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Abstract

Generation of Three-Qubit Entanglement Using Josephson Phase

Qubits

by

Matthew Gary Neeley

Phase qubits are a type of superconducting quantum circuit that have numerous

applications in quantum computing and quantum information processing. One of

the hoped-for advantages of these devices is their potential to be easily scaled up

to larger numbers of qubits due to the reliance on conventional microfabrication

techniques and the ease with which they can be coupled together with simple

wiring.

We describe an experiment in which three phase qubits are coupled together

and used to form three-qubit entangled states of two types, namely |GHZ〉 ≡

(|000〉 + |111〉)/
√

2 and |W〉 ≡ (|001〉 + |010〉 + |100〉)/
√

3. The physics of three-

qubit entanglement is interesting precisely because of the existence of these two in-

equivalent types of entangled states, unlike the better-known two-qubit case where

there is only one type of entanglement. We show that both of the experimentally-

created states exhibit genuine three-qubit entanglement, and that the |GHZ〉 state
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further violates the Mermin-Bell inequality, indicating that the observed measure-

ment correlations cannot be explained by a hidden-variable model.

From a technological standpoint as well, this experiment is interesting because

it represents another step along the path of scaling toward larger quantum in-

formation processing devices made with superconducting qubits. Significantly,

our work was achieved using “off-the-shelf” qubit designs that were coupled to-

gether with a simple circuit consisting solely of passive capacitor elements. This

underscores the power of the circuit approach and the modularity it enables.
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Chapter 1

Introduction

The impact of computing and information technology on our everyday lives is

profound and undeniable. Physics too has been influenced by the revolutions

of the information age; computers are physical machines after all, and so their

computations proceed according to natural laws. Understanding computing as a

physical process has led to insights in both directions between computer science

and physics, including an emerging view of the very foundational laws of physics

as being driven by information. Quantum mechanics of course plays a role in this

story because it provides a basic understanding of the laws of the universe; we live

in a quantum world, so any computer one might hope to build must of necessity

be a quantum computer.

The term “quantum computer”, however, is more specifically reserved for those
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devices that actually exploit their quantum nature so as to outperform the so-

called “classical” computers, which would operate just the same in a world with-

out quantum mechanics. Understanding exactly what advantage quantum effects

confer on a quantum computer is an ongoing theoretical question; trying to build

such a device to actually demonstrate and exploit these effects is an ongoing ex-

perimental problem.

In this thesis we will be concerned with the experimental problem of building a

quantum computer[29, 17], and in particular doing so with superconducting quan-

tum circuits of the “phase qubit” variety. Much as classical computers are built

up from collections of many simpler components (transistor switches or “bits”), so

too a quantum computer would be built up from many quantum bits or “qubits”.

Superconducting qubits are a family of quantum circuits that could be used as the

component parts in a quantum computer. These devices share some of the ad-

vantages of the silicon bits in classical computers, namely that they are electrical

circuits made on chips using conventional microfabrication techniques, which al-

lows for “easy” scaling by packing more components together on a chip. Of course

achieving this scaling with quantum bits of any stripe is an immense challenge,

but the first steps are now being taken with superconducting qubits.

Many beautiful experiments have been done with two coupled superconduct-

ing qubits[3, 8]. In this thesis we will describe a modest next step, an experiment

2



in which three superconducting phase qubits have been coupled together and con-

trolled to produce entangled states. Entanglement is one of the bizarre features of

quantum mechanics, and one of the key resources required for quantum computa-

tion, so experimentally creating and measuring entangled states is of crucial impor-

tance in the various physical implementations of a quantum computer. Unlike the

now well-established two-qubit case where there is only one type of entanglement,

three qubits can be entangled in two fundamentally different ways[9], typified by

the states |GHZ〉 = (|000〉+ |111〉)/
√

2 and |W〉 = (|001〉+ |010〉+ |100〉)/
√

3. We

demonstrate the generation of both of these states and show that they meet the

criteria for genuine three-qubit entanglement.

This thesis will proceed as follows: after this brief introductory chapter, we

turn in Chapter 2 to a description of our superconducting phase qubits and how

they are designed, fabricated and operated. Following that, in Chapter 3 we

will describe in detail the process by which we go about translating a quantum

algorithm into an experimental control sequence that will be applied to the qubits

to perform the desired computation; this chapter will potentially be of interest

and hopefully of some use to those implementing future experiments on similar

systems.

With that introductory material out of the way, the remaining chapters de-

scribe our experiment with three coupled phase qubits. We discuss the details of

3



three-qubit entangled states in Chapter 4, followed by a description of the pro-

tocols we will use to generate these states in Chapter 5 and the crucial coupling

circuit which generates the entanglement in Chapter 6. We then discuss the sub-

tleties of multi-qubit measurement in our system in Chapter 7, and finally present

the experimental results in Chapter 8, in particular the demonstration that the

created states are genuine three-qubit entangled states that cannot be explained

as mixtures of two-qubit entanglement. This capability to build and operate a

multi-qubit device, and demonstrate its truly quantum behavior, represents a step

toward scaling to larger numbers of qubits, and eventually a full-blown quantum

computer.

In all of this work we are preceded by and greatly indebted to Markus Ans-

mann whose thesis[2] contains a great deal of information about the UCSB phase

qubit, how it is designed, fabricated, operated and measured, how our software

control system works, etc. Where these issues are discussed here, particularly in

Chapter 2, they will be touched on briefly with a great deal of otherwise necessary

background material omitted and the curious reader referred to the appropriate

places in his work.
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1.1 The Qubit and the Bloch Sphere

The simplest nontrivial quantum system is one with just two states. By convention

we use the first two non-negative integers as labels and call theses states |0〉 and

|1〉. By analogy with the classical binary digit or “bit” which can take on the

values 0 or 1, such a two-level system is known as a quantum bit or “qubit”. The

complete state of the system is not simply |0〉 or |1〉 as for a classical bit, rather

the state must be specified as α |0〉+β |1〉 where the complex coefficients α and β

are the so-called “amplitudes” for the system to be in these two eigenstates. These

coefficients satisfy the normalization condition |α|2 + |β|2 = 1 and can thus be

interpreted as probabilities: P0 = |α|2 is the probability that upon measurement

the system will be found to be in state |0〉, while P1 = |β|2 is the probability that

the system will be found in state |1〉.

Because of the normalization constraint |α|2 + |β|2 = 1, we can write an

arbitrary qubit state as eiφα cos(θ) |0〉 + eiφβ sin(θ) |1〉, where the angle θ can

vary between 0 and π and parametrizes relative magnitude of the two ampli-

tudes. Then, because global phases are unobservable in quantum mechanics, we

can specify without loss of generality that the amplitude for |0〉 is real, leaving

only a relative phase on the other amplitude so that the state can be written as

cos(θ) |0〉+ eiφ sin(θ) |1〉, where the relative phase φ can vary from 0 to 2π.

This parametrization in terms of polar angle θ and azimuthal angle φ puts

5



Z

X

Y

|0〉

|1〉

|0〉 + |1〉
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|0〉 - |1〉|0〉 - i|1〉

Figure 1.1: The Bloch sphere.

the qubit states in one-to-one correspondence with the points of a unit sphere

known as the Bloch sphere, as shown in Figure 1.1. Transformations produced

by quantum dynamics correspond to rotations of this Bloch sphere. The simplest

rotations to describe are those about the x-, y- and z-axes of the Bloch sphere,

which are generated by the Pauli matrices

X =

(
0 1
1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0
0 −1

)
. (1.1)

For example, a rotation about X by angle θ is given by R(θ) = exp(−(θ/2)X).

This is a unitary matrix, as are all quantum operations on pure states. When an

operation U is applied to the system starting in state |ψ〉, the final state is U |ψ〉.

We can build up any rotation U from rotations about just two axes, say Y and Z,

giving complete control over the qubit state, which is an important requirement
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for quantum computation.

In any experimental situation, our qubit will be subject to decoherence, so that

the “pure state” description of the system as being in a superposition α |0〉+β |1〉

is insufficient. Instead, we can adopt the density matrix formalism which allows

for a quantum system to be in a mixed state, a probabilistic mixture of different

pure states. The density matrix ρ is defined as
∑

k pk |ψk〉 〈ψk|, where pk is the

probability that the system is in the (pure) state |ψk〉. In terms of the Bloch

sphere picture, the effect of allowing mixed states is to ‘fill in’ the Bloch sphere,

with points on the surface corresponding to pure states, and points in the interior

corresponding to mixed states.

1.2 Combining Qubits

A single isolated qubit is not particularly exciting; truly interesting things start

to happen when many qubits are combined together, as we would like to do

in building a universal quantum computer. With N qubits, the allowed states

can be labelled by N -digit binary numbers with 0s and 1s corresponding to the

states of the individual qubits: |00 . . . 00〉, |00 . . . 01〉, |00 . . . 10〉 and so on up to

|11 . . . 11〉. There are a total of 2N such eigenstates and the complete description

of the quantum system requires that we specify amplitudes for each of them. This

exponentially-large amount of information carried by the multi-qubit states is part
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of what gives a quantum computer its potential power.

In order to make our quantum computer universal we would again like to

be able to implement any possible unitary operation in the now 2N -dimensional

space in which the state lives. The ability to perform single-qubit rotations as

we described in the previous section is no longer enough. In addition, we require

at least one operation that can be performed on two qubits at the same time.

Physically, this means that the qubits must be coupled together in such a way

that they can interact. This interaction must be controllable so that we can turn it

on and off to perform series of one- and two-qubit operations, and hence build up

the desired operation on the whole combined system. For many physical systems,

coupling can be difficult to achieve and to control; superconducting qubits have a

somewhat easier time because as circuits they can simply be wired together. We

will see in Chapter 2 some of the numerous possibilities for coupling phase qubits.

1.3 Decoherence

Quantum superposition and entanglement are fragile, particularly when these

exist in solid state systems such as a superconducting qubit that is tightly coupled

to numerous environmental degrees of freedom. Decoherence refers collectively

to the various processes by which the coupling to the environment causes the

quantum state to degrade, changing a superposition state into a probabilistic
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mixed state in a process known as dephasing; or causing an excited state to give

off energy and relax to the ground state in a process known, not surprisingly,

as relaxation. In the well-known language of NMR where we consider a two-level

system (qubit or spin-1/2), these processes are each governed by exponential decay

times T1, which sets the relaxation time, and T2, which sets the dephasing time.

For experimentalists, decoherence is perhaps the single most important and

troublesome issue to grapple with in trying to realize quantum information pro-

cessing devices. This is because by definition one would like to create and manip-

ulate quantum states, but in practice the states decay quickly due to decoherence,

severely limiting the complexity of states that can be created and the number of

manipulations that can be performed. Each physical implementation has its own

set of problems related to decoherence. Superconducting qubits are no exception,

and in fact because these are large devices coupled strongly to noisy environments

with many degrees of freedom, decoherence is a particularly difficult problem.

A great deal of effort has gone into understanding decoherence in supercon-

ducting qubits and working to reduce it. We have greatly benefited from this

work, and the present state of superconducting qubit performance is good enough

for our experiment so that no special effort had to be made to get three qubits to

work together. The decoherence we observe in the coupled system is completely

due to decoherence of the individual qubits. Thus, ongoing efforts to improve
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the performance of single qubits will immediately benefit multi-qubit experiments

such as ours.

1.4 Superposition and Entanglement

Superposition and entanglement are two of the most striking features of quantum

mechanics. Superposition, as we have seen above, refers to the fact that a physical

system at any particular time must be described by its amplitude to be in each of a

set of possible eigenstates. These amplitudes are complex numbers whose squared

length corresponds to the probability of finding the system in that particular

state. When a system is measured, it will be found in one of these eigenstates,

but before measurement the entire superposition and the information contained

in all the state amplitudes govern the dynamics.

A state is said to be entangled if it cannot be described as a product state,

which essentially means that the states of the various constituent systems are

linked together. This can lead to interesting results if measurements are performed

on the constituent systems, because correlations can be observed that are stronger

than any possible classical theory can explain. This is the key to the two-qubit

Bell Inequalities, and their various generalization to three qubits, such as the

Mermin-Bell inequality, which we discuss in Chapter 4. Entanglement can be

considered to be a resource which quantum computers utilize to achieve their
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speedups relative to classical computers. Because of this, the measurement and

characterization of entanglement is important for any physical system which could

be used for quantum information processing.

11



12



Chapter 2

Flux-Biased Phase Qubits

Among the many candidate physical systems that might be used as quantum infor-

mation processing devices, superconducting qubits have emerged in recent years

as promising candidates. Rather than relying on fundamental, naturally-occurring

quantum systems such as spins, atoms, or photons, these devices are engineered

circuits that consist of many constituent atoms, but that exhibit collective quan-

tum behavior which makes them usable as qubits. The two key features are

superconductivity, which is a collective quantum behavior of many electrons that

allows the entire circuit to be treated quantum mechanically, and the Josephson

effect, which gives the strong nonlinearity required to make an effective two-level

system or qubit.

The qubits used in our work are phase qubits; a schematic of the circuit is
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Figure 2.1: Schematic of a phase qubit.

shown in Figure 2.1. The circuit consists of a Josephson junction shunted by an

inductor and, typically, an external capacitor as well. The circuit is designed so

that the potential energy as a function of the phase difference δ across the junction

is a double-well potential, as illustrated in Figure 2.2. The potential is tilted by

applying flux to the qubit loop to bias the circuit near the critical current of

the junction; this leads to a highly asymmetric potential where one well becomes

very shallow and is close to disappearing altogether. This shallower left-hand well

serves as the qubit well. More information about this potential energy description

of a quantum circuit is found in [2, chap. 2].

Zooming in on just the left-hand qubit well, as in the right hand side of Fig-

ure 2.2, we see that the potential well is asymmetric, a nearly-harmonic potential

14



with a cubic perturbation. The quantum states of the system in this well are

hence similar to a perturbed harmonic oscillator. The energy scale E10 ≈ 6 GHz

of the oscillator is set by the curvature of the potential due to the inductance, and

the “mass” of the system due to the capacitance. The finite barrier on the right

side of the well is due to the critical current of the junction, but can be modulated

by tilting the potential with the flux bias. Typically when operating a qubit, the

bias is adjusted to give a barrier height ∆U ∼ 5E10, so that on the order of 5

quantum levels exist in the well.

Due to the cubic perturbation, these levels are not evenly spaced, that is,

the energy difference E21 between the first and second excited states is different

from the qubit energy E10 between the ground state and first excited state. This

nonlinearity ∆ ≡ (E21 − E10)/~ is a crucial feature of the circuit that allows

the system to be operated as an effective two-level system. For typical operating

parameters the nonlinearity is on the order of −2π · 200 MHz, small but sufficient

for reasonably fast operation. Microwaves can be applied at the qubit frequency

ω10 = E10/~ to cause transitions between qubit levels. In addition, the flux bias

can be adjusted to tilt the potential, causing Z-rotations. Unlike some other types

of superconducting qubits, the phase qubit does not have an accessible degeneracy

point at which the qubit frequency becomes insensitive to changes in flux bias.

This generally results in somewhat reduced phase coherence compared to other
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Figure 2.2: Potential energy landscape of a phase qubit.

qubit types. However, phase qubits have a number of other features which are

nice advantages, particularly the ease with which they can be coupled together

and their relative insensitivity to stray capacitances, both of which are due to

their low impedance.

2.1 Single-Qubit Design

A number of considerations must be taken into account to design a phase qubit,

which we can broadly divide into three categories: the design of the qubit circuit

itself; the design of the measurement circuit; and the “design” of the electromag-

netic environment of the qubit to appropriately decouple it from the environment

and prevent decoherence. In practice, of course, these three categories are not so

cleanly separated and must be considered together. For example, the measure-

ment circuit forms an important part of the qubit’s electromagnetic environment,

so the effects of the measurement circuit on qubit coherence must be very carefully
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considered. The phase qubit designs which we will describe occupy something of

a sweet spot where the various design concerns are reasonably well optimized, but

it is almost certainly not a global optimum, so there is room for future design im-

provements. We will describe the basic considerations that went into the current

design; additional information is given in [2, chap. 4].

2.1.1 The Qubit Circuit

To design the phase qubit circuit a number of factors are important. Near the

critical current, where the device will be biased, the qubit frequency is primarily

determined by the junction critical current I0 and the shunt capacitance Cq, with

the inductance Lq and flux bias essentially playing the role of current bias in the

tilted washboard model but having very little effect on the actual shape of the

qubit potential. To achieve a qubit frequency of ∼ 6 GHz we take I0 ≈ 2µA and

Cq ≈ 1 pF. Having chosen I0 and Cq, the inductance Lq can then be determined

by the overall requirement of having two wells in the qubit potential. To achieve

the desired potential shape, we choose Lq ≈ 720 pH.

