateDaily.py ########

def gate_bringup(s):

start = datetime.now()

N = len(s['config'])

for i in range(N):

print 'Begin Calibrating Single Qubit Hadamard Gates'

print 'Z-pi pulse tuner'

mq.pitunerZ(s, measure=i, save=True, stats = 1800, update=True, noisy=False)

print 'done tuning Z-pi amplitude for qubit %d' %i,

hadi.hadamardTrajectory(s, measure=i, stats=1500, useHD=True, useTomo=True, tBuf=5*ns,

save=True, noisy=False)

print 'plotting hadamard trajectory on Bloch Sphere'

print 'correcting for visibilities...generating pretty plots'

hadi.plotTrajectory(path=s._dir, dataset=None, state=None) #grabs the most recent 

dataset in the current session

hadi.plotDensityArrowPlot(path=s._dir, dataset = None) #grabs most recent dataset in 

the current session

end = datetime.now()

print 'start:', start

print 'end:', end

print 'elapsed time for single qubit gate bringups:', (end-start)

##### From multiqubit.py ####

def cZCalP1(sample, targetAmp=st.r[-0.25:0:0.001], measureC=0, measureT=1, zGate='Pi', stats

=1500L,

name='Control-Z Step 1 TargetCal MQ', save=True, collect=False, noisy=True, update=

False):

"""Generalized Ramsey. Performs the controlled-Z gate Z-pulse sequence 

    with pi/2 pulse on target and no microwaves on control qubit [qt, qc]

    to calibrate the phase correction on the target qubit. 

    Record any maximum and any minimum of the Ramsey.

    If Update, then this is semi-automatic with user-controlled sliders to update registry keys:

    cZCalP1Max 

    cZCalP1Min

    zGate flag: ='Pi' is for a controlled Z-Pi 

                ='HalfPi' is for a controlled Z-pi/2 (aka QFT)

    """

name = '%s zGate=%s' % (name, zGate)

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

qc = qubits[measureC] #control qubit

qt, Qt = qubits[measureT], Qubits[measureT] #target qubit

if zGate is 'Pi':

gateTime = qt.cZTargetLen

elif zGate is'HalfPi':

gateTime = qt.cPiHalfTargetLen

else:

gateTime = qt.cZTargetLen
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axes = [(targetAmp, 'target amp phase correction')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measureT, kw=kw)

def func(server, targetAmp):

start = 0

#pad time for equal state prep time in Step 2 Cal

start += qc['piLen']/2 + qc['cZControlLen']

#state prep

#Control qubit no microwaves, Target qubit pi/2

#Tighter timing. End of piHalf pulse aligns with end of iSWAP from Control

qt.xy = eh.mix(qt, eh.piHalfPulseHD(qt, start-qt['piLen']/2))

#Control is IDLE

#Target Phase swap Q21 with R21 for iswap^2 time

qt.z = env.rect(start, gateTime, qt.cZTargetAmp)

start += gateTime

#Target phase correction, time is fixed sweeping amplitude 

qt.z += env.rect(start, qt.cZTargetPhaseCorrLen, targetAmp)

start += qt.cZTargetPhaseCorrLen + qt['piLen']/2

#Final pi/2 for Ramsey, rotate about X

qt.xy += eh.mix(qt, eh.piHalfPulseHD(qt, start, phase=0.0*np.pi))

start += qt['piLen']/2

#Measure only the Target

qt.z += eh.measurePulse(qt, start)

qt['readout'] = True

return runQubits(server, qubits, stats=stats, probs=[1])

#    return sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_cZTargetPhaseCorrAmpP1(Qt, data)

def cZCalP2(sample, targetAmp=st.r[-0.25:0:0.001], measureC=0, measureT=1, zGate='Pi', stats=

1500L,

name='Control-Z Step 2 TargetCal MQ', save=True, collect=False, noisy=True, update=

False):

"""Generalized Ramsey. Performs the controlled-Z gate Z-pulse sequence 

    with pi/2 pulse on target and a pi-pulse on the control qubit [qc, qt]

    to verify the "pi" phase shift from cZCalP1 on the target qubit. 