If the inductance Lq were increased, the qubit circuit could be made less sen-

sitive to magnetic flux noise in the qubit loop, which could be a desirable feature.

At the same time, however, this would create a potential with more than two

wells, which makes it difficult to reset the qubit. Resetting requires that we re-
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turn the qubit state to the original well, and doing so is difficult when there are

more than two wells. This is one of the many trade-offs that must be considered

when designing these circuits, and the full parameter space of different designs

has certainly not been fully explored.

Having chosen these component values, we must next lay out a circuit design

that will achieve the desired component parameters while being possible to fabri-

cate. Our design is shown in Figure 2.3. A few things to note about this design:

first, the inductor loop is designed as a gradiometer to reduce its sensitivity to

external flux noise (areas of positive and negative winding are carefully balanced

to reduce this sensitivity as much as possible). Second, the shunt capacitor is

a parallel-plate design that requires an intermediate layer of dielectric material.

Losses due to dielectrics in capacitors such as this have been shown to be the

dominant source of relaxation in the phase qubit[20], so a great deal of work has

gone into the fabrication of this element, which for which we used hydrogenated

amorphous Silicon (a-Si:H) dielectric. Third, the junction is made up of a small

triangular overlap between two aluminum layers, which allows a small area of

∼ 1µm2 to be achieved with our optical lithography capabilities. Two-level state

defects in the junction have been found to couple strongly to the qubit[33, 26],

producing spectroscopic splittings as well as coherent time-domain oscillations of

the qubit state. The number of such defects can be reduced by minimizing the
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junction area, which this triangular overlap design allows.

2.1.2 The Measurement Circuit

In order to extract information from our qubits, we must be able to measure

whether they are in state |0〉 or |1〉. This is accomplished in two stages, which

we refer to as “measurement” and “readout”. In the measurement stage, a few

ns-long pulse is applied to the flux bias line to tilt the qubit potential and briefly

lower the barrier in the cubic potential well. The |1〉 state, which sits at higher

energy and hence sees a narrower barrier than the |0〉 state, tunnels out of the

qubit well into the neighboring well. After some time the tunnelled state relaxes

to the ground state of the neighboring well, emitting a large amount of energy
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in the process, typically on the order of several hundred photons. Because this

tunnelling and relaxation process is rather violent, it is unlikely that any quantum

coherence that existed in the original qubit state survives, rather the system will

be projected into either the left well (“0”) or right well (“1”) and left in one of

these two states. The measurement process is illustrated schematically in the left

panel of Figure 2.2, and described in much greater detail in Chapter 7.

At this point the qubit state has been measured, and it remains only for us to

readout which final state was chosen. This is rather easy to accomplish due to the

fact that the final states at the bottom of the left and right wells produce fluxes

through the qubit loop that differ by a flux quantum Φ0. This large flux difference

can be measured easily with an on-chip superconducting quantum interference

device (SQUID).

The SQUID used in our readout is a three-junction device with a geomet-

ric mutual inductance Msq ≈ 60 pH between the SQUID and qubit loops. The

asymmetric three-junction design allows the device to be biased in such a way

that the effective mutual inductance between SQUID and qubit can be tuned by

biasing the SQUID, despite the fixed geometric mutual inductance. In particu-

lar, by choosing a ratio α < 2 between the critical currents of the one small and

two large Josephson junctions in the SQUID, it is possible to tune the effective

mutual to zero, thereby decoupling the SQUID and qubit; in practice we choose
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α ≈ 1.7. During qubit operation, the SQUID is biased at this insensitive point to

prevent fluctuations in the SQUID from causing decoherence in the qubit. Then

for readout, the SQUID bias is ramped to the critical current and the mutual

inductance turns on. The point at which the SQUID switches into the voltage

state will depend on the final qubit state, allowing us to distinguish between qubit

states by measuring the time it takes the SQUID to switch for a fixed bias ramp.

The readout SQUID is also designed as a gradiometer to reduce its sensitiv-

ity to external fluxes and to properly couple it to the gradiometric qubit loop.

The SQUID-qubit mutual inductance Msq is achieved by overlapping the loops,

as opposed to previous designs in which the loops were simply placed next to each

other. The overlap design allows us to achieve a larger Msq for better readout

distinguishability, while also reducing the SQUID self-inductance Ls ≈ 350 pH.

Lower self-inductance keeps the SQUID potential single-valued, resulting in more

controlled switching behavior. The overlap design does slightly increase the ca-

pacitive coupling between the two circuit elements due to the crossovers, but this

does not have deleterious effects on qubit performance.

The SQUID junctions are fabricated in the same process step as the qubit

junctions, another improvement in this design over previous versions. This reduces

the complexity and increases the reliability of the process, and was a driving force

behind the redesign. Note, though, that a working SQUID requires three good

21



junctions to the qubit’s one junction, so that readout SQUID failures are the

most common failure mode for our phase qubit devices. As a result, junctionless

readout schemes that rely for example on coupled resonators are an attractive

alternative design, and are currently being developed.

2.1.3 Isolation from the Environment

Although the signal to be measured is large and hence easy to readout using a

SQUID, care must be taken to prevent the measurement circuit from adversely

affecting qubit performance. This problem was analysed in great detail in a paper

and experiment that considered the effect of the SQUID on the qubit[27]. The

simple technique outlined in the paper for analysing the effect of the electromag-

netic environment on the qubit is to consider circuit elements as impedance trans-

formers coupling environmental noise into the qubit circuit. The measurement

SQUID’s asymmetric three-junction design allows its effective mutual inductance

with the qubit to be dynamically tuned by adjusting the SQUID bias current,

thus avoiding decoherence during operation while still allowing strong coupling

for readout. Similarly, other circuit elements that couple to the qubit must be

designed so that environmental noise is appropriately transformed and will not

decohere the qubit.

The other primary circuit element required for the phase qubit is the flux bias
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coil which is used to bias the qubit circuit, apply measurement pulses, and, in

recent designs, apply microwave pulses for manipulating the qubit state. The

mutual inductance between qubit and flux bias coil is chosen to be Mfq ≈ 2 pH.

This gives an impedance transform such that dissipation from the 50 Ω environ-

mental noise limits the qubit lifetime to ∼ 10µs, far from being a limiting factor

with current devices. At the same time, this mutual inductance allows us to vary

the flux bias by ∼ 5Φ0 with the accessible range of bias currents, which gives

a sufficient range to access SQUID step edges on several different branches for

operating the qubit[2, chap. 8]. The flux coil is also designed as a gradiometer

and the readout SQUID is placed along its axis of symmetry to eliminate coupling

between the flux bias and SQUID bias. The qubit on the other hand is placed

asymmetrically, allowing the flux coil to couple to the qubit as desired. All these

mutual inductances were simulated using the FastHenry software package1, and

have been found to be very close to the experimentally observed values in real

devices.

As was mentioned above, the SQUID-qubit crossovers lead to some capaci-

tive coupling between these circuit elements in addition to their mutual induc-

tance coupling. In addition, previous designs have included capacitively-coupled

microwave lines for performing qubit manipulations, rather than sending these

1http://www.fastfieldsolvers.com/
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microwave signals through the flux bias coil. In both cases, the same simple

framework of impedance transformation can be used to estimate the effects of

these capacitively-coupled elements on the qubit coherence, and in both cases

the resulting qubit lifetimes are far greater than present limits. This tool al-

lows the electromagnetic environment to be designed to ensure that the qubit is

well-isolated from the environment and has the best-possible coherence, presently

limited by internal material losses.

2.2 Scaling Up: Multiple Qubits

One of the advantageous features of the phase qubit is its low impedance. Low

impedance allows the qubit circuit to be coupled to other circuit elements without

being loaded, just as classical electronic sources are designed with low output

impedance to allow them to drive a load impedance. In the case of coupling

qubits, the qubit impedance should be low compared to the impedance of the

coupling circuit, and this is quite easily achieved with the phase qubit. We will

discuss briefly the approaches that have been taken to couple phase qubits, and

the approach used in this experiment.

24



2.2.1 Capacitive coupling

The simplest possible coupling scheme is to connect together two qubits with a

capacitor. Just like two classical electrical oscillators connected by a capacitance,

the coupling strength, which describes the rate at which energy is transferred back

and forth between the two circuits, is proportional to the coupling capacitance.

This coupling works particularly well with the phase qubit because of its low

impedance, as mentioned above, which allows one to run relatively long wires

between the qubit and coupling capacitor without unduly loading the qubit due to

stray capacitances of the coupling wire to ground. This circuit has the additional

advantage of being extremely easy to design and fabricate and extremely reliable

to operate.

The interaction produced by coupling two qubits with a capacitor is of the form

(~g/2)(XX+Y Y ) where X and Y are Pauli operators on the two qubits, and g is

the coupling strength, which is proportional to the ratio of coupling capacitance

to qubit capacitance g ∝ Cc/Cq[34]. This coupling Hamiltonian can alternatively

be written as ~g(σ+σ− + σ−σ+) where σ+ and σ− are operators that respectively

create or destroy an excitation in each qubit. From this latter form it is clear that

the interaction leads to swapping of excitations back and forth between the two

coupled qubits. If the interaction is applied for time tiSWAP = π/2g, then the qubit

states are transformed as |01〉 → −i |10〉 and |10〉 → −i |01〉 while |00〉 and |11〉
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are left unchanged. This so-called “iSWAP gate” is the fundamental entangling

gate we will use.

It is important to note that the interaction produced by such a fixed coupling

capacitor is an “always-on” interaction; the capacitance of the coupling capacitor

cannot be changed dynamically to modulate the coupling strength. However, the

coupling is a resonant interaction that effectively only acts when the two qubits

are at the same frequency, so that we can modulate this coupling by detuning the

qubits from each other. When the qubits are tuned into resonance, the interaction

is turned on, but when they are sufficiently far detuned so that the detuning ∆ is

much larger than the coupling strength g, the interaction is turned off2. While it

is not possible to fully turn off the coupling, in practice we can detune far enough

to make the errors small. This does set a limit to how strong the coupling can be

made while still allowing it to be turned off, since the qubits can only be detuned

by a finite amount. In Chapter 8 we will see some of the consequences of using

frequency detuning to modulate the coupling between multiple coupled qubits, in

particular the problems that arise because of limited bandwidth and the presence

of higher excited states in the qubits.

Another problem with the direct capacitive coupling scheme is that it is subject

2One way to understand this effect is to compute the eigenstates of the coupled system when
the qubits are far detuned. If the second qubit is detuned by ∆� g then the eigenstates are of
the form |ψ+〉 ≈ |01〉 + (g/∆) |10〉 and |ψ−〉 ≈ |10〉 − (g/∆) |01〉. Hence, the probability of the
coupling causing an exchange between the detuned qubits is ∼ (g/∆)2.
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to measurement crosstalk. The tunnelling and relaxation process by which the

qubit state is measured results in hundreds of quanta of energy being released into

the circuit. The coupling capacitor can transmit enough of this energy to the other

qubit to erroneously excite it as well and cause it to tunnel. With typical coupling

strengths of g ∼ 2π · 20 MHz we observe crosstalk on the order of ∼ 10 − 15 %.

This problem has been known for quite some time, having been observed in the

first experiments with capacitively coupled phase qubits[23]. In Chapter 7 we will

discuss a new technique for measuring coupled qubits in a way that avoids this

sensitivity to measurement crosstalk. However the technique is not scalable to

large numbers of qubits, so for future multi-qubit architectures a coupling scheme

that does not produce measurement crosstalk will likely be required.

2.2.2 Resonator coupling

A second technique for coupling two qubits involves coupling them not directly

by a capacitor, but through an intermediate resonator to which both qubits are

capacitively coupled. The resonator can be fabricated as a coplanar waveguide,

which means the resonance frequency can be very accurately designed and the

films are made low-loss for good quantum coherence. To implement coupled qubit

operations, first one qubit is tuned to the resonator frequency to couple the qubit

and resonator, then that qubit is detuned and the second qubit is brought into
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resonance to couple it. This two-stage process complicates somewhat the control

sequences needed to operate such a coupler, but the setup as a whole has a number

of key advantages.

First, since multiple qubits can be placed along the resonator cavity, this

setup naturally lends itself to a “quantum bus” architecture, where one resonator

can serve to pairwise couple any of the desired qubits. In addition, because of

their long coherence times resonators can serve as excellent quantum memory

elements, enabling architectures in which qubits are used to manipulate quantum

information and resonators to store it, much like the separation between logic and

memory elements in a classical computer.

The second advantage of resonator coupling over simple capacitive coupling is

the greatly reduced effect of measurement crosstalk. One can understand this by

considering the resonator to be essentially a band-pass filter that better isolates

one qubit from the energy released by a tunnelling event in the other qubit. In

experiments, this has been shown to reduce the effect of measurement crosstalk to

well below 1%[3]. On balance, the expanded architectural possibilities and elim-

ination of measurement crosstalk more than compensate for the increased com-

plexity of control sequences required to send quantum information through the

resonator, making resonator coupling a very promising technique that is rapidly

replacing simple capacitive coupling in the next generation of phase qubit exper-
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iments.

2.2.3 Tunable coupling

We have seen that with the always-on interactions produced by capacitive coupling

(whether directly between qubits or with an intermediate resonator), frequency

detuning is required to modulate the coupling interaction as needed for performing

complex sequences with multiple gates. However, frequency detuning has various

disadvantages, in particular that frequency space can become crowded with many

qubits and it can be hard to achieve the appropriate detunings without unwanted

level crossings. What’s more, even with large detunings, the coupling is never

completely “off” as described above; the off/on ratio can be made small but not

arbitrarily so. Ideally, one would like to have a coupling element that allows

the coupling strength itself to be adjusted so that it could be precisely tuned to

zero, and so that this could be done without requiring the qubits to be detuned.

This has been achieved with phase qubits by replacing the capacitive coupling

with inductive coupling, and then creating a circuit with tunable inductance.

The key element is a Josephson junction, which of course has phase-dependent

inductance, and so can serve as the needed tunable element. The first realization

of this approach[5] shows great promise and will certainly be developed further.
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2.2.4 Multi-qubit coupling

We have now discussed a number of techniques which allow two qubits to be

coupled together. How can this be scaled up to larger numbers of qubits? The

simplest approach, which we will use in the multi-qubit work described in this

thesis, is simply to use more capacitors to create a network of couplings between

the various qubits. We designed a device with four superconducting qubits coupled

by a central network of capacitors, as shown in Figure 2.4. Chapter 5 discusses

the entangling protocols which were designed to be implemented with this sort of

coupling circuit; Chapter 6 describes the design of the coupler itself.

This capacitive coupling approach is not scalable very far beyond three or four

qubits, mainly due to issues we have already encountered: limited bandwidth for

detuning qubits to turn off the coupling, and measurement crosstalk. In Chap-

ter 7 we describe in detail the problems encountered when measuring multiple

qubit and a new measurement scheme that allows us to overcome measurement

crosstalk, though at the expense of some overhead in extracting information about
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the state. The bandwidth constraint can be overcome by changing the network

of connectivity, for example coupling the qubits through a “bus” (such as a res-

onator) rather than coupling all of them simultaneously, so each qubit need only

be detuned from the bus, and not all pairs of qubits from each other. The mod-

ularity of superconducting circuits allows many such architectures to be realized

and explored by piecing together various elements–qubits, capacitors, resonators,

tunable couplers. This is one of the hoped-for advantages of superconducting

quantum devices, and at the few-qubit level, even with a very simple coupling

circuit, we can already see the promise of this modularity.

2.3 Fabrication and Experimental Setup

Superconducting qubits are microfabricated using standard thin-film deposition

and etching technologies. The most important components are the superconduct-

ing metal (Al), Josephson tunnel junction (Al-AlOx-Al) and capacitor dielectric

(a-Si:H). Our fabrication process is described in detail in the thesis by Ansmann[2,

chap. 5]. Of particular importance is the dielectric material, which is crucial for

creating a qubit with good coherence[20].

Once devices are fabricated, they are mounted in a dilution refrigerator and

cooled to the operating temperature, typically around 20 − 30 mK. The control

lines for flux bias, qubit control and readout on each qubit are carefully designed to
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be well filtered and impedance matched to 50 Ω to allow for excellent pulse shaping

on the high speed lines. Custom-built room temperature electronics generate the

various control signals for controlling and measuring the qubits. This cryogenic

and wiring setup is also described by Ansmann[2, chap.6], with the main difference

here being that we expanded the wiring and electronics to control up to six qubits

simultaneously; because the system was designed with expandability in mind, this

process was straightforward.