    Look for a Min, should be really close to Max from Part 1

    zGate flag: ='Pi' is for a controlled Z-Pi 

                ='HalfPi' is for a controlled Z-pi/2 (aka QFT)

    """

name = '%s zGate=%s' % (name, zGate)

sample, qubits, Qubits = util.loadQubits(sample, write_access=True)

qc = qubits[measureC] #control qubit

qt, Qt = qubits[measureT], Qubits[measureT] #target qubit
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if zGate is 'Pi':

gateTime = qt.cZTargetLen

elif zGate is'HalfPi':

gateTime = qt.cPiHalfTargetLen

else:

gateTime = qt.cZTargetLen

axes = [(targetAmp, 'target amp phase correction')]

kw = {'stats': stats}

dataset = sweeps.prepDataset(sample, name, axes, measure=measureT, kw=kw)

def func(server, targetAmp):

start = 0

#state prep

#Control g -> e

qc.xy = eh.mix(qc, eh.piPulseHD(qc, start))

start += qc['piLen']/2

#Control iSWAP with Resonator 

qc.z = env.rect(start, qc.cZControlLen, qc.cZControlAmp)

start += qc.cZControlLen

#state prep Target

qt.xy = eh.mix(qt, eh.piHalfPulseHD(qt, start-qt['piLen']/2))

#Target Phase swap Q21 with R21 for iswap^2 time

qt.z = env.rect(start, gateTime, qt.cZTargetAmp)

start += gateTime

#Target phase correction, time is fixed sweeping amplitude 

qt.z += env.rect(start, qt.cZTargetPhaseCorrLen, targetAmp)

start += qt.cZTargetPhaseCorrLen + qt['piLen']/2

#Final pi/2 for Ramsey, rotate about X

qt.xy += eh.mix(qt, eh.piHalfPulseHD(qt, start, phase=0.0*np.pi))

start += qt['piLen']/2

#Measure

qt.z += eh.measurePulse(qt, start)

qt['readout'] = True

return runQubits(server, qubits, stats=stats, probs=[1])

#return sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

data = sweeps.grid(func, axes, dataset=save and dataset, noisy=noisy)

if update:

squid.adjust_cZTargetPhaseCorrAmpP2(Qt, data)

-3-

Figure A.36: Code for qubit gate calibrations page 3 of 3
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Appendix B

QuP Fabrication

In this Appendix I discuss the QuP fabrication1. I also include a schedule in §B.2

to complete the QuP recipe detailed in §B.4. In §B.3 I make note of practices that

may prove to be helpful in navigating the cleanroom and successfully fabricating

devices. The Appendix concludes with the QuP recipe.

B.1 Fabrication Overview

All of the fabrication was completed at the UCSB Nanofabrication facilities. The

QuP fabrication process consists of three superconducting aluminum wiring lay-

ers, “base-wiring”, “top-wiring” and “junction” and one dielectric layer of hydro-

genated amorphous Silicon (a-Si:H) which forms the qubit shunt (parallel-plate)

1For more background and further detail on the UCSB QC-group’s fabrication process please
see [3, chap. 5].
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capacitor and wiring crossovers. Seven patterning and etching steps define the cir-

cuit elements in the QuP. These etch steps are summarized with microphotographs

of the QuP device after each etch step in Figure B.1. Table B.1 outlines the se-

quence of deposition, etching, and oxidation steps used in the QuP fabrication

process.

All of the photolithography steps were completed on the GCA AutoStep 200

I-Line Wafer Stepper, using SPR955 photoresist and AZ300MIF developer. The

QuP was the first device (within the UCSB QC-group) that utilized the local

alignment feature on the AutoStep tool. This enabled sub-micron overlaps and

reliable 1µm2 junction areas. Dry etching was done in a Panasonic E640 induc-

tively coupled plasma (ICP) etch system. After completing the dry etches 1165

Stripper, heated to 80◦ was used to remove the photoresist. All of the Al sputter-

ing and junction oxidations were completed in a custom Kurt Lesker sputter and

ion mill system. The a-Si:H dielectric material was deposited using a UNAXIS

high density plasma enhanced chemical vapor deposition (HD PECVD) system.