Because of the need for more control lines to operate more qubits, we designed

a new sample mounting box for this multiqubit experiment. The sample box is

an important piece of infrastructure that must satisfy a number of requirements.

The box should serve as a shield against external radiation that might heat the

qubit and also against external magnetic flux that might dephase the qubit by

causing fluctuations in the qubit frequency. For this purpose a superconducting

aluminum box is used. In addition, the box must allow access for microwave and

DC control lines to operate the qubit. The microwave lines in particular must

be well designed to be impedance matched to 50 Ω so that shaped control pulses

applied to the qubit will not be distorted. In addition, these microwave lines

should be well isolated from each other to minimize crosstalk between the various

control channels. The lines should be isolated not only through the box, but all

the way down to the sample die itself. Hence this involves carefully designing the
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way the die is mounted into the box. This mounting should also ensure adequate

heatsinking so that the die is well thermalized to the refrigerator base temperature.

The mounting box is shown in Figure 2.5, and a closeup of the mounted die

is shown in Figure 2.6. The sample is held in place with wirebonds, which are

placed densely around the edges to ensure that the die is securely mounted and

has good thermal contact with the box. These ground bonds are made as short

as possible for rigidity; experience has shown that ∼ 5 bonds per side of a 1/4”

die is enough to ensure that the die will remain in place, even when the box is

inverted and mounted upside down at the bottom of the cryostat. In addition,

this number of bonds has been found to be sufficient for heatsinking in the typical

experiments we perform. Even so, we typically use more bonds for redundancy

and to minimize the crosstalk between the control lines for the various qubits by

achieving good grounding at microwave frequencies.

An important component of the box is the design of the microwave feed lines.

In previous sample mounts, a PCB structure was used with integrated transmis-

sion lines for the control channels, but the PCB surface from which bonds were

made to the chip proved to be fragile and unreliable, and the entire design was

replaced with a monolithic aluminum box with coaxial feed lines. The first ver-

sion of such a box used thin coaxial cables threaded through holes in the box as

feed lines, which has the advantage that they are nicely matched to 50 Ω, but the
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Figure 2.5: Qubit sample mounting box.

PCB traces

wire bonds

Figure 2.6: Closeup of die mounted in the sample box.
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disadvantage that wirebonds must be made from the round central conductor of

the coaxial cable to pads on the chip, a process that proved to be difficult and

unreliable. Our solution was to replace the coaxial feeds with narrow strips of

PCB material. A trace is milled into the upper surface of the copper with the

thickness chosen to match the line to 50 Ω as determined by time-domain reflec-

tometry (TDR) measurements. These PCB strips are soldered to SMA connectors

and then inserted into the feed cavities, forming a well-matched 50 Ω feed. Inside

the box, the end of the PCB strip protrudes into the central cavity and rests flat

on the ledge surrounding the die, forming a flat, rigid surface that can be readily

bonded to in order to connect the control lines to the die, as seen in Figure 2.6.

As part of the design process for the mounting box, we modelled the crosstalk

between neighboring microwave control lines both theoretically and using a PCB

scale model. This study showed that the box design should work and have ac-

ceptably low crosstalk between neighboring microwave control; with 8 wirebonds

between neighboring lines the crosstalk is about −40 dB. In the next section we

describe the details of the theoretical and experimental models for those inter-

ested.
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2.3.1 Modelling Microwave Crosstalk

When a qubit chip is placed in the sample box, there will be a gap between the chip

ground plane and the box ground plane that runs around the edge of the chip. This

gap can function as a waveguide to transmit signals from one microwave lead to

neighboring leads, causing crosstalk. We model this theoretically by considering

the wire bonds from the box to the die as inductive shunts between the two

ground planes; this ladder of inductors will strongly attenuate any signals that

try to propagate along the gap. In addition to the inductive shunts, however,

the geometric configuration of the two grounds adds a stray parallel capacitance

per unit length. This additional capacitance creates resonances in the circuit,

which can produce high transmission around the edge of the die on resonance,

resulting in potentially large crosstalk. To reduce the effect of these resonances,

we would like to push them to high frequency, which can be done by reducing

the stray capacitance per wire bond. This can be achieved by packing the bonds

more closely, however if neighboring bonds are too close the direct capacitance

between them can kill any gains achieved by reducing the spacing; hence a certain

optimum bond spacing is desired.

The model of the interface between the die and box is shown in Figure 2.7. The

die has some inductance per unit length ` along its edge and wirebonds to ground

are spaced by distance d, so that the edge inductance between wirebonds is L = `d.
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Each wirebond has inductance LW , which we estimate to be LW = (1 nH/mm)×g,

where g is the gap between ground and chip. This arrangement leads to a chain

of inductor dividers along the interface. Solving for the ratio between voltages at

adjacent nodes of the chain, we find

V1

V0

=

(
1 +

1

2

L

LW

(
1 +

√
1 + 4

LW
L

))−1

. (2.1)

As the inductance ratio L/LW is increased, the voltage along the edge will be more

quickly suppressed. This implies that we should reduce LW as much as possible by

keeping wirebonds short. The voltage ratio between widely spaced points will be

given by a geometric sequence: Vn/V0 = (V1/V0)n. Note that while increasing the

distance d between bonds increases L/LW and thus reduces V1/V0, it also reduces

the number of bonds n between any two points, and it is this exponent that is

most important in giving strong attenuation of the voltage. Table 2.1 gives the

predicted attenuation for various inductance ratios and number of bonds.

In addition to the inductances, we must also take into account the capacitance

per unit length c between the chip and box in the space between neighboring

wirebonds. This chip-to-box capacitance C = cd is parallel to the inductance of

the wirebonds themselves and creates a resonance at frequency ωres = 1/
√
LWC.

Below this frequency, the wirebond inductances attenuate the signal as described

above, but above this frequency the capacitive impedance begins to dominate, and

the circuit behaves like a transmission line, propagating signals along the interface
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Figure 2.7: Transmission line model of gap between mounting box and sample
die.

L/LW
Attenuation (dB/bond)

n = 1 n = 5 n = 9 n = 14
0.1 2.74 13.7 24.6 38.3
0.2 3.85 19.3 34.7 53.9
0.3 4.70 23.5 42.3 65.8
0.4 5.41 27.0 48.7 75.7
0.5 6.02 30.1 54.2 84.3
0.6 6.57 32.9 59.1 92.0
0.7 7.07 35.4 63.6 99.0
0.8 7.53 37.7 67.8 105.4
0.9 7.96 39.8 71.6 111.4
1.0 8.36 41.8 75.2 117.0

Table 2.1: Predicted attenuation in wirebond model.
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Figure 2.8: Spice simulation of transmission line model.

with little attenuation.

We simulated this circuit with SPICE for various numbers of bonds and ratios

of inductance and capacitance and found that these simulations generally con-

firmed the semiquantitative predictions of the simple model, namely that there

would be strong transmission above ωres = 1/
√
LWC and that increasing num-

bers of bonds would attenuate more strongly at frequencies below the resonance.

Figure 2.8 shows a typical simulation result, this one corresponding to model C

in Table 2.2. The solid traces include the capacitance, while the dashed traces

omit it. The colors are for different numbers of bonds: 5 (red), 10 (blue), 15

(purple) and 20 (green). As predicted, we see greater attenuation for higher bond

numbers and L/R rolloff at low frequency, both with and without capacitance.

When the capacitance is added (solid traces) we also see high transmission above

the resonant frequency.
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Figure 2.9: Spice simulation of transmission line model with nonuniformity.

We also used SPICE to simulate the effect of non-uniformity in the induc-

tor ladder. Figure 2.9 shows simulation results with the same parameters as in

Figure 2.8 with 20 bonds, but with one bond halfway down the line modified to

simulate nonuniformity. The green trace is the same in the previous figure for

reference; for the red trace both L and C are increased by a factor of 10 to sim-

ulate a large space between bonds; for the blue trace the capacitance C alone is

increased to simulate localized excess capacitance with no gap in the bonds; finally

for the purple trace the inductance LW is increased by a factor of 10 to simulate

a single long bond. Surprisingly, we find that the lower-frequency resonance at

this one intermediate location can allow signals to propagate strongly through the

entire circuit, but only in the cases where the capacitance is increased. When

the inductance alone is increased (purple trace), no additional low-frequency peak

is observed. Hence the crosstalk performance is much more sensitive to spaces

40



between bonds and extra capacitance than it is to nonuniformity in the bonds

lengths. However, note that even with a factor of 10 in nonuniformity, the reso-

nance frequency is only reduced by a factor of ∼ 2, which can still be kept safely

above the qubit frequency.

To test this transmission line model experimentally, we created 10× scale

models of the chip-box assembly with variations of several geometric parameters,

as shown in Figure 2.10. Each model has three microwave ports which allow us

to measure transmission at 0.5, 0.9 and 1.4 inches along the gap. The signal lines

at each port are connected to the chip with a 50 Ω resistor soldered across the

gap. The front view shows variations in the wirebond length and spacing, while

the back view shows variations in the overlap which creates different amounts

of capacitance between chip and ground. In D, for example, the lighter colored

region around the edge is the gap between chip and ground on the other side of

the board; due to this negative overlap, D has the smallest capacitance per unit

length.

The physical distances in the model are g, the gap between the ground plane

and chip (the length of the bonds); d, the spacing between bonds; and v, the

overlap or distance that the ground plane on the back of the board extends under-

neath the chip on the top. Here larger v (more overlap) leads to more capacitance.

For each model geometry, we calculated the inductance and capacitance per unit
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backfront

2.5”

Figure 2.10: Scale model of the wire-bond chip mount.

length along the chip-box interface using the COMSOL multiphysics package3.

The capacitance per unit length is easy to calculate directly with COMSOL, and

from this we can also get the inductance per unit length by repeating the capaci-

tance calculation with all relative dielectric constants set to unity[22]. Table 2.2

lists parameters for all models A-H, as well as the capacitances and inductances

calculated with COMSOL. In addition, it shows the L/LW ratio and the predicted

resonant frequency 1/
√
LWC for each configuration.

For each of the model structures, we used a vector network analyser to measure

transmission between various points along the die edge separated by different

numbers of bonds. The resulting traces are shown in Figure 2.11. The data show

reasonable qualitative agreement with the predictions of the model: we see the

3http://www.comsol.com/
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g d v c ` L LW C L/LW fres
(in) (in) (in) (fF/mm) (nH/mm) (nH) (nH) (fF) (GHz)

A 0.1 0.1 0.0 55.9 0.43 1.09 2.54 142 0.43 8.38
B 0.1 0.1 0.1 114.6 0.29 0.74 2.54 291 0.29 5.85
C 0.1 0.1 0.2 174.9 0.22 0.56 2.54 444 0.22 4.74
D 0.1 0.1 -0.1 32.4 0.58 1.47 2.54 82 0.58 11.0
E 0.1 0.2 0.1 114.6 0.29 1.47 2.54 582 0.58 4.14
F 0.05 0.1 0.1 117.2 0.28 0.71 1.27 298 0.56 8.18
G 0.2 0.1 0.1 114.0 0.30 0.76 5.08 290 0.15 4.15
H 0.1 0.05 0.1 114.6 0.29 0.74 2.54 145 0.15 8.28

Table 2.2: Model parameters for chip mount scale model.

inductive rolloff at very low frequency, resonant transmission at frequencies above

several GHz, and increased attenuation with increasing bond number when other

parameters are kept constant. The vertical lines indicate the predicted resonance

frequency fres as given in Table 2.2, again showing reasonable agreement. Note

that the FR-4 material of the model does not perform well at high frequencies, so

the measurement is expected to break down above several GHz, which is why no

resonance is visible on device D, for example.

These experimental results give us confidence that our simple model reproduces

the essential physics of crosstalk in the mounting box, so that we can use it to

predict the crosstalk levels for the actual geometry of a die mounted in the sample

box. We use COMSOL to calculate the inductance and capacitance per unit length

for the actual box geometry, where we have a gap between the box edge and the

chip ground plane of 200µm ≈ 8 mil and a bond length of 400µm. With 20 bonds
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Figure 2.11: Transmission measurements of wirebond model.
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per cm, we find fres = 43 GHz and L/LW = 0.37 for an attenuation of 5.2 dB per

bond, or 104 dB/cm. In experiments, we use roughly 8 bonds between microwave

leads, for an expected attenuation of ∼ 40 dB. This is adequate for our purposes,

although one could use even shorter bonds and tighter spacing to achieve even

better isolation if needed.
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Chapter 3

From Quantum Circuit to

Experimental Control

In this chapter we consider the following problem: how do we take an abstract

description of a quantum operation and turn this into the currents and voltages

that will be applied to our device to implement that quantum operation? An

important part of this process is the calibration of the operating parameters of

the individual qubits, such as for reset and readout. The procedure for single-

qubit calibration has been described in detail previously[2, chap. 8]; here we will

focus on a different aspect of the process, namely how to translate sequences of

gates—as required for more complicated algorithms—into experimental control

signals.
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Of particular importance in this process is the concept of a rotating frame. We

will discuss how to manipulate individual qubits in particular frames and how to

keep track of rotating frames when qubits are subject to time-dependent detun-

ings. Essentially this reduces to keeping track of the phases accumulated as qubits

are detuned, and synchronizing the various frames defined by different frequencies.

Even at the level of the simple three-qubit experiments we have performed, these

phase accumulation and frame synchronization issues are important for properly

constructing the qubit control sequences; as the number of qubits increases and

the algorithms become more complicated, understanding this translation process

becomes more important still.

3.1 Single-qubit Control

Let us start with the problem of controlling a single qubit. In the basis of energy

eigenstates, the bare qubit Hamiltonian is extremely simple:

H0 =

(
0
~ω10

)
(3.1)

where we have assumed without loss of generality that the ground state energy

is zero. In terms of time evolution, a system that starts in the ground state

remains stationary, while a system that starts in the excited state acquires a

time-dependent phase due to the energy difference: |1(t)〉 = e−iω10t |1〉.
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In addition to this bare Hamiltonian, we have a set of control parameters that

can be used to control the state evolution by applying time-dependent signals. In

the case of our phase qubits, we can tilt the barrier by applying a flux bias, which

changes the energy spacing of the qubit states and hence couples to the Z term

in the Hamiltonian, and we can also apply microwaves either through a coupling

capacitor, in which case we couple to Y , or through a flux coil, in which case we

couple to X. It will turn out that these last two give the same results in the end,

so let us assume we couple to X such that our time-dependent Hamiltonian with

control signals is

H = H0 +Hc =

(
0
~ω10

)
+ ~

(
0 ε(t)
ε(t) δ(t)

)
= ~

(
0 ε(t)
ε(t) ω10 + δ(t)

)
(3.2)

where ε(t) is the applied X control signal and δ(t) is the applied Z control signal.

An important experimental issue is the calibration of these signals, determining for

example exactly how an applied voltage V (t) relates to the detuning δ(t). These

calibrations have been described previously[2, chap. 8] so we will here assume

that this has been done, and simply work with ε(t) and δ(t).

It seems rather inconvenient to be working in a basis in which a system starting

in an eigenstate will evolve in time, even when no control signals are applied.

Instead, we might like to change to a basis where a system starting in an eigenstate

will be stationary under the bare Hamiltonian, and only change due to our applied
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control signals. This is similar to the “Interaction Picture” often used in quantum

mechanics, though for our purposes we will instead think of this as transforming

to a rotating frame. The reasoning is simple: we want to take the “rotating” state

|1′〉 = e−iω10t |1〉 to be our basis state.

This basis transformation is a special case of a more general basis transfor-

mation that is easy to derive. We start with the standard Schrödinger equation,

expressed in terms of the action on some set of basis states |n〉, namely

−i~ d
dt
|n〉 = H(t) |n〉 . (3.3)

Now, suppose we wish to change to a new basis that is related to the old basis

by an arbitrary and possibly time-varying unitary transformation |n′〉 = V (t) |n〉.

Multiplying by the inverse matrix V −1(t) = V †(t) and substituting into (3.3) gives

−i~ d
dt
V †(t) |n′〉 = H(t)V †(t) |n′〉 . (3.4)

Using the chain rule to evaluate the derivative on the left and then collecting

terms, we obtain

−i~V †(t) d
dt
|n′〉 =

(
H(t)V †(t) + i~V̇ †(t)

)
|n′〉 . (3.5)

Finally, by multiplying on the left by the transformation matrix V (t) we obtain

−i~ d
dt
|n′〉 =

(
V (t)H(t)V †(t) + i~V (t)V̇ †(t)

)
|n′〉 . (3.6)

This result has the same form as the original Schrödinger equation, but now with
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a new Hamiltonian given by

H ′ = V HV † + i~V V̇ † (3.7)

where for clarity the time-dependence is left implicit.