B.2 Scheduling

The time to fabricate two 3” QuP wafers was spread over 4 days, the majority of

which was done during the “graveyard-shift” 6pm-6am to avoid the competition

for machines during the normal business hours. There are pros and cons to working
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(a) (b) (c)

(d) (e) (f)

(g) (h)
100 μm

Flux Bias
SQUID

Capacitor

Inductor

Junction

cross-over

1 mm 1 mm 30 μm

30 μm

30 μm

100 μm100 μm

TW etchTW etch

strap

strap

No strap

No 
strap

Figure B.1: (a-g) Photomicrographs of the QuP after each of the seven etch
steps in fabrication. (a) Base wiring etch §B.4.4. (b) Via etch §B.4.6. (c) Top
wiring etch part 1 §B.4.8. (d) Junction etch §B.4.10. (e) Top wiring etch part 2
§B.4.11. (f) Dielectric etch §B.4.12. (g) Junction protection straps etch §B.4.13.
(h) Photomicrograph of a completed qubit cell with annotations.
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Step Layer Notes
1 Deposit Base Wiring (BW), Al 200 nm MBE grown or (Lesker)

Sputtered
2 Etch BW reactive ion etch (dry-etch)
3 Deposit Dielectric, a-Si:H 200 nm plasma enhanced chemical

vapor deposition
4 Etch Vias dry-etch
5 Deposit Top Wiring (TW), Al 250 nm sputtered
6 Etch TW Part 1 dry-etch
7 Oxidize
8 Deposit Junction, Al 150 nm sputtered
9 Etch Junction dry-etch
10 Etch TW Part 2 dry-etch
11 Etch Dielectric dry-etch
12 Etch Shorting Straps transene wet-etch to remove

junction protection

Table B.1: Overview of the fabrication process.

at these hours. You need to be able to handle machine errors with a level head and

on your own. However, because you are sharing the entire cleanroom with only a

handful of individuals it is a lot easier to define your mise en plase. Mise en plase

literally translates to “everything in its place” and is used by the culinary field to

describe a clean and orderly station ready to execute the recipes of the day and

being prepared to deal with challenges that will inevitably come up during your

shift. I like this analogy because in a lot of ways cleanroom work is like baking.

You are following a recipe with ingredients that have been precisely defined for a

reason and if you forget a step at any point you will be starting over. Mise en

place in the cleanroom means defining your work flow and workspace in a manner
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that facilitates the most efficient way -for you- to sequence through the recipe

without missing a step and thereby completing functional devices. I found that

working through the night provided the right atmosphere for me to think clearly

with a relaxed confidence in the bunny suit.

In Table B.2 is a suggested, “relaxed” fabrication schedule. If you need to

work at an accelerated pace than just be sure to end your day on one of the

correct breaking points (before a lithographic exposure). Remember, during your

fabrication the most trusted place is the place that you have prepared. This goes

for the wet benches, the deposition chambers, the water you use, your photoresist,

the photoresist spinners, your tweezers, your glassware, your reticles, your wafer

holder, and the storage space for your sample when you end your day. At the end

of each day, it is recommended that you place your wafer in the group’s Lesker

loadlock or an equivalent vacuum space that you know is not contaminated. With

all that being said, I hope it is clear that a certain level of paranoia is natural to

successfully working in the cleanroom.

B.3 Tips For Success In The Cleanroom

Your time and the devices that you will inevitably get out are worth more than

the “consumables” (e.g. photoresist, developer, gloves, 1165, acetone, etc), so use

what you need. Don’t confuse this call to efficiency with rampant waste. I am
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Day Fabrication Steps to Complete
1 Deposit Base Wiring. Expose, Develop, Etch, Clean BW. Store in

Lesker loadlock in Vaccuum (LLV)
2 Deposit aSi:H. Expose Develop, Etch, Clean Vias. Deposit Al Top

Wiring (TW). Store in LLV
3 Expose, Etch, Clean, TW1. Oxidize, Dep Junctions. Store in LLV
4 Expose, Develop, Etch, Clean Junctions. Expose, Develop, Etch,

Clean TW2. Expose, Develop, Etch, Clean aSiH. Store in LLV
5 Expose, Develop, Wet-Etch, Clean Straps. Store in LLV.
6 Probe Junctions, Soft-bake PR, Dice wafer. OK to store in Martinis

Group desiccator (MBE lab).

Table B.2: Fabrication schedule.

not suggesting that you waste any of the resources available in the cleanroom, I

am just reminding you that all of the days-worth-of-work you spent on a device

can be ruined by taking a short cut. Commit to the fact that you are going to be

in the cleanroom. Here are some tips that may help you in the cleanroom.

• Store in-progress device wafers in the Lesker load-lock chamber.

• Always pour a fresh bottle of resist when you start your fabrication. And

don’t let anyone “borrow it”.

• Always install fresh napkins in the photoresist (PR) spinners before you spin

your PR.

• For your lithography steps, Always use two spinners, one for Hexamethyld-

isilazane (HMDS) and the other for photoresist. The fumes of the HMDS

linger after spinning and the last thing you want to do is blow Nitrogen on
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your wafer for risk of depositing the dirt from inside the spinner on your

wafer.

• Put on fresh gloves anytime you think about it. About to remove some PR

with 1165? Double up on your gloves so you can peel one pair off when you

are done with 1165.

• Clean out/off the wafer carrier and your tweezers with isopropanol followed

by acetone after each lithography step. A good time to perform this task is

while your wafer is soaking in 1165.

• Be sure to pour 1165 in a dry beaker i.e. no water inside. 1165 + H20 =

etching type solution.

B.4 QuP Fabrication Recipe

B.4.1 Reticle Set

The design files for the QuP reticles (a.k.a “masks”) are located in the QC-group’s

archive directory “\Erik\Work\Ledit\ReZQArch4Q5R”. The reticles were fabri-

cated out-of-house by Digidat on quartz . The small ∼ 1µm features, specifically

the junctions, were sharp and well defined, which was critical to making smaller

overlap junctions. The reticle set and corresponding lithographic steps are sum-
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QuP Reticle Set
Plate Number Quadrant Lithographic Step Orientation

1

A Base Wiring
B Via Etch Rotated 90◦

C Top Wiring Etch 1 Rotated 180◦

D Base Wiring Shooters
Middle µ-wave shooters

2

A Junction Overlap Etch
B Top Wiring Etch 2 Rotated 90◦

C Dielectric Etch Rotated 180◦

D Junction protection strap removal Rotated 270◦

Table B.3: QuP Reticles and corresponding lithographic steps.

marized in Table B.3. The Orientation and corresponding rotations are due to

the GSA Autostepper program for the lithography steps. This is not a standard,

one can redefine the shutters on each step rather than rotating. However, I found

that my method required fewer things to remember once I was in the cleanroom

fabricating devices.

B.4.2 Base Wiring Al Deposition

The QuP was fabricated on a 3” c-plane sapphire (Al2Ox) substrate chosen for its

low loss tangent at GHz frequencies. The base wiring metal deposition was com-

pleted using the UCSB QC-group’s custom Kurt Lesker superconducting metal

sputtering tool. The machine is needed for 45 − 60 min/wafer. The Al deposi-

tion step consists of two actions, an ion-mill step to clean the surface of the bare

sapphire (Al2Ox) wafer followed by the sputtering of Al. The recipe is shown in
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Base Wiring Al Deposition

Action
Experimental Controls

VB IB IN VA VD PrAr Prf t
V mA mA V V Torr W min

1. Mill Al2Ox wafer 900 16 19 100 35 2E−4 n/a 2.5
2. Sputter Al
2.a. Clean Al target 900 16 19 100 35 5E−3 200 3.0
2.b. Deposition 900 16 19 100 35 5E−3 110 20.0

Table B.4: Fabrication step 1. Al base wiring deposition on UCSB QC-group’s
Lesker superconducting metal deposition tool. Experimental controls defined in
text

Table B.4, where the experimental controls for the Kurt Lesker deposition tool

are beam voltage VB, beam current IB, neutralizing current IN , discharge current

ID, Argon pressure PrAr, rf power Prf , and time t. We experience a deposition

rate ∼ 10 nm
min

using the settings in action 2.b. deposition.