The desired transformation to the single-qubit rotating frame can now be found

using a simple application of this general result. The transformation matrix is

V (t) =

(
1

e−iω10t

)
(3.8)

and the new Hamiltonian in the rotating frame |0′〉, |1′〉 = e−iω10t |1〉 is

H ′ = V H0V
† + V HcV

† + i~V V̇ †

=

(
0
~ω10

)
+ ~

(
0 ε(t)eiω10t

ε(t)e−iω10t δ(t)

)
−
(

0
~ω10

)
= ~

(
0 ε(t)eiω10t

ε(t)e−iω10t δ(t)

)
. (3.9)

Note that H0 has completely disappeared, and all we are left with is the control

terms; the rotating frame has effectively zeroed out all the bare energies, so that

the eigenstates are indeed stationary, as desired.

What is the effect of turning on detuning for some time? Suppose we apply a

signal δ(t) between times t0 and t1. We can readily compute that the state of the

system will undergo a unitary transformation given by

U =

(
1

ei
∫ t1
t0
δ(t)dt

)
=

(
1

e−iθ

)
(3.10)

where θ = −
∫ t1
t0
δ(t)dt. This is just the unitary matrix for rotation about the Z
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axis of the Bloch sphere. Note: positive detuning is a rotation by a negative angle

about Z, and vice-versa. This is due to our Bloch sphere convention in which |1〉

is at the south pole.

Now we consider the effect on the state of the off-diagonal terms controlled

by ε(t). As we can see in Equation 3.9, there is a factor eiω10t multiplying these

terms, causing them to rotate. To counter this, we will use a control signal that

itself rotates in the opposite direction. Let us take

ε(t) = εx(t) cos(−ω10t) + εy(t) sin(−ω10t) = εx(t) cosω10t− εy(t) sinω10t. (3.11)

From this we calculate that the terms appearing in the Hamiltonian H ′ are

ε(t)eiω10t =
1

2
εx(t)(1 + e2iω10t)− i1

2
εy(t)(1− e2iω10t) (3.12)

ε(t)e−iω10t =
1

2
εx(t)(1 + e−2iω10t) + i

1

2
εy(t)(1− e−2iω10t). (3.13)

Until this point, everything we have done has been exact, but now we make a com-

mon approximation known as the Rotating Wave Approximation (RWA) by drop-

ping the terms oscillating at 2ω10. What justifies us in making this approximation?

Consider that the antiderivative of ε cos(2ω10t) is equal to (ε/2ω10) sin(2ω10t).

This will be small as long as ε � 2ω10, which means that the dynamics caused

by our applied control signal ε should be much slower than the dynamical time

scale of the energy difference ω10. In typical experiments the energy difference is
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ω10 ∼ 2π · 6 GHz while rotations due to applied control signals take on the order

of 10 ns so that ε ∼ 2π · 100 MHz. Hence the dynamical effect of the ‘counter-

rotating’ terms at frequencies ±2ω10 will indeed be small, and can be ignored. Let

us reiterate: the transformation to a rotating frame is exact; the rotating wave

approximation is an approximation that assumes the dynamics due to applied

controlled signals are slow compared to the characteristic dynamical timescale set

by the energy spacing.

Having made the RWA, the Hamiltonian in the rotating frame becomes

H ′ = ~
(

0 1
2
(εx(t)− iεy(t))

1
2
(εx(t) + iεy(t)) δ(t)

)
(3.14)

which means that we have complete control over the qubit Bloch sphere with

the capability to rotate about any axis, even though in the original frame of the

qubit we only assumed control terms that couple to Z and X. By moving to the

rotating frame where X and Y get mixed together, we can adjust the phase of

the time-dependent ε(t) control to allow rotations about both axes.

In fact this is also the reason why our qubit-qubit coupling is (~g/2)(XX+Y Y )

as we specified above in §2.2. The actual term in the Hamiltonian is the energy

of the coupling capacitor which gives a charge-charge or Y Y coupling. When we

go into the rotating frame of the two qubits, and then make the RWA to cancel

counter-rotating terms this coupling term becomes (~g/2)(XX + Y Y ). Just as

in the single-qubit case, the RWA is a valid approximation because the coupling
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strength g is small g � ω10, so that the coupling dynamics are much slower than

the qubit frequency and the counter-rotating terms have little effect.

An alternate and often more convenient way to think about the transverse

control signal ε(t) is to consider a complex control signal ε′(t) ≡ εx(t) + iεy(t)

with which we can write ε(t) = Re(ε′(t)e−iω10t). When ε′(t) is real, this produces

rotations around the X axis of the Bloch sphere, when it is imaginary it produces

rotations about the Y axis, and by adjusting the phase we can produce rotations

about any axis in the X-Y plane of the Bloch sphere. Note that because X and Y

are mixed together, there is an overall degree of freedom here that lets us choose

the absolute phase reference arbitrarily. Picking a phase reference defines our

convention for the X axis, and after the choice is made only the relative phase

between X and Y or other axes matters.

Given all this, the procedure for generating a sequence of single-qubit gates

is straightforward. We simply consider each gate as a rotation by some angle α

about a vector direction r = (rx, ry, rz) in terms of the Bloch sphere, and then

for each gate we apply control signals ε and δ such that the vector (εx, εy,−δ) is

parallel to the rotation axis r and such that the length integrates to the desired

rotation angle
∫ t1
t0

√
ε2x + ε2y + δ2dt = α. Before applying the signals to the qubit,

we multiply ε′ = εx+ iεy by e−iω10t and take the real part to get the actual applied

signal, which is done in experiments simply by using an IQ mixer.
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3.2 Dealing With Detuning

In the previous section we considered control of a single qubit with one rotating

frame of reference given by the qubit frequency ω10. We allowed the system to be

detuned away from that reference frame, but only for the purposes of performing

Z-rotations. After a Z-rotation we always came back to the original frame, and the

fact that the qubit state had rotated was the desired effect. Sometimes however,

we want to detune a qubit not to perform a Z rotation, but rather to couple it with

another qubit or to move it out of the way so that it does not couple with another

qubit. In these cases, we must keep track of the resulting unwanted Z-rotations

and correct them, either in “hardware” by applying compensating pulses, or in

“software” by modifying our subsequent definition of the frame.

In order to know what to correct, we could measure the phase accumulated by

the qubit during such a detuning pulse, as shown in Figure 3.1. The measurement

is simply a Ramsey fringe experiment where we apply π/2 rotations before and

after the detuning pulse and vary the axis of rotation of the second pulse by

changing the phase of ε′. This axis of rotation is relative to the fixed frame of

reference at the original qubit frequency, but the qubit itself has rotated because

it has been detuned. The position of the fringe maximum tells us the rotation

angle picked up during the detuning pulse. Instead of measuring the phase angle

we could of course calculate it as ∆θ = −
∫ t1
t0
δ(t)dt as we have seen above, and
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Figure 3.1: Measuring phase accumulated by a detuning pulse.

indeed for more complex sequence construction it will be useful to automate these

corrections rather than measuring them for each detuning pulse.

The two techniques for correcting this phase are shown in Figure 3.2. On

the left, we have the “hardware” correction, where the pulse shape is modified to

produce a net rotation angle that is an integral multiple of 2π and can thus be

ignored. Any subsequent pulses will then be programmed in the expected way

in the qubit frame. On the other hand we can perform a “software” correction

where we simply modify the way subsequent pulses are programmed, offsetting

their phase by the angle ∆θ, as shown on the right. This results in shorter

sequences in terms of time, but at the cost of extra bookkeeping, since the phase

corrections must be propagated to all subsequent pulses, and later detuning pulses

will add additional corrections, etc. The choice of which correction to choose will

thus depend on other factors having to do with the larger sequence of operations

of which this one step is a part.

These two corrections really are equivalent; in one case we actually rotate
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θ0 θ1

ε’ ~ exp(iθ0)

θ0 θ1

ε’ ~ exp(iθ0) ε’ ~ exp(iθ1 + i∆θ)ε’ ~ exp(iθ1)

∫δ(t)dt = 2nπ

Figure 3.2: Correcting the phase accumulated by a detuning pulse.

the qubit by adding an additional Z-pulse while in the other case we rotate our

reference frame to match the qubit by changing the phase of the control signals. It

is useful to remember these two complementary approaches and to consider both

when implementing complex pulse sequences, so that the most convenient choice

can be made in any particular case.

3.3 Multiple Frames of Reference

In addition to the corrections that must be applied to a single qubit when detuned,

as described in the previous section, we must sometimes deal with the problem of

synchronizing multiple frames at different frequencies. Suppose we have a qubit

that starts at frequency ω10, and we apply various pulses in that frame, always

multiplying the control parameter by e−iω10t. At some point in the sequence, the

bias is changed to move the qubit to a new frequency ω′10, and we wish to apply

gates to it in this new frame. The problem here is to know what phase to use in

order to get a particular qubit rotation, say about X, in this new frame.
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θω10

θ’ω’10

ε ~ exp(iθ) × exp(-iω10t)

t = 0 t = τ

ε’ ~ exp(iθ’) × exp(-iω’10t)

θω10

θ’ω’10

ε ~ exp(iθ) × exp(-iω10t)

∆θ = - (ω10 - ω’10) τ

t = 0 t = τ

ε’ ~ exp(iθ’ + i∆θ) × exp(-iω’10t)

∫δ(t)dt = 2nπ

Figure 3.3: Synchronizing two different rotating frames.

In order to solve this, we must have a common time reference for both frames

so that we can define a common point t = 0. From the point of view of the ω′10

frame, the qubit has just been detuned by δ = ω10−ω′10 from time t = 0 until the

time τ at which the qubit is brought into the new frame. This detuning can be

measured with a Ramsey fringe as described above, and then corrected via either

of the two methods just described, using an actual rotation with an extra Z-pulse,

or adjusting the phase of subsequent pulses to account for the detuning. The shift

between reference frames and the two techniques for synchronizing the frames are

illustrated in Figure 3.3.

We mentioned that this technique requires a global time reference so that we

can define t = 0 in the two frames at frequencies ω10 and ω′10. In our experiments

all signal generators share a common clock, so that at the signal generators there

is a common time reference. In the case we are considering here, where we have

one qubit that is being moved between two reference frames, the control signals
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at both frequencies will be produced by one generator via sideband mixing and

travel down a single coaxial cable to the qubit, so that the time reference will be

the same at the qubit as well.

In other cases however, we may need to synchronize two frames between dif-

ferent qubits, where the signals are produced by different generators or sent to

the device in different coaxial cables, so that the path lengths will not be the

same, and the common clock at the generators will not be synchronized at the

qubits. A technique for calibrating the timing between two qubits when they are

on resonance and so at the same frequency has been discussed before[2, p. 213].

This allows to set a common t = 0 between the qubits, and then the technique we

have just described above can be used to achieve the necessary synchronization

when the two qubits are in different frames and only brought into resonance and

synchronized at some time τ .

The correction pulse on the left in Figure 3.3 is reminiscent of the “over-

shoots” that are added to detuning pulses to improve the fidelity of the iSWAP

interaction[14], but these two things are very different. The correction pulse in

the figure is simply a way to adjust the total integrated detuning for the qubit to

be an integral multiple of 2π, and any modification of the curve δ(t) that makes

this the case will do. For example this could be done by not changing the shape at

all but rather simply adjusting the time τ , or by adding a correction pulse on the
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ω10 side, before the transition to the ω′10 frame. The overshoots added to coupling

pulses are instead used to correct for the fact that the coupling interaction is not

purely on or off, but turns on gradually as the qubits are brought into resonance.

3.4 Higher Qubit Levels

As was discussed in Chapter 2, the phase qubit is not purely a two-level system.

Rather, it has several energy levels in the well, but with enough anharmonicity

so that it can be treated as an effective two-level system. Typically we need only

consider the next higher excited state |2〉, and any transitions into this state

are taken as leakage errors. Various techniques can be used to prevent such

errors, the simplest of which is to simply limit the magnitude of control signals

so that the dynamics due to driving are slower than the nonlinearity ∆ ≡ ω21 −

ω10. More advanced pulse-shaping techniques such as Derivative Reduction by

Adiabatic Gates (DRAG) can also be used[25], allowing for faster pulses while

still minimizing leakage.

The qudit Hamiltonian is a simple extension of what we saw above for a qubit.

The bare Hamiltonian is

H0 =

 0
~ω10

2~ω10 + ~∆

 (3.15)

and when we move to a rotating frame defined by |0′〉 = |0〉, |1′〉 = e−iω10t |1〉 and
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|2′〉 = e−2iω10t |2〉 this becomes

H ′0 =

 0
0
~∆

 . (3.16)

We still couple to the system through the X operator which is now a 3×3 matrix

as well. In the case of a purely harmonic system, the X matrix can be easily

derived from the raising and lowering operators, and is given by the tridiagonal

matrix

XSHO =

 0 1

1 0
√

2√
2 0

 . (3.17)

In the weakly-anharmonic qudit case, the matrix elements can all be worked out

in various ways, for example using perturbation theory starting from the harmonic

oscillator and adding a cubic term[35], or by direct numerical diagonalization of the

qubit potential[2, chap. 3]. The upshot of either exercise is that one finds matrices

that have essentially the same tridiagonal form as for the harmonic oscillator,

although with somewhat different numerical values for the various coefficients.

The matrix elements for the other diagonals, connecting states |n〉 and |n± k〉

where k ≥ 2 are very small; for typical phase qubit nonlinearities these are down

by a factor of 20 for k = 2 and even further reduced for larger k. For our purposes

these terms are completely negligible, and the interaction term has the form

Xqudit =

 0 1
1 0 λ2

λ2 0

 (3.18)
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where the λk matrix elements can be calculated, or just measured experimentally1.

In addition, of course, we also have the usual Z control by which we can adjust

the qudit frequency. For small detunings, we can make the assumption that the

nonlinearity ∆ is constant.

In the rotating frame, the control Hamiltonian is given by

H ′ = ~ε(t)X + ~δ(t)Z = ~

 0 ε(t)eiω10t

ε(t)e−iω10t δ(t) λ2ε(t)e
iω10t

λ2ε(t)e
−iω10t 2δ(t) + ∆

 . (3.19)

If we make the same choice for the time-dependent control as we did in the

single-qubit case, namely ε(t) = Re(ε′(t)e−iω10t), then this Hamiltonian becomes

H ′ = ~

 0 ε′∗

ε′ δ λ2ε
′∗

λ2ε
′ 2δ + ∆

 (3.20)

where we have made the RWA by dropping counter-rotating terms and where

we have left the time-dependence implicit. Clearly, whenever we attempt to drive

transitions between |0〉 and |1〉, we will also be driving transitions between |1〉 and

|2〉, however the nonlinearity ∆ means that our drive at frequency ω10 is detuned

from this transition, so that as long as the drive is sufficiently weak the leakage will

be small. Pulse shaping through DRAG improves on this, as mentioned above.

Instead of considering the states |2〉 and higher as potential source of er-

1This form of the X matrix can be understood as being due to approximate selection rules
that prohibit first-order transitions between widely separated energy states of the system. For
the Harmonic oscillator such selection rules are exact, while for our weakly anharmonic oscillator,
these selection rules are reasonably good approximations.
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ror through leakage, we can use the entire set of multiple levels as a quantum

system and intentionally drive transitions between the various levels[28]. This

is essentially equivalent to working in a rotating frame defined by |0′〉 = |0〉,

|1′〉 = e−iω10t |1〉 and |2′〉 = e−i(ω21+ω10)t |2〉. We drive the system at both tran-

sition frequencies ω10 and ω21 simultaneously by using a control signal ε(t) =

Re(ε10(t)e−iω10t+ε21(t)e−iω21t). As this qudit is detuned, we can regard the frames

defined by the 0 → 1 detuning δ(t) and the 1 → 2 detuning δ(t) + ∆ as two

separate frames, and use the various techniques outlined above for building pulse

sequences that address each of these transitions when detunings are present.