B.4.3 Base Wiring Pattern

The AutoStep tool is needed for at least 60 min/wafer to complete the 25 unique

base wiring exposures to build up the base wiring connections of the 89 potential

QuPs on the wafer. Table B.5 is a wafer map for the designed qubit-resonator

coupling strengths (all coupling strengths are in MHz). The map shows a range

of coupling strengths from 20 MHz to 100 MHz, concentrated around 50 MHz as

summarized in Table B.6. Table B.7 is the wafer map for the microwave control

line coupling strengths (all coupling strength are in attoFarrads). And Table B.8
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Qubit-Resonator Coupling Strengths in MHz
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

R1 20 20 20
R2 40 40 40 40 40 40 40
R3 80 20 80 20 80 20 80 20 80
R4 20 80 20 80 20 80 20 80 20
R5 40 40 40 40 40 40 40 40 40 40 40
R6 50 50 50 50 50 50 50 50 50 50 50
R7 60 60 60 60 60 60 60 60 60 60 60
R8 100 100 50 50 100 100 50 50 50
R9 50 100 100 100 20 100 100 100 100
R10 50 50 60 50 60 50 60
R11 60 60 60

Table B.5: Wafer map of qubit-resonator coupling strengths

summarizes the coupling options used on the various QuP designs.

B.4.4 Base Wiring Etch

The dry Al etch that defines the base wiring is completed using the Panasonic

E640 ICP etch system using a Boron trichloride (BCl3), Chlorine (Cl2) and Car-

bon tetraflouride (CF4) recipe. The chamber is cleaned with a 10 min O2 plasma

and then conditioned for 5.5 min using a blank conditioning wafer subject to the

same conditions as the actual etch as detailed in Table B.9. As soon as the wafer

is removed from the Panasonic E640 ICP etch system it is soaked with deion-

ized (DI) H2O for 10 min to scavenge the bi-products from the Al-Cl interaction.

Figure B.1a shows a photomicrograph of the device after the base wiring etch.
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Summary of Q-R Coupling Strengths
Coupling Strength MHz # of Devices

20 12
40 18
50 22
60 17
80 9
100 11

Total Devices 89

Table B.6: Number of devices for the various qubit-resonator coupling strength
options.

Microwave Coupling Strengths in aF
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

R1 220 170 130
R2 170 220 130 170 220 170 130
R3 170 220 130 170 220 170 130 220 170
R4 170 220 130 170 170 170 130 220 170
R5 130 170 220 130 170 220 170 130 220 170 130
R6 130 170 220 130 170 220 170 130 220 170 130
R7 130 170 220 130 170 220 170 130 220 170 130
R8 170 220 170 130 220 170 220 170 130
R9 130 170 130 170 220 220 130 220 170
R10 170 220 220 130 220 170 170
R11 130 170 130

Table B.7: Wafer map of microwave coupling strengths in attoFarrads.
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Summary of Coupling Strengths
Qubit - Resonator Microwave Coupling Strengths

Coupling Strength MHz # of Devices 220 aF 170 aF 130 aF

20 12 4 5 3
40 18 5 7 6
50 22 5 9 8
60 17 5 6 6
80 9 3 4 2
100 11 4 5 2

Total Devices 89

Table B.8: Number of devices for the various qubit-resonator and microwave
coupling strength options.

Dry Al Etch Recipe using BCl3, Cl2, CF4

Step
BCl3 Cl2 CF4 P Prf Pb t
sccm sccm sccm Pa W W sec

1 20 40 0 3.0 300 0 5
2 20 40 0 0.7 300 0 5
3 20 40 0 0.7 300 70 30
4 0 0 50 2.0 700 0 5
5 0 0 50 2.0 700 20 5

Table B.9: Dry Al etch recipe using Boron trichloride (BCl3), Chlorine (Cl2)
and Carbon tetraflouride (CF4) with chamber pressure P , plasma rf power Prf ,
substrate forward bias Pb, and step time t.