In the experiments presented here, we used DRAG pulses to minimize leakage

to higher qubit levels, but did not otherwise utilize the higher excited levels of the

phase qubits. As we will see in Chapter 8 however, these higher levels also play a

role in causing errors when we have a system of coupled qubits.
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Chapter 4

Three-Qubit Entanglement

Entanglement is usually defined by what it is not: an entangled state is not a

product state. A product state of course is one in which each part of a com-

posite system is in a well-defined state, and the overall system is just a trivial

combination—a “tensor product”—of these components. Such a definition is not

particularly enlightening, however, so we will try to unpack this notion a bit in

the following sections. We will first consider bipartite entanglement between two

qubits, where the theory is very well understood. Next, we will proceed to the

case of interest in this thesis, namely that of tripartite entanglement between

three qubits, where the story is richer and more interesting than the two-qubit

case. Already at the level of three qubits, the theory of entanglement is less well

understood, particularly for the experimentally-relevant case of mixed states.
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4.1 Just the Two of Us

The idea of entanglement is best illustrated and understood in the context of two

qubits. The paradigmatic two-qubit entangled states are the so-called Bell states,

named after the British physicist John Bell who first described the nonclassical

nature of the correlations that arise when measuring these entangled states[4]. Up

to normalization, the four Bell states are |Φ±〉 ≡ |00〉±|11〉 and |Ψ±〉 ≡ |01〉±|10〉.

How can we tell that these states are entangled? Consider the first Bell state

|Φ+〉 = |00〉+ |11〉. Let us try to write this as a product state (α |0〉+β |1〉)(γ |0〉+

δ |1〉) = αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉. Because the coefficients of |00〉 and

|11〉 are nonzero, we have the condition that none of the complex coefficients in

the product states can be zero: |α| 6= 0, |β| 6= 0, |γ| 6= 0 and |δ| 6= 0. On the

other hand, because the coefficient of |01〉 is zero in the Bell state, we must have

either |α| = 0 or |δ| = 0, a clear contradiction. This proves that |Φ+〉 cannot be

expressed as a product state, and so must be an entangled state.

While an explicit proof of entanglement was not difficult in this simple case, it

is nevertheless rather tedious. Much more general techniques have been developed

to show that various arbitrary states are entangled, and indeed to quantify this

entanglement. At first glance it may seem strange to try to quantify entanglement.

Note however that the four Bell states mentioned above can be converted into

each other by applying “local” rotations (or changes of basis) to the individual
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qubits. For example, if we apply a Z-rotation to one qubit so that |0〉 → |0〉 and

|1〉 → − |1〉, then we can convert |Φ+〉 into |Φ−〉. In this sense the Bell states are

interchangeable; modulo Local Operations and Classical Communication (LOCC)

they each contain the same amount of entanglement.

For two qubits there is only one type of entanglement, as any other maximally-

entangled state is also local-unitary equivalent to a Bell State. Various entangle-

ment monotones have been presented that actually measure this entanglement[38].

An entanglement monotone is a function that takes as input a density matrix ρ

and outputs a number between 0 and 1. The output is 0 for product states, 1 for

maximally-entangled states such as the Bell states, and takes intermediate values

for other states that are only partially entangled.

For experiments it is important that these entanglement monotones can be

calculated for general density matrices, not just for pure states, because of course

experimentally-measured states are always partially mixed states due to deco-

herence. In general we can take any entanglement measure defined on pure

states and extend it to arbitrary density matrices using the so-called “convex-

roof” extension[30]. To do this for an entanglement monotone e defined on pure

states, we define e(ρ) = min
∑
pie(|ψi〉) where the minimization is taken over all

possible pure-state decompositions of the original state ρ =
∑
pi |ψi〉 〈ψi|. Clearly

this is a tricky procedure to perform explicitly, as we must search over all possible
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decompositions, a difficult thing to parametrize let alone actually carry out. For-

tunately, explicit formulas for various entanglement monotones have been worked

out, so that this explicit procedure is generally not necessary in the two-qubit

case.

A famous consequence of this bipartite entanglement is the famous “paradox”

put forward by Einstein, Podolsky and Rosen in 1935, in an attempt to show

that quantum mechanics was incomplete. In 1964 Bell analysed this thought ex-

periment and derived inequalities that would be satisfied by the classical hidden-

variable models proposed by EPR, but could be violated in quantum mechanics.

Such violations have since been observed in many systems, providing some of the

most convincing evidence of the reality of quantum mechanics. Recently, viola-

tions of Bell’s inequality have been observed in superconducting phase qubits[3],

proving that these macroscopic circuits do indeed behave quantum mechanically.

4.2 Three’s a Crowd

As soon as we move from two qubits to three, the physics of entanglement becomes

richer and more complicated. In particular, it has been shown that there are two

different types of three-qubit entangled states, which unlike the Bell states are not

local-unitary equivalent to each other. These two prototypical entangled states

are |GHZ〉 = (|000〉 + |111〉)/
√

2, named for Greenberger, Horne and Zeilinger,
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who first described the nonclassical correlations of this state[13], and the state

|W〉 = (|001〉+ |010〉+ |100〉)/
√

3 also known as the Werner state after R. Werner,

who has explored families of related states[39]. Dür, Vidal and Cirac have shown

that any truly three-qubit state can be converted to one or the other of these

two via local operations and classical communication, making this an exhaustive

classification of the types of three-qubit entanglement[9].

One way to understand the difference between these two states is to consider

what happens when one of the three qubits is lost from the state, or rather, in the

case of superconducting circuits, where one qubit is simply ignored. Mathemat-

ically, losing or ignoring one qubit is equivalent to performing a “partial trace”

over that qubit[29]. Suppose we label the three qubits as A, B and C and then

trace over qubit C. The reduced density matrix for qubits A and B is written as

ρAB ≡ TrC(ρABC). The partial trace operator TrC is a linear operator defined by

its action on eigenvectors:

TrC(|a1b1〉 〈a2b2| ⊗ |c1〉 〈c2|) = |a1b1〉 〈a2b2|Tr(|c1〉 〈c2|) (4.1)

= |a1b1〉 〈a2b2| · 〈c2|c1〉 (4.2)

where the |aibi〉 are arbitrary eigenvectors in the subspace of qubits A and B and

where the |ci〉 are arbitrary eigenvectors in the subspace of qubit C. This definition

gives a very simple rule for calculating the partial trace for pure states, we simply

write out the state as a density matrix with terms of the form |a1b1c1〉 〈a2b2c2| and
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then cross out all those terms for which c1 6= c2, since in that case 〈c2|c1〉 = 0.

Following this simple rule, we find the reduced density matrices after tracing

out one qubit for |GHZ〉:

ρABGHZ =
1

2
(|00〉 〈00|+ |11〉 〈11|) (4.3)

=
1

2


1

0
0

1

 (4.4)

and for |W〉:

ρABW =
1√
3

(|00〉 〈00|+ |01〉 〈01|+ |01〉 〈10|+ |10〉 〈01|+ |10〉 〈10|) (4.5)

=
1√
3


1

1 1
1 1

0

 . (4.6)

As can readily be calculated from these expressions, ρGHZ is a purely mixed

state, meaning that by tracing over one qubit the entanglement of the state is

completely destroyed. Hence the entanglement in the |GHZ〉 state is purely three-

qubit entanglement, and is fragile with respect to loss (or decoherence) in any one

of the qubits. On the other hand, ρABW is partially entangled, meaning that even

when one qubit is lost, some bipartite entanglement remains. The entanglement

in |W〉 is more robust in this regard. This clearly illustrates that these two states

represent different kinds of tripartite entanglement.
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4.2.1 Quantifying Three-Qubit Entanglement

Because there are two different types of three-qubit entanglement, the construction

of entanglement monotones for three qubits is somewhat more difficult than in the

two-qubit case. Some measures of three-qubit entanglement have been developed,

such as the three-tangle τ3[7], however these do not completely characterize the

entanglement. For example the |GHZ〉 state has τ3 = 1, but the |W〉 state is found

to have τ3 = 0, so this measure fails to identify the entangled |W〉-state as being

entangled.

Another difficulty with the three-tangle is that it is rather difficult to calculate

for mixed states such as are obtained from experimental data. Several works have

found analytic expressions for the three-tangle in particular cases of certain types

of mixed states[10], but no such expression for general mixed states is known.

We saw in §4.1 that the convex roof extension can be used to extend pure-state

entanglement measures such as the tangle to all mixed states. Unfortunately, cal-

culating it requires that one explicitly perform the minimization over all possible

pure-state decompositions. The difficulty of doing this numerically, even using

sophisticated approximation schemes[6], makes the three-tangle an inconvenient

measure to apply to experiments.
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4.2.2 Witness Operators

A different tool for understanding entanglement of three and more qubits is the

use of so-called “entanglement witnesses”. An entanglement witness is an operator

W which has the property that 〈W〉 = Tr(ρW) ≥ 0 for any separable state ρ, so

that Tr(ρW) < 0 implies that ρ is an entangled state. Note that Tr(ρW) < 0 is a

sufficient but not a necessary condition for identifying the state ρ as an entangled

state. In other words, any given entanglement witness operator W will identify

some but not all entangled states, and in general many different entanglement

witness operators exist.1

Some entanglement witnesses are designed to be easily-measurable, so that for

example one can identify entanglement without performing a complete reconstruc-

tion of the density matrix ρ, but instead performing a small set of measurements

to compute the witness operator 〈W〉 directly[36]. Measuring such witnesses can

be done very efficiently, but requires particular measurement operators that may

not always be available. For our purposes we are not concerned with efficiency,

rather with having a simple tool to determine whether a measured density matrix

is in fact an entangled state.

Another set of witness operators serves this purpose nicely. Witnesses can be

1We saw the same situation with the three-tangle, which identifies |GHZ〉 but fails to identify
|W〉 as an entangled state. The advantage of entanglement witnesses, however, is that they are
much easier to compute.
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constructed that have the formWψ = αI−|ψ〉 〈ψ| where |ψ〉 is a pure state and α

is an appropriately-chosen coefficient. We can then easily compute that 〈Wψ〉 =

α − 〈ψ| ρ |ψ〉 and the condition for witnessing entanglement becomes Fψ(ρ) ≡

〈ψ| ρ |ψ〉 > α where the quantity Fψ(ρ) is the fidelity of the state ρ compared to the

ideal state ψ. In practice the state ψ is typically a maximally-entangled state and

the coefficient α is a threshold for the maximum fidelity achieved by a separable

state, so that any state with higher fidelity must be entangled. Exactly why such

witness operators exist and how they can be constructed—in particular, how the

coefficient α is determined—is beyond the scope of the present discussion, but it

essentially comes down to the fact that product states form a convex set, and thus

there can exist hyperplanes defined by 〈ψ| ρ |ψ〉 = α such that all product states

lie on one side of the plane, so everything on the other side must be entangled.

For the three-qubit states of interest the relevant witnesses are[1]

WW =
2

3
− |W〉 〈W| (4.7)

WGHZ1 =
1

2
− |GHZ〉 〈GHZ| (4.8)

WGHZ2 =
3

4
− |GHZ〉 〈GHZ| . (4.9)

We have changed the names of these witnesses from those given in the reference

because our emphasis is slightly different. For our purposes, WW is a witness

that distinguishes |W〉-like states from separable states and likewise WGHZ1 is
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a witness that distinguishes |GHZ〉-like states from separable states. Recalling

from above that these witnesses are satisfied for fidelities greater than α, we see

that in order to prove entanglement we must have the experimental fidelities

FW = 〈W| ρW |W〉 > 2/3 and FGHZ ≡ 〈GHZ| ρGHZ |GHZ〉 > 1/2.

The final witness operatorWGHZ2 is a stronger condition that distinguishes the

class of |GHZ〉-like states from the class of |W〉-like states. Experimentally this

requires a fidelity FGHZ > 3/4 in order to make this separation. Remember though

that entanglement witnesses always give sufficient but not necessary conditions

for identifying and classifying entanglement. A different measure of the tripartite

entanglement that can also distinguish the |W〉- and |GHZ〉-like states is provided

by the Mermin-Bell inequality, which we discuss in the next section.

4.2.3 Classical versus Quantum Correlation

At the beginning of this chapter, we defined entanglement as the property of not

being expressible as a product state or a mixture of product states. A more oper-

ational way to classify quantum states is to consider the correlations in measure-

ments performed on these states; such measurements are after all the only way to

extract information about the state. Werner[39] considered the question of what

types of correlations can be reproduced by classical means, versus correlations

that are purely quantum. Once we have separated states into “classically corre-
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lated” and “quantum correlated”, we can then ask whether they can be explained

by hidden variable theories, of the type proposed by EPR and considered by Bell.

Not surprisingly, all classically correlated states admit hidden variable models.

Also not surprisingly, states that do not have hidden variable models (such as the

Bell states) are quantum correlated. Werner’s interesting result was to show that

some states are quantum correlated, but can nevertheless be explained by hidden

variable models.

It turns out that the two types of three-qubit entangled states differ from each

other in this regard. While both of them are entangled states and hence exhibit

“quantum correlations”, the |W〉 state can be explained by a hidden variable

model, while the |GHZ〉 state cannot. We saw above in Equation 4.8 that the

entanglement witness WGHZ1 could distinguish |GHZ〉-like states from separable

states, but could not distinguish them in general from |W〉-like states. The non-

classicality of the |GHZ〉-like states gives us another tool for distinguishing these

two classes.

The non-classicality of |GHZ〉 was first demonstrated by Greenberger, Horne

and Zeilinger, for whom the state is named[13]. Interestingly, they found that

with this state it would be possible to rule out hidden variable models with just

four measurements, rather than by taking many measurements and looking at cor-

relations among them, as with Bell’s Inequality. This leads to a “Bell Violation
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without Inequalities” in their words. Unfortunately, producing such a violation

would require an ideal pure state and perfect measurement fidelity, neither of

which are experimentally feasible. In practice we must still make many measure-

ments, calculate some correlations, and show that they violate an inequality to

achieve a violation.

The basic idea behind the GHZ proposal can be very easily understood. Sup-

pose we have three qubits in the state |000〉+ |111〉. We split these qubits up and

give them to three separate observers, whom we then instruct to make various

measurements. We assume that we have several identical copies of the state, so

that we can repeat this process as needed. The observers are instructed to make

the following measurements in four rounds of the experiment:

1. Each observer measures X.

2. Observer A measures X, B and C measure Y .

3. Observer B measures X, A and C measure Y .

4. Observer C measures X, A and B measure Y .

For the observables X and Y , the possible measurement outcomes for the various

observers are the eigenvalues ±1. In each round, we multiply together the results

of the three observers to obtain an overall correlation which itself is equal to ±1.
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Figure 4.1: Hidden variable model for GHZ measurement.

What is the expected outcome with a hidden variable theory? In this case,

once the qubits have been separated, the system must have decided what outcome

it will give for each possible choice of measurement on each qubit, as determined

by the hidden-variable state of the system. In Figure 4.1, we show some of the

possible assignments for measurement outcomes. On the left are the measurement

results for each qubit A, B or C, and each measurement setting X or Y . Let us

denote each such number by mA
X , where the subscript is the measurement setting,

and the superscript is the qubit. In the middle section of the figure, we show

several correlations which are just the products of the measurement outcomes:

MXY Y = mA
Xm

B
Ym

C
Y and so on. The last column of this section gives the product

of the three previous correlations Π ≡ MXY YMY XYMY Y X . Finally, the far right

column shows the correlation MXXX .
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Note that in all cases shown in the figure, we have Π = MXXX . It is easy

to prove that this must be the case no matter what measurement outcomes the

system chooses. We have that

Π = MXY Y ·MY XY ·MY Y X

= mA
Xm

B
Ym

C
Y ·mA

Ym
B
Xm

C
Y ·mA

Ym
B
Ym

C
X

= mA
X(mA

Y )2 ·mB
X(mB

Y )2 ·mC
X(mC

Y )2

= mA
Xm

B
Xm

C
X

= MXXX (4.10)

where we have used the fact that m = ±1 so that m2 = 1. Hence in a hidden

variable model, the product Π of correlations with two Y measurements must

equal the correlation MXXX with all X measurements.

What is the expected outcome with quantum mechanics? Consider the first

round in which all observers measure X. Multiplying the results from each ob-

server together to obtain the correlation MXXX is equivalent to measuring the

combined operator XXX. We can easily compute that MXXX = 〈XXX〉|GHZ〉 =

1. For the later rounds we find instead that MXY Y = 〈XY Y 〉|GHZ〉 = −1 and by

symmetry also MY XY = MY Y X = −1. Hence we obtain Π = MXY Y ·MY XY ·

MY Y X = −1 6= MXXX , in direct contradiction to the classical case.