184



B.4.5 Hydrogenated Amorphous Silicon Deposition

After the base wiring has been defined the a-Si:H dielectric layer is deposited

using the UNAXIS HD PECVD system. The UNAXIS needs to be reserved for 3

hours for 1 wafer (add an hour for every additional wafer) because the chamber

needs to be cleaned at a temperature of 250◦C with Sulfur hexafluoride (SF6)

and allowed to cool back down to the deposition temperature of 100◦C. Once the

chamber is clean and has cooled down to 100◦C, the deposition is preceded by a

seasoning step that mimics the deposition recipe. This seasoning step is used to

prepare the chamber and to verify correct machine operation (e.g. to verify that

the plasma ignites). The a-Si:H recipe is summarized in Table B.10 it consists of

two main steps, the first is an Argon (Ar) mill that is used to remove the native

Al oxide and prepare the surface for the dielectric deposition. The second is the

multi-stage deposition process that results in a deposition rate of ∼ 1.3 nm/sec of

a-Si:H.

B.4.6 Pattern and Etch Vias in Dielectric

The vias are lithographically defined with the AutoStepper (by exposing reticle 1,

quadrant B across the wafer) and finish the patterning with a dry CF4, O2 etch.

The dry etch on Panasonic E640 ICP etch system punches holes through the

dielectric and exposes the base wiring for via connections between the base wiring
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a-Si:H Dielectric Deposition

Step
SiH4 Ar P Prf Pb t
sccm sccm mTorr W W sec

1. Ar mill 0 30 1.0 600 100 15
2. Deposition
2.a. Gas Stabilization 40 5 10.0 0 0 20
2.b. Ignition 40 5 10.0 10 20 4000
2.c. Dep. low power 30 15 2.0 400 30 15
2.d. Dep. full power 30 15 2.0 400 50 180

Table B.10: a-Si:H Dielectric deposition recipe using a HD PECVD system with
chamber pressure P , plasma rf power Prf , substrate forward bias Pb, and step
time t.

Dry a-Si:H Etch Recipe using CF4, O2

Step
CF4 O2 N2 P Prf Pb t
sccm sccm sccm Pa W W sec

1 40 5 0 1.0 500 0 5
2 40 5 0 1.0 700 0 5
3 40 5 0 1.0 700 50 160
4 0 0 50 2.5 100 0 10
5 0 0 50 2.5 50 0 5

Table B.11: Dry a-SI:H etch recipe.

and top wiring Al. The chamber of the Panasonic is cleaned with a 10 min O2

plasma and then conditioned for 5.5 min using a blank conditioning wafer subject

to the same conditions as the actual etch as detailed in Table B.11. The holes

etched in the dielectric can be seen in Figure B.1b, where the red colored area is

the blanket of a-Si:H and the black regions are the holes.
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B.4.7 Top Wiring Al Deposition

After defining the vias in the a-Si:H dielectric the wafer is covered with another

layer of Al that will become the top wiring. The deposition is carried out in

the Kurt Lesker tool and uses the same experimental parameters as detailed in

Table B.4 with an extended time (∼ 30 min) so as to deposit enough Al (∼

250− 300 nm) to fill in the voids of the a-Si:H.

B.4.8 Pattern and Etch Top Wiring Part 1

The AutoStepper exposes reticle 1, quadrant C across the wafer and finish the

patterning with the same BCl3, Cl2 and CF4 Al dry etch recipe detailed in Ta-

ble B.9. The dry etch is also followed by a 10 min DI H2O soak. Note that the

dry Al etch is nonlinear, so the etch time in step 3 of Table B.9 only needs to be

increased from 30 sec to 34 sec since most of the etch time is spent removing the

Al oxide. This etch of the top wiring (part 1 of 2) cuts holes for the junctions as

seen in Figure B.1c where the white arrows are pointing at the top wiring holes

for the three SQUID junctions.

B.4.9 Josephson Junction Al Oxidation and Deposition

After defining the holes in the top wiring the wafer is inserted into the Kurt

Lesker tool to mill, then oxidize the Al, and deposit the counter electrode of the
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Junction Oxidation

Wafer
Chamber P [mTorr] at time t [min]
t = 0 3 5 7 9 10 11

A 86 75 71 69 66 66 66
B 100 97 96 94 93

Table B.12: Oxidations for two wafers A and B of the QuP. Wafer B oxidation
ended at t = 9 min.