The argument as presented here has a few glaring weaknesses. First, note

that the four required correlations are not measured at once, but rather in four

separate iterations of the experiment. In that case, the hidden variables might
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take on one set of values in one iteration, and a different set of values in another

iteration, potentially giving a result Π 6= MXXX as in the quantum case. Second,

and perhaps more important for an experimental test of this result, is the fact that

the argument as presented here assumes pure states and perfect measurements,

neither of which are experimentally feasible. Fortunately, by reformulating the

problem to account for the latter problem, we can solve the former as well.

Mermin[24] reformulated this test of non-classicality for |GHZ〉 in terms of

inequalities that apply in the realistic mixed-state case. He gave a family of

inequalities that are obeyed by hidden variable models, but violated by |GHZ〉

and its generalizations to higher numbers of qubits. He also showed that the

potential violation grows exponentially with the number of qubits. For the three-

qubit case considered here, classical hidden variable models must obey

G ≡ 〈XXX〉 − 〈XY Y 〉 − 〈Y XY 〉 − 〈Y Y X〉 ≤ 2 (4.11)

where the correlation operator G is defined in terms of the four measured expec-

tation values. In this case, no assumptions are made about what values the hidden

variables take in each iteration of the experiment, so that we are not subject to

the objections raised in the previous paragraph. Unlike hidden variable models,

quantum mechanics allows this inequality to be violated. For the pure |GHZ〉

state we have G|GHZ〉 = 4 � 2; for our experimental mixed state, the violation will

be smaller, but still an indicator of non-classicality, as desired. This inequality is

79



in fact violated experimentally, as we will see in Chapter 8.
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Chapter 5

Design of Entangling Protocols

In the previous chapter we discussed the two types of three-qubit entangled states.

We now consider the task of generating these states: what sequence of qubit opera-

tions will produce these entangled states, and can these protocols be implemented

in a way that is realizable using our phase qubits? The following sections will

derive the necessary sequences of gates, and in the next chapter we will see in

detail how the coupler has been designed to enable the necessary operations to be

performed.
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5.1 Multi-step GHZ

5.1.1 Using CNOT gates

The simplest entangling protocol to understand is that for generating the state

|GHZ〉 = (|000〉+ |111〉)/
√

2. Starting in the ground state, we first perform a π/2-

rotation on one qubit—qubit A, say—to put the system in state (|000〉+|100〉)/
√

2.

Now, we would like to map the second component of this superposition |100〉 to

the state |111〉 without changing the other component |000〉. In other words, we

need to flip the state of qubits B and C, but only when qubit A is itself in state |1〉.

This is exactly the operation performed by the CNOT gate, so we can generate

the desired |GHZ〉 state simply by applying two CNOT gates to flip qubits B and

C conditioned on the state of qubit A. These CNOTs can be applied in various

ways, either using qubit A as the control qubit for both gates, or else using the

flipped qubit in the first gate as the control for the second; either protocol results

in the same final state. Another variation has both CNOT gates acting on the

same control and target qubits, but with a swap gate applied in the middle to

ensure that both targets are flipped[21]. A quantum circuit for the basic sequence

is shown on the left in Figure 5.1.

This protocol can be readily generalized in two ways. First, as shown on the

right in Figure 5.1, we can eliminate the single qubit rotation and instead accept
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α|000〉 + β|111〉

α|0〉 + β|1〉

Figure 5.1: GHZ protocol using CNOT gates.
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|0〉

|0〉

Figure 5.2: Generating GHZ states of an arbitrary number of qubits.

an arbitrary initial state of qubit A: α |0〉 + β |1〉. The other two qubits are

assumed to start in the ground state so that the collective starting state of the

full system is α |000〉+ β |100〉. Now, applying two CNOT gates will result in the

generalized GHZ state α |000〉+ β |111〉. This effectively encodes the single-qubit

state in an entangled state that can be used to detect and correct single bit flips

using the so-called “repetition code”[29, chap. 10].

The GHZ protocol can also be generalized to arbitrary numbers of qubits

simply by adding more CNOT gates, as shown in Figure 5.2. With N qubits a

total of N−1 CNOT gates must be applied to flip the states of all the other qubits
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conditioned on the control qubit that is first rotated. These gates could be applied

one after another, taking a total time proportional to the number of qubits N ,

as shown on the left. Alternatively the gates could be done in parallel, using all

flipped qubits as controls for the next stage, in which case the time required would

scale as logN , as shown on the right. Such parallelism can often lead to gains

in efficiency for quantum circuits, but of course the physical system being used

would have to support parallel gates and coupling between potentially widely-

separated qubits, and these requirements that may not be satisfied in physical

implementations. We will focus on the cases N = 3 and N = 4 and hence ignore

these larger scaling issues.

5.1.2 Recompiling for iSWAP gates

We saw in §2.2 that the natural entangling gate generated by the XX + Y Y

interaction is not the CNOT gate, but rather the iSWAP gate. It can be shown

that the iSWAP gate is equivalent to a so-called “CNOT-SWAP” gate, consisting

of a CNOT followed by a SWAP[32]. Fortunately, it is easy to recompile the

quantum circuits shown in the previous section for |GHZ〉 state generation in

terms of CNOT-SWAP gates. To see how this is done, note that the |GHZ〉

state is invariant under permutations of the qubits, so that any swaps introduced

into the circuit after the entangling is accomplished have no effect and can be
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Figure 5.3: Modifying the GHZ protocol to use CNOT-SWAP gates.
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Figure 5.4: CNOT-SWAP gate expressed in terms of iSWAP.

ignored. We can thus twist and bend the wires in our quantum circuit as needed

to introduce swaps after the CNOT gates, and then discard any remaining SWAPs

at the end as these do not change the final state. This process and the resulting

circuit are shown in Figure 5.3.

To complete the transformation into an iSWAP implementation that will be

easy to implement, we replace each CNOT-SWAP by an equivalent circuit com-

posed of an iSWAP gate produced by the XX + Y Y interaction plus single-qubit

iSWAP

X-π/2

Yπ/2

Yπ/2

Yπ/2

iSWAP

X-π/2

iSWAP

X-π/2Yπ/2

Yπ/2

iSWAP

X-π/2|0〉

|0〉

|0〉

|GHZ〉 α|000〉 + β|111〉

α|0〉 + β|1〉

|0〉

|0〉

Figure 5.5: Circuit for generating GHZ state with iSWAP gates.
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unitaries. The circuit identity, which can be readily derived using the techniques

of Makhlin[19], is shown in Figure 5.4. This identity is by no means unique; there

are many different ways to decompose the single-qubit unitary operations appear-

ing before and after the iSWAP gate. But if we simply replace the CNOT-SWAP

gates in Figure 5.3 with this iSWAP identity, various simplifications can be applied

to eliminate neighboring single-qubit unitaries and simplify the overall circuit. In

the end, we arrive at the circuit shown in Figure 5.5 for producing |GHZ〉 using

only operations that are easily realizable experimentally, namely single-qubit rota-

tions and iSWAP gates. As with the straightforward CNOT protocol described in

the previous section, this protocol generalizes to arbitrary input states (Figure 5.5,

right) and it can also be generalized to larger numbers of qubits.

5.2 Single-step GHZ

The |GHZ〉 state-generation protocols discussed in the previous section all uti-

lize single-qubit rotations and two-qubit gates, which are well-defined and easily-

realizable building blocks. However, given the symmetry of the start state |000〉

and end state |000〉+ |111〉 with respect to permutations of the qubits, we might

wish to find a protocol that explicitly respects the symmetry of the states. For

example we might wish to apply the same rotations to all qubits or couple all the

qubits simultaneously rather than using just two-qubit gates, potentially reduc-
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Figure 5.6: GHZ state generation with a single entangling step.

ing the requirements for coherent control of the system. In this particular case of

|GHZ〉 state generation, a solution was found for N = 3 qubits by Galiautdinov

and Martinis[12] and then extended to arbitrary N by Galiautdinov et al.[11].

The protocol for N = 3 is shown in Figure 5.6.

In this protocol, the first step is to create an equal superposition of all qubit

states by applying π/2 rotations about Y to each qubit. The second step is to

turn on the interaction to entangle the qubits. The interaction is assumed to be

of the form (g/2)(XX+Y Y ), with equal coupling strength g between each pair of

qubits1. Finally another π/2 rotation is applied to each qubit to bring the system

into the desired |GHZ〉 state. The time t for which the coupling is turned on is

t = π/2g, the same time as required to produce a single iSWAP gate between

just two of the qubits. Hence this protocol requires half as much time as those

presented in the previous section using two separate two-qubit gates.

While we might expect this reduction in the required entangling time to im-

1We drop the additional ZZ term considered in the papers, as this is not present in our
capacitively-coupled devices.

87



prove the performance of this protocol compared to those using two-qubit gates,

we must consider the fact that this single-step protocol works in a very different

way than the two-qubit versions. During the entangling step, the coupling inter-

action does not actually change the population of the various eigenstates, rather

it simply changes the phases of those states. These phase changes have the effect

that when the final rotations are applied, |000〉 and |111〉 are populated while all

other qubit states are depopulated, thus rotating the state into |GHZ〉. Proper

functioning of the protocol requires that the phases be tuned precisely, so that

the final rotations work as desired. Also, note that immediately after the first

rotations are applied the system is in an equal superposition of all possible qubit

states. Both of these features, the precise phase tuning and the occupation of all

qubit states, will prove problematic for the experimental implementation of this

protocol with phase qubits, as we will see in Chapter 8.

5.3 Single-step W

We now turn to protocols for generating the |W〉 state. While it is straightforward

to write down sequences for generating this state with two-qubit gates as in §5.1,

it is much more natural to consider the single-step approach of §5.2 that takes into

account the symmetries of the state. The state |W〉 = (|100〉+ |010〉+ |001〉)/
√

3

is a superposition of three components, each with one qubit excited. To generate
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it we must “share” a single excitation among the three qubits. The transverse

XX + Y Y coupling interaction does exactly this: it causes an excitation to be

swapped from one coupled qubit to another, with the excitation shared between

the entangled qubits at intermediate times. Thus our technique to create the |W〉

state will be as follows: first put one excitation into the system and then couple

all the qubits together symmetrically to distribute the excitation among them.

This simple idea leads to a fast and efficient single-step protocol for generating

the |W〉 state.

We can work out the details of this protocol in the general case of any number

of qubits N . If we label the qubits by integer indices 0, 1, . . . N − 1 then the

generalized |W〉-state can be written as

|WN〉 ≡
1√
N

N−1∑
i=0

|0001 . . . 0i−11i0i+1 . . . 0N−1〉 (5.1)

=
1√
N

N−1∑
i=0

|ψi〉 (5.2)

which is a superposition of N terms, where the ith term has a single excitation

in qubit i and where for brevity we write these terms as |ψi〉. Starting from the

ground state, the first step in the protocol is to introduce one excitation into the

system, so we apply a π-pulse to qubit 0 to create the state |10 . . . 0〉 = |ψ0〉.

Next the coupling interaction is turned on between all pairs of qubits. Because

of the symmetry of the coupling circuit, the amplitude for the excitation to be in
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any of the other qubits 1, . . . , N − 1 will be equal, so that as a function of time

after the coupling is turned on, the system state will have the form

a(t) |ψ0〉+ b(t)
N−1∑
i=1

|ψi〉 , (5.3)

where a(t) and b(t) are complex amplitudes to be determined. This argument

assumes that after the coupling is turned on the system stays within the subspace

of single-excitation states |ψi〉, without straying into the ground state or states

with more than one excitation such as |110 . . . 0〉 or |20 . . . 0〉. This constraint is

satisfied since the XX+Y Y swap interaction preserves photon number and simply

swaps excitations without creating or destroying them. If the coupling time tN

can be chosen so that |a(tN)| = |b(tN)| = 1/
√
N , then the system will be in an

equal superposition of single-excitation states, which differs from the desired |WN〉

state only by the possible phase difference between a and b. The phase difference

can be corrected by rotating qubit 0 about the Z-axis by an appropriate angle

θN . Any remaining global phase is of no physical significance, so the final state is

equal to |WN〉, as desired.

To find tN and θN we consider the Hamiltonian of the system. As mentioned in

the previous paragraph, once in the single-excitation subspace, the system stays

there because the coupling Hamiltonian preserves photon number. Hence we can

consider only the reduced space of single-excitation states |ψi〉. Because we turn

on a coupling interaction (g/2)(XX+Y Y ) between all pairs of qubits, the coupling
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Hamiltonian in this restricted subspace has terms for exchanging the excitation

between each pair of qubits: H1
int = g

∑
i 6=j |ψi〉 〈ψj|, or in matrix form

H1
int =


0 g g . . . g
g 0 g g
g g 0 g
...

. . .
...

g g g . . . 0

 . (5.4)

One can easily verify that the eigenstates of this restricted Hamiltonian are

|φ+〉 ≡ (|ψ0〉 + |ψ1〉 + . . . + |ψN−1〉)/
√
N with eigenvalue (N − 1)g, and the set

|φ−k〉 ≡ (|ψ0〉 − |ψk〉)/
√

2, k ∈ {1, . . . , N − 1} with eigenvalue −g.

In this basis of eigenvectors, the system state at the beginning of the coupling

period is |φ(t = 0)〉 = |ψ0〉 = (
√
N |φ+〉+

√
2
∑N−1

k=1 |φ−k〉)/N . With the coupling

turned on, the eigenvectors simply acquire phase at a rate corresponding to their

energy, so the time evolution of this state is

|φ(t)〉 = (
√
Ne−i(N−1)gt |φ+〉+

√
2eigt

N−1∑
k=1

|φ−k〉)/N. (5.5)

We can now take the overlap with the single-excitation qubit states to find the

occupation probabilities of the various states. Due to symmetry we need only

consider two possibilities, the initially-excited qubit and one other qubit since all

the rest will have the same occupation. For the initially-excited qubit 0, we have
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〈ψ0|φ(t)〉 =
1

N

(
√
Ne−i(N−1)gt 〈ψ0|φ+〉+

√
2eigt

N−1∑
k=1

〈ψ0|φ−k〉

)

=
1

N

(
√
Ne−i(N−1)gt 1√

N
+
√

2eigt
N−1∑
k=1

1√
2

)
=

1

N

(
e−i(N−1)gt + (N − 1)eigt

)
=

eigt

N

(
(N − 1) + e−iNgt

)
. (5.6)

From Equation 5.6 we can then calculate the occupation probability of the

zeroth qubit:

P10...0 = | 〈ψ0|φ(t)〉 |2

=
1

N2

(
(N − 1) + e−iNgt

) (
(N − 1) + eiNgt

)
=

1

N2

(
(N − 1)2 + 1 + 2(N − 1) cosNgt

)
. (5.7)

The occupation probability P10...0 oscillates in time at angular frequency Ng and

is bounded from below by P10...0(t) ≥ (N−2)2/N2. In order to create a |W〉 state,

we must have P10...0(tN) = 1/N , so this bound on the probability immediately

tells us that our protocol will not work for arbitrary numbers of qubits, but only

when (1 − 2/N)2 ≤ 1/N . This has solutions only for N = 2, 3, or 4; in the case

N = 5 or higher, an equal superposition is never achieved so the |W〉-state cannot

be created with this protocol.
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In a similar fashion, we calculate the amplitude and occupation probability for

one of the initially unexcited qubits, say qubit 1. The amplitude is

〈ψ1|φ(t)〉 =
1

N

(
√
Ne−i(N−1)gt 〈ψ1|φ+〉+

√
2eigt

N−1∑
k=1

〈ψ1|φ−k〉

)

=
1

N

(√
Ne−i(N−1)gt 1√

N
−
√

2eigt
1√
2

)
=

1

N

(
e−i(N−1)gt − eigt

)
=

eigt

N

(
e−iNgt − 1

)
(5.8)

and the occupation probability is

P010...0 = | 〈ψ1|φ(t)〉 |2

=
1

N2

(
e−iNgt − 1

) (
eiNgt − 1

)
=

1

N2
(2− 2 cosNgt) . (5.9)

We now consider the three allowed values of N that will generate |W〉 states

with this method. For N = 2, not surprisingly, we find that an equal superposition

is achieved when 2gt = π/2 so that t2 = π/4g. This is exactly half of the swap

time tiSWAP = π/2g already seen above in the GHZ protocol in §5.2. For N = 3,

the equal superposition is achieved when (2/9)(1− cos 3gt) = 1/3, which implies

cos 3gt = −1/2. Hence, the equal superposition is obtained when 3gt = 2π/3

giving a time of t3 = 2π/9g = (4/9)tiSWAP. Finally, for N = 4 we obtain the equal
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N tN θN
2 π/4g π/2
3 2π/9g 4π/3
4 π/4g π

Table 5.1: Parameters for W-state generation protocols.

superposition when (2/16)(1 − cos 4gt) = 1/4, giving cos 4gt = −1 with solution

4gt = π. Hence, the equal superposition is obtained at time t4 = π/4g = tiSWAP/2,

as in the case of two qubits.

The other quantity that must be calculated to complete the protocol for gen-

erating the |W〉-state is the amount of Z-rotation needed on the initially-excited

qubit to equalize the phases. This rotation is in a sense optional, since local

rotations do not change any entanglement measures on a multi-qubit states, as

discussed in Chapter 4. However, the required angle is simple to calculate by

plugging in the coupling times obtained in the previous paragraph to the ampli-

tudes in Equation 5.6 and Equation 5.8. For the N = 3 case of interest here, the

amplitudes for qubits 0 and 1 are

α0(t3) = (e4iπ/9/3)(e−4iπ/3 + 2) (5.10)

α1(t3) = (e4iπ/9/3)(e−4iπ/3 − 1). (5.11)

Via straightforward algebra, we can verify that a Z-rotation by angle θ3 = 4π/3

will equalize the phase of these two states. Similarly, we can verify that θ2 = π/2

and θ4 = π. All these results are summarized in Table 5.1.

94



There is a simple geometric picture of the operation of these |W〉-state proto-

cols that makes clear how they work and allows the parameters tN and θN to be

determined easily. We simply take the amplitudes determined in Equation 5.6 and

Equation 5.8 and plot them in the complex plane, ignoring the common prefactor

eigt/N . Both amplitudes consist of a stationary part plus a unit vector rotating

at angular frequency Ng. These two parts of each amplitude are represented by

the colored arrows in the left side in Figure 5.7, with the resultant vectors giving

the amplitudes themselves, α0 in purple and α1 in blue. The circles represent the

full range of variation of the resultant amplitudes. The coupling time tN is deter-

mined by the time at which the two resultant vectors have equal length, as shown.

On the right side of the figure, we show only the resultant vectors giving the full

amplitudes; the phase correction angle θN is determined by the angle between the

two vectors at that time. The diagrams confirm the results derived algebraically

above, including the fact that no solutions exist for N ≥ 5.
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Figure 5.7: Geometric picture of W-state generation protocols.
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Chapter 6

Coupling Circuit Design

In this chapter we will consider the design of the coupling circuit for our multi-

qubit device. To implement the single-step entangling protocols described in

Chapter 5, we require an interaction with equal coupling strength between each

pair of qubits, in other words a coupling network that is a complete graph between

the qubit nodes. In Chapter 2 we described various schemes for coupling qubits,

including the simplest technique, which we will use here, that involves simply con-

necting the qubits with a capacitor. Our first attempt at a circuit to implement

the complete graph coupling, shown in Figure 6.1, is a direct combination of these

two ideas: we simply insert a capacitor between each pair of qubits that should

be coupled.
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Figure 6.1: Translating a coupling graph into a capacitor network.

6.1 Improving the Coupling Network

The main problem with the direct approach to constructing the coupling network

shown in Figure 6.1 is that the symmetry will be lost when we actually try to

build the coupling network. A three qubit (triangular) network can be constructed

without a problem, but as soon as we have four or more qubits simply laying out

the coupling graph will require us to introduce crossovers or, as in the four-qubit

case illustrated, to place one of the coupling capacitors on the outside, connected

by long leads. Achieving exactly equal coupling strengths as required by the

single-step entangling protocols will then only be possible by carefully tuning

the coupling capacitors to account for wiring crossovers and other stray parasitic

capacitances.

We would prefer a coupling circuit that can be laid out on chip in a sym-

metric configuration, as this will make it much easier to achieve the desired

symmetric coupling. To see how this can be done, consider a well-known trick

from conventional electrical engineering known as the “Star-Delta” or “Y-Delta”
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Figure 6.2: Star-Delta transformation of a three-node circuit.

transform[16]. As shown in Figure 6.2, this transforms a three-node circuit with

arbitrary impedances between each node (the “Delta” configuration, a complete

graph of three nodes) into an equivalent circuit with each node connected to a new

internal node in the center (the “Star” configuration). In the specific case of our

symmetric coupler with fixed capacitance C∆ between each node, the equivalent

Star configuration has capacitance C? = 3C∆.

For three nodes, the Star configuration is no simpler than the Delta configura-

tion, but in general the Star configuration forN nodes contains justN impedances,

while the complete graph (which we will continue to refer to as the “Delta” con-

figuration) contains N(N −1)/2. Hence for N > 3 the Star configuration requires

fewer coupling links, and in addition it can always be laid out symmetrically as

a planar graph with couplers radiating out from a central node, unlike the Delta

configuration which becomes increasingly tangled as N increases.

Because there are only N impedances in the Star versus N(N − 1) in the
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Figure 6.3: Symmetric Star-Delta transformation for arbitrary N.

complete graph, the general Star-Delta transform with arbitrary impedances is

not possible for N > 3; there are simply not enough degrees of freedom in the

Star configuration. But the case we are considering is highly symmetric, with equal

coupling between each node. Is it possible to find an appropriate transformation

into an equivalent Star circuit in this case?

To answer this question, we must first ask how to tell whether two capacitance

networks are equivalent. Let us define the mutual capacitance Cij between two

nodes i and j in a network as the ratio Cij = Qj/Vi, where Qj is the charge that

appears on node j when a fixed voltage Vi is applied to node i, with all the other

nodes grounded. Because a capacitor network is linear, knowing all the mutual

capacitances is sufficient to completely characterize the network, so that if we

can find a Star configuration with the same mutual capacitances as the complete

graph, we will have found the solution.

For the complete graph network of capacitors, the mutual capacitance be-

tween any two nodes is, not surprisingly, simply given by the capacitor Cij = C∆
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connecting the nodes. Now consider a Star network with N nodes where each

node is connected to the central island with a capacitance C?, as shown in Fig-

ure 6.3 (left). By symmetry, it is clear that the mutual capacitances Cij be-

tween any pair of nodes must all be the same. Applying a voltage V to one

of the nodes with all the other nodes grounded forms a divider with two ca-

pacitors, C? and (N − 1)C?. The voltage on the floating central island will be

Vc = (C?/(C? + (N − 1)C?))V = V/N (middle). Hence the charge appearing on

any of the other nodes is simply Qj = C?Vc = C?V/N and the mutual capacitance

is Cij = Qj/V = C?/N . Thus, to create a star network that is equivalent to the

complete graph, we choose C? = NC∆ (right), which reproduces the standard

Star-Delta result when N = 3.

6.2 Effect of Island Loading

In a real device, the central island in our Star network will consist of a chunk of

metal that may have some parasitic capacitance to ground. Depending on the

configuration of the coupling network and ground planes, this capacitance can in

fact be quite large, certainly large enough that it must be taken into account in

order to engineer the desired coupling strength. Fortunately, the effect of this

capacitance on the coupling network is easily calculated.

We can compute the mutual capacitance between two nodes in the Star net-
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Figure 6.4: Star coupler with island capacitance.

work exactly as we did above, except that now an additional capacitance Cg is

added from the island to ground, as shown in Figure 6.4. Applying voltage V

to a particular node creates a voltage divider, and the central island voltage is

V ′c = (C?/(C? + (N − 1)C? + Cg))V = V/N(1 + Cg/NC?)
−1. The mutual capaci-

tance is then

C ′ij =
C?
N

(
1 +

Cg
NC?

)−1

. (6.1)

The factor (1 + Cg/NC?)
−1 indicates that the effect of island capacitance is

to “load” the circuit, reducing the mutual capacitance and hence the effective

coupling strength. When Cg � NC?, the ground capacitance has little effect, but

when Cg ∼ NC?, the coupling can be substantially reduced.

If we set the mutual capacitance in Equation 6.1 equal to some desired coupling

capacitance C∆ and solve for C?, we obtain

C? = NC∆ ·
1

2

(
1 +

√
1 +

4Cg
N2C?

)
. (6.2)

Once the coupling capacitance C∆ is chosen to give the desired qubit-qubit cou-
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pling strength and the island capacitance Cg is determined from the geometry of

the coupling circuit, this formula gives the required physical coupling capacitance

C?.

6.3 Physical Layout and Parameter Estimation

The physical geometry of the coupling circuit as it appears on chip is shown in

Figure 6.5. For the purpose of estimating the capacitance to ground, we model

the island as a coplanar waveguide with a gap of 40µm between ground planes

and a total length of 200µm, the sum of the lengths of the two arms of the

cross minus the length of the central crossing region; for this geometry we find

Cg ≈ 30 fF. In order to choose the coupling capacitance, we take the target mutual

capacitance to be C∆ = (S/f10) · Cq where S = 2g/2π is the desired qubit-qubit

swap frequency, f10 ∼ 6 GHz is the qubit transition frequency and Cq ∼ 1 pF is

the qubit capacitance. This relationship together with Equation 6.2 allows us to

determine the required island coupling capacitance C? to achieve the desired swap

frequency.

Table 6.1 shows various qubit-qubit swap frequencies S along with the mutual

capacitance C∆ and coupling capacitance C? needed to produce that swap fre-

quency. Note that the island capacitance to ground has a substantial effect. For

all but the largest splitting we have Cg = 30 fF > 4C∆, so that without taking
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Figure 6.5: Physical geometry of four-qubit coupling circuit.

the loading factor into account the coupling strengths would differ markedly from

the expected values. We will see in Chapter 8 that the experimentally observed

splitting agrees reasonably well with the theoretical value in a sample designed for

S = 15 MHz. A slightly lower swap frequency of 12.5 MHz is observed, possibly

indicating a slight underestimate of the island ground capacitance.

An important assumption made in our analysis of the coupler up to this point

is that the entire central island can be described as having a single voltage, which

is valid insofar as the island can be considered a lumped element. To check this

assumption, we must consider the frequencies of resonant modes of the island

itself; if these are far above the operating frequency of the qubits, then these

modes will not be relevant in the operating regime we care about, the lumped-
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S (MHz) C∆ (fF) C? (fF)
10 1.67 11.2
15 2.50 15.0
20 3.33 18.7
25 4.17 22.3
30 5.00 25.8
40 6.67 32.8
50 8.33 39.6

Table 6.1: Coupling capacitances for 4-qubit star coupler.

element assumption will hold, and the straightforward circuit analysis given above

will apply. If we consider one arm of the coupler as a coplanar waveguide of length

130µm, then the resonance frequency is found to be ∼ 1 THz, far above the qubit

operating frequency. Even if there are modes with effective length 20 times longer,

for example a slotline mode that wraps around the entire coupling island, this still

puts the frequency at 50 GHz. For this reason we feel confident that the simple

lumped-element model captures the behavior of the coupling circuit.
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Chapter 7

Multi-qubit Measurement

One of the most important requirements for a quantum computer is the ability

to extract information from it by measuring the quantum state. In any exper-

imental system such measurements will almost certainly be subject to errors or

nonidealities. These errors must be understood and corrected in order to perform

reliable quantum information processing. In this chapter we will discuss the errors

and nonidealities in our phase qubit measurements and how the raw measurement

results are corrected to account for these errors. We will also describe a new mea-

surement scheme that avoids a major potential problem, that of measurement

crosstalk. It is this scheme that will be used for all our experimental results.

In Chapter 2 we described the measurement process for our phase qubits, and

in particular we separated this process into two stages: the “measurement” stage
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Figure 7.1: Overview of phase qubit measurement and errors.

where the qubit tunnels (or not) and then relaxes to the ground state of either the

left or right-hand well, and the “readout” stage in which the on-chip SQUID is

used to determine which well the circuit has relaxed into. The entire measurement

process is illustrated schematically in Figure 7.1.

For our purposes the readout stage will be assumed to be perfectly ideal; in

typical experiments the switching distributions corresponding to the two wells are

separated from each other by several standard deviations, so there is no ambiguity
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in identifying which well the system is in. Errors can occur during the “measure-

ment” stage however, and it is these errors that will concern us here. It is useful

to further divide this stage into two sections, first when the qubit tunnels (or not)

out of its well, and second when it relaxes. In the first section of this process, we

would like a qubit in state |0〉 to remain in the qubit well with unit probability,

while a qubit in state |1〉 should tunnel out with unit probability. In practice of

course, neither of these probabilities is equal to unity, and such errors give rise to

finite measurement fidelity, as shown in the top row in Figure 7.1.

In the second section of the measurement stage, a qubit that has tunnelled

out into the right-hand well relaxes into the ground state, emitting hundreds of

photons of energy into the surrounding circuit. This is only problematic if other

qubits are present in the circuit, as the surge of energy can cause other qubits to

be excited and possibly tunnel erroneously instead of staying in the ground state

of their qubit well, as shown in the middle row of Figure 7.1. Such errors are

known as measurement crosstalk[23].

In our standard treatment of measurement errors[5, supplement], we relate

the actual or intrinsic probabilities for the various possible qubits states to the

measured probabilities Pm = (Pm;000, Pm;001, . . .)
T by a matrix equation

Pm = XFPi (7.1)

where the matrix F describes the fidelity errors, and the matrix X describes
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the crosstalk errors. Note the ordering of these two matrices, which implies that

fidelity errors happen first followed by crosstalk errors, in accordance with our

definition of these two sections of the measurement stage. By inverting this rela-

tion, we can extract the intrinsic probabilities Pi from the measured probabilities

Pm.

7.1 Measurement Fidelity

Let us write f0 to denote the probability that a qubit in its ground state stays

in the qubit well (does not tunnel), and f1 for the probability that a qubit in the

excited state leaves the qubit well (does tunnel). These describe the measurement

fidelity, and should be close to one. It will sometimes be convenient to think in

terms of errors rather than fidelity, so we define e0 ≡ 1 − f0 and e1 ≡ 1 − f1 to

be the respective probabilities that |0〉 erroneously tunnels or that |1〉 erroneously

relaxes to the ground state. Given these definitions, we can easily derive the

fidelity matrix relating the intrinsic and measured probabilities for one qubit:

Pm = F1 ·Pi =

(
f0 e1

e0 f1

)
·Pi. (7.2)

This fidelity matrix is invertible provided f0 +f1−1 = 1−e0−e1 6= 0. Typically,

we have measurement errors ei ≈ 5%, so that there is no trouble inverting this

relation and correcting for finite measurement fidelity.
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Fidelity errors arise from processes local to each qubit, for example relaxation

during the measurement pulse due to crossing a TLS[26]. Hence in a multiqubit

system these errors are independent for each qubit. This means that we can

compute the fidelity matrix for multiple qubits simply by taking a tensor product

of the single-qubit fidelity matrices. With three qubits we have

F3 =

(
f0 e1

e0 f1

)
A

⊗
(
f0 e1

e0 f1

)
B

⊗
(
f0 e1

e0 f1

)
C

(7.3)

where the subscripts A, B and C refer to the different qubits. As with one

qubit, this fidelity matrix can be inverted to calculate the intrinsic occupation

probabilities Pi from the measured probabilities Pm.

Determining the fidelities f0 and f1 for each individual qubit can be done with

a simple “s-curve” experiment: first the qubit is reset to the ground state and we

measure the tunnelling probability to find e0 = 1− f0. Next, we apply a π-pulse

to excite the qubit into state |1〉 and then measure the tunnelling to find f1. The

measurement of f1 is less certain because it assumes ideal preparation of the qubit

in state |1〉, however other more detailed experiments can be done to determine

the actual fidelity of the |1〉-state preparation[18] and then appropriately correct

the measurement fidelity f1.
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7.2 Measurement Crosstalk

Because measurement crosstalk is fundamentally a multi-qubit effect, the simplest

case to consider is for two qubits, as describe by Bialczak[5]. The X matrix for two

qubits contains two parameters to describe the crosstalk. These are the probability

that when qubit A switches it will cause B to switch (xAB) and the probability

that switching on B will cause A to switch (xBA). For typical coupling strengths

with direct capacitive coupling, these crosstalk numbers are ∼ 10%. The crosstalk

matrix is then

X2 =


1 0 0 0
0 1− xBA 0 0
0 0 1− xAB 0
0 xBA xAB 1

 . (7.4)

Notice that this matrix is lower triangular. This is because the basis states

are written going down each column in binary order |00〉, |01〉, |10〉, |11〉, and

because crosstalk can only turn zeros into ones, causing a transition to a lower

row. This matrix is completely determined by the two parameters xAB and xBA;

we need only determine these two parameters in order to correct for measurement

crosstalk. In the matrix equation Pm = XFPi there are three equations (4 - 1

because of normalization). Hence, if we know Pm (from measurement), F (from

s-curves) and Pi (by initializing to a known state) we can hope to determine X.