Josephson junction. The milling step uses the same experimental parameters as

detailed in Table B.4 (action 1. Mill) with the exception of a reduced milling time

from 2.5 min to 2.0 min. This ion mill step removes the dirty native Al oxide that

will be replaced with a controlled oxide growth as detailed in Table B.122. After

oxidizing the Al, a fresh layer of Al is sputtered for the junction counter electrode

using the same parameters as detailed in Table B.4 (action 2.b. deposition) with

a sputtering time of15 min.

B.4.10 Pattern and Etch Junctions

The AutoStepper exposes reticle 2, quadrant A with the appropriate shifts in the

exposures across the wafer. The shifts are detailed in Table B.13. The junctions

are etched in the Panasonic E640 ICP etch system with an Ar mill combined with

Cl2. This is a slower and more controllable etch as compared to the BCl3, Cl2 and

CF4 Al dry etch. The junction etch recipe is detailed in Table B.14. The dry etch

2Ideally, both wafers have the same oxidation parameters. Since the critical current depends
both on the oxide thickness and the junction area, a higher (lower) oxidation can be compensated
for in the exposure shifts by increasing (decreasing) the overlap.
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Junction Exposure Shifts in [nm]
Wafer C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

A 600 600 500 200 150 0 100 300 400 600 600
B 2400 2400 2000 800 600 0 400 1200 1600 2400 2400

Table B.13: Table summarizing the shift of Josephson junction overlaps across
the two wafers A and B. The junction is designed for a 2.3µm overlap. After
calibrating an etch-back of 1.1 − 1.4µm a shift of 0 nm resulted in 0.9 − 1.2µm
of overlap. All shifts indicated in the table are positive, resulting in additional
overlap. Note, this does not follow standard shift procedures of bracketing above
and below 0 nm.

Dry Junction Etch Recipe using Ar, Cl2

Step
Ar Cl2 CF4 P Prf Pb t

sccm sccm sccm Pa W W sec
1 40 3 0 3.0 400 0 5
2 40 3 0 0.2 400 0 5
3 40 3 0 0.2 400 150 160
4 0 0 50 2.0 700 0 5
5 0 0 50 2.0 700 20 10

Table B.14: Junciton etch recipe.

is followed by a 10 min DI H2O soak. This etch defines the junctions which are

the four (3 for the SQUID and 1 for the qubit) wedge shaped elements covering

the black rectangles in Figure B.1d.

B.4.11 Pattern and Etch Top Wiring Part 2

To complete the second part of the top wiring pattern and etch the AutoStepper

exposes reticle 2, quadrant B across the wafer and the Al is etched with the same

BCl3, Cl2 and CF4 recipe detailed in Table B.9. The dry etch is also followed
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by a 10 min DI H2O soak. This etch removes the majority of the Al that capped

the dielectric layer as seen in Figure B.1e. The purple-green colored region is the

a-Si:H dielectric that will be removed in the next etch.

B.4.12 Pattern and Etch Dielectric

After patterning the regions defined in retciel 2, quadrant C for the dielectric

removal using the AutoStepper the final dry etch removes the excess a-Si:H. The

same dry CF4, O2 etch used for the via Table B.11 clears the remaining dielectric

except for the crossovers and parallel-plate capacitors. The nearly completed

device is shown in Figure B.1f, where all that remains to be removed are the

protection straps around the junctions.

B.4.13 Pattern and Wet Etch Junction Protection Straps

The final etch is a wet etch to remove the grounding protection straps around

the junctions, which are indicated with white arrows in Figure B.1f. This etch

uses 100 mL of Transene Al etch type A, warmed on a hotplate to a temperature

of T = 50◦C. At this T and with soft agitation the Al is etched at a rate ∼

10 nm/sec. The shorting straps are removed (compare the voids of Figure B.1g and

Figure B.1f) and a completed device is shown (with annotations of the elements)

in Figure B.1h.
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