The crosstalk matrix does not have a tensor product structure, so it is not

immediately clear how to generalize it for N qubits; instead the N -qubit crosstalk
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matrix must be constructed manually. First let us consider the structure of the

matrix, in particular how many degrees of freedom it can have. Just as in the

two-qubit case, the crosstalk matrix will be lower triangular if the kets are listed

in the usual binary order because crosstalk can only flip bits on, causing error

terms to appear in later rows of the matrix. Because crosstalk can only flip bits

on, the error terms will be in positions Xi[N−1..0],j[N−1..0] where the binary indices

i[N − 1..0] and j[N − 1..0] are such that all the bits that are on in j must be on

in i.1

These facts allow us to count the number of degrees of freedom in the general

crosstalk matrix as follows: there are
(
N
k

)
different states with k bits turned on; for

each such state, crosstalk can flip any of the N−k remaining zero bits, giving 2N−k

potential crosstalk terms, but we must subtract one degree of freedom because the

crosstalk probabilities for each state must sum to one. In addition, if k = 0 then

no qubits switch so crosstalk can not happen, and similarly if k = N then all

qubits switch so there are no more bits for crosstalk to turn on. Hence, the total

number of degrees of freedom is
∑N−1

k=1

(
N
k

)
(2N−k − 1). This sum can be easily

evaluated by massaging the limits and noting that (x+ 1)N =
∑N

k=0

(
N
k

)
xN−k. In

the end, we find that the number of degrees of freedom is 3N −2N+1 +1. Plugging

1Here one has to be careful about the convention chosen for the crosstalk probabilities. Using
the standard convention from the two-qubit case[5], xAB gives the probability that A causes B
to switch A→ B, but in the X matrix with the usual indexing order the element Xi,j denotes
crosstalk taking state j to state i, i← j.
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in N = 2 we indeed find 2 degrees of freedom, as expected, while for N = 3 the

general crosstalk matrix is found to have 12 degrees of freedom.

The large number of potential degrees of freedom in a multi-qubit crosstalk

matrix is a problem for experimentally determining the crosstalk matrix in order

to correct for crosstalk errors. With N qubits there are only N(N − 1) terms of

the form xij that describe the crosstalk probability of qubit j affecting qubit i, as

in the two-qubit case. But the total number of degrees of freedom in the crosstalk

matrix is 3N − 2N+1 + 1 � N(N − 1). The general structure of the crosstalk

may be much more complicated than what is found for two qubits. The basic

identity Pm = XFPi contains only 2N − 1 independent equations, so that it may

in general be very hard to determine X by the methods used for two qubits.

To model the multi-qubit crosstalk matrix then, we must make some assump-

tions about the physics of what actually happens to cause measurement crosstalk,

in particular how crosstalk effects can propagate between multiple qubits. We

will briefly consider two possible models for crosstalk effects which we’ll refer to

as “Independent Choice” and “Cascade”. Of course, a better solution which by-

passes all this complexity is to use a measurement scheme that avoids crosstalk

altogether, as outlined in §7.3. For this reason the following two sections should

be considered optional.
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7.2.1 Crosstalk model: Independent Choice

Suppose that at the moment of measurement, each qubit that tunnels decides to

deposit or not to deposit a certain amount of energy in each of the qubits to which

it is coupled, and this energy will cause the other qubit to switch with some small

probability. Each qubit decides independently of the others, and the qubits that

get switched by crosstalk effects do not themselves cause other qubits to switch

(the crosstalk effects do not “cascade”). For three qubits, we can model this with

3(3 − 1) = 6 parameters xAB, xAC , xBA, xBC , xCA, xCB, analogous to the two-

qubit case. For convenience we also define nAB ≡ 1− xAB to be the probabilities

that no crosstalk occurs between the specified qubits.

Consider what happens starting when the system starts in state |001〉 at the

time of measurement. When qubit C switches, it decides with probability xCA to

switch qubit A and with probability xCB to switch qubit B. Since these choices

are made independently, both qubits will switch with probability xCAxCB and

result in the system being measured as |111〉. The probability that only qubit B

switches and we measure |011〉 is nCAxCB and similarly the probability that only

qubit A switches and we measure |101〉 is xCAnCB. Finally, the probability that

neither qubit switches and the system is correctly measured as |001〉 is nCAnCB.

Similar considerations apply for the starting states |010〉 and |100〉.

Next, consider what happens starting from the state |011〉. In this case, the
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only possibilities for measurement crosstalk are that nothing happens, or that

qubit A switches resulting in state |111〉. In order for nothing to happen, qubits

B and C must both independently decide not to crosstalk, so that the system ends

up in |011〉 with probability nBAnCA. Otherwise qubit A will switch, so that the

system is measured as |111〉 with probability 1−nBAnCA = xBA+xCA−xBAxCA.

Similar considerations apply for the starting states |101〉 and |110〉.

Putting all this together, we find the following crosstalk matrix for the Inde-

pendent Choice model:

X3I =



1 0 0 0
0 nCAnCB 0 0
0 0 nBAnBC 0
0 nCAxCB nBAxBC nBAnCA
0 0 0 0
0 xCAnCB 0 0
0 0 xBAnBC 0
0 xCAxCB xBAxBC 1− nBAnCA

· · ·

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

nABnAC 0 0 0
nABxAC nABnCB 0 0
xABnAC 0 nACnBC 0
xABxAC 1− nABnCB 1− nACnBC 1


. (7.5)

Bialczak[5] outlines a technique for determining X in the two-qubit case by

combining various measured probabilities to trace out one or the other of the

qubits. We define
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P1A ≡ P10 + P11

P1B ≡ P01 + P11,

and then measure these partial probabilities for various initial states, e.g. |00〉

and |01〉. This leads to relations between the partial probabilities for various

initial states, the measurement fidelity f0 and measurement error e0 = 1 − f0 as

defined in §7.1, and the crosstalk probabilities xAB. One such relation is

P1A(01)− P1A(00)

P1B(01)− P1B(00)
=

f0AxBA
1− e0AxAB

≈ f0AxBA (7.6)

where we drop the denominator since e0A and xAB are both small. In Equation 7.6

we measure the quantities on the left-hand side and the fidelity f0A of qubit A,

and from these can then determine the crosstalk probability xAB. This allows all

crosstalk parameters to be determined from the single-qubit fidelities and simple

qubit measurements.

A similar calculation with the independent choice model for the three-qubit

crosstalk matrix shows that we can use the same approach to determine the

crosstalk probabilities in this case. For example, we calculate the following re-

lations:
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P1A(010)− P1A(000)

P1B(010)− P1B(000)
=

f0AxBA
1− e0AxAB

1− e0CxCA
1− e0CxCB

≈ f0AxBA (7.7)

P1A(001)− P1A(000)

P1C(001)− P1C(000)
=

f0AxCA
1− e0AxAC

1− e0BxBA
1− e0BxBC

≈ f0AxCA, (7.8)

and so on for partial probabilities of the other qubits with appropriate combi-

nations of initial states. From these relations one could work out the 6 crosstalk

parameters in this model in a way very similar to what can be done with two

qubits. Thus we could hope to measure the crosstalk and correct for it. However,

this assumes that the Independent Choice model correctly describes the physics

of multi-qubit measurement crosstalk. Not all crosstalk models share these prop-

erties, as we will see in the next section.

7.2.2 Crosstalk model: Cascade

In the previous section, we stipulated that the qubits which are switched by

crosstalk cannot in turn decide to switch other qubits. Here we relax that re-

striction and allow the crosstalk effects to “cascade” from one qubit to the next.

We will again assume that at each stage the 6 crosstalk parameters (xAB, xAC

and so on) determine the probability of one qubit switching another, but several

stages of crosstalk can happen in succession.
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Consider what happens when a system in state |001〉 is measured. When

qubit C switches, it decides with probability xCA to switch qubit A and with

probability xCB to switch qubit B. Suppose qubit B switches but A does not,

taking the system to state |011〉 with probability nCAxCB. Now, qubit B can in

turn decide whether or not to switch qubit A; if it does not switch, the system

stays in state |011〉 with probability nCAxCBnBA, otherwise the system switches

to |111〉 with probability nCAxCBxBA. Similar considerations apply if crosstalk

first switches A but not B, after which A in turn can decide whether or not to

switch B. Clearly this model, while based on the same 6 crosstalk parameters as

before, will produce a crosstalk matrix with a different structure. Working this

out in detail we find:

X3C =



1 0 0 0
0 nCAnCB 0 0
0 0 nBAnBC 0
0 nCAxCBnBA nBAxBCnCA nBAnCA
0 0 0 0
0 xCAnABnCB 0 0
0 0 xBAnACnBC 0
0 1− Σ 1− Σ 1− nBAnCA

· · ·

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

nABnAC 0 0 0
nABxACnCB nABnCB 0 0
xABnBCnAC 0 nACnBC 0

1− Σ 1− nABnCB 1− nACnBC 1


(7.9)
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where the 1−Σ entries are included for brevity and should be replaced by 1 minus

the sum of all other entries in the respective column, to preserve normalization.

Note that the columns with two qubits in the excited state are not changed in this

model, because after the third qubit decides whether or not to switch the cascade

has no effect.

If we attempt to calculate the partial probabilities (e.g. P1A) and their ratios

with this model, as in the previous section, the results are complicated and do not

show the same simple structure as in the Independent Choice model or the case

of two-qubits.

What should be clear at this point is that multi-qubit crosstalk is potentially

very complicated and difficult to measure and correct for. If we allow for full

generality in the crosstalk matrix, then the number of degrees of freedom is very

large and the matrix will be hard to measure. If on the other hand we attempt to

reduce the number of degrees of freedom in the crosstalk matrix, then we must rely

on a physical model of how crosstalk works in order to produce the appropriate

matrix structure. It is possible that accurate measurements of crosstalk (using

for example the partial probabilities defined in the previous section) could yield

insight into the actual physics. For our purposes, however, we would like to avoid

these complexities. Hence we turn next to a new measurement scheme that avoids

crosstalk altogether.
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7.3 Crosstalk-Free Measurement

As we have seen in the previous section, measurement crosstalk between multiple

capacitively-coupled qubits is complicated and hence difficult to measure and cor-

rect for. If we look at the form of the various crosstalk matrices in Equations 7.4,

7.5 and 7.9, we notice that all of them share the same first row and first column,

a single 1 in the upper left corner with all other entries equal to 0. This reflects

two facts about measurement crosstalk: first, if no qubits switch then crosstalk

has no effect, so |000〉 is always measured as |000〉; second, crosstalk only acts to

switch additional qubits, not prevent them from switching, so it can not cause

other states to be erroneously measured as |000〉2.

This means that the “null-result” probability P000 of having no excited qubits

is unaffected by crosstalk. The standard measurement scheme is illustrated in

Figure 7.2, showing that most of the numbers we extract from a measurement are

subject to crosstalk errors. If we can devise an alternate means of measuring the

quantum state of the system using only null results, then we can avoid crosstalk

errors and hence the need to characterize and correct for them. There are various

ways that this can be accomplished, and we will describe two such techniques in

this section.

One way to determine the probabilities P000, P001, etc. of the various qubit

2This is of course true for any number of qubits, but here we consider only the relevant
three-qubit case.
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Figure 7.2: Standard measurement, subject to crosstalk.

states using only null-result measurements is illustrated in Figure 7.3. We perform

a set of 2N separate experiments, one for each state, where in each experiment

we apply a set of π pulses to map the desired state to the ground state before

measurement. We then measure and record the null-result probability, which now

corresponds to the probability that the system was originally in the state that

was mapped to ground. For example, to measure P001 we would apply a π-pulse

to qubit C so that |001〉 → |000〉, as illustrated.

Clearly this measurement technique is inefficient, requiring an exponentially

large number of measurements to determine all the state occupation probabilities.

However, for three qubits the exponential overhead is still only a manageable

factor of 8, so we will not worry about this question of efficiency3. More troubling

is the fact that this protocol introduces extra pulses into the sequence of qubit

operations. These pulses have imperfections so that the mapping to the ground

3A quantum state of N qubits contains an exponentially-large amount of information, so any
protocol that tries to extract it all will run into problems of efficiency.
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Figure 7.3: Crosstalk-free Measurement by mapping to the ground state.

state is not perfect, and in addition the qubit will be subject to decoherence

during the added time providing another potential source of error. If our goal

is to understand measurement errors and correct them, then adding extra pulses

makes the job more difficult.

A second crosstalk-free measurement scheme is shown in Figure 7.4. To under-

stand this protocol, consider what happens if we only measure qubits A and B, but

not qubit C. We obtain four probabilities which we write as P00x, P01x, P10x, P11x,

where the subscript x indicates that we have no information about the unmea-

sured qubit C. As before, only the null-result probability P00x is unaffected by

crosstalk, but note that P00x = P000 + P001 because there are two possibilities for

the state of the unmeasured qubit C. The two probabilities P00x and P000 are
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Figure 7.4: Crosstalk-free Measurement using subset measurements.

both null results and so can be measured without crosstalk as we have described;

from these the third probability P001 can be determined.

Continuing in this manner, we can reconstruct the complete set of occupation

probabilities without crosstalk by repeating the experiment 2N − 1 times, each

time measuring only a certain subset of the qubits and recording only the null-

result probability for that subset (for the degenerate case in which no qubits are

measured, we have Pxxx = 1). This gives the following set of measured null-results

Pnull = (P000, P00x, P0x0, P0xx, Px00, Px0x, Pxx0, Pxxx)
T , which is related to the set of

occupation probabilities P = (P000, P001, P010, P011, P100, P101, P110, P111)T accord-

ing to
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Pnull =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


·P

=

(
1 0
1 1

)
⊗
(

1 0
1 1

)
⊗
(

1 0
1 1

)
·P. (7.10)

By inverting this equation, we thus obtain the occupation probabilities in a way

that is completely insensitive to measurement crosstalk.

These relations can be modified in a straightforward way to account for mea-

surement fidelity as well. Recall that the single-qubit fidelity matrix in Equa-

tion 7.2 related the measured probabilities to the intrinsic probabilities for one

qubit. With null-result measurement, the ground-state probability P0 is related

to the intrinsic probabilities in the same way, but we do not measure the excited

state probability, instead using Px = 1 which is just the sum of the intrinsic prob-

abilities. Hence the appropriate “fidelity matrix” for one qubit with null-result

measurement is

Pm =

(
f0 e1

1 1

)
·Pi. (7.11)

Using this result with three qubits, Equation 7.10 becomes

Pnull =

(
f0 e1

1 1

)
A

⊗
(
f0 e1

1 1

)
B

⊗
(
f0 e1

1 1

)
C

·P. (7.12)
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This reduces to the form given in Equation 7.10 in the case of perfect fidelity

when f0 = 1 and e1 = 0. By inverting this equation we obtain an expression for

the occupation probabilities P in terms of the measured null-result probabilities

Pnull with single-qubit measurement fidelity taken into account, and no effect

of measurement crosstalk. This is the measurement protocol used in all of our

experimental results.

One subtlety in this measurement process is that because each element of

Pnull is measured in separate repetitions of the experiment, each is subject to

independent statistical noise. As a result, when Equation 7.12 is inverted the

elements of P may not satisfy the requirements for a set of probabilities that they

be non-negative and sum to unity. We can use maximum likelihood estimation

(MLE) to enforce these constraints and find the probabilities P which give the

measured results Pnull with the highest probability. This maximum likelihood

technique is explained in §A.3.1.
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Chapter 8

Experimental Results

8.1 Bringup and Calibration

A completed four-qubit device of the type used in our experiments is shown in

Figure 8.1. The first step in operating this device is to characterize the individual

qubits and then the multi-qubit performance. With the sample we tested, the

three qubits A, B and C were working, but no switching signal could be observed

from the readout SQUID on qubit D (it appeared to be a short). Thus we were

unable to perform any four-qubit measurements on this device. However, the

remaining qubits worked well, and in fact were remarkably similar to each other,

making it possible to operate all of them and couple them together as desired.

The phase qubits in this device were designed with standard component values,
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Figure 8.1: Schematic and micrograph of four-qubit device.

as described in Chapter 2: critical current I0 ≈ 2 µA, capacitance C ≈ 1 pF, and

inductance L ≈ 720 pH. The coupling capacitance was Cc ≈ 15 pF, chosen to give

coupling strength 2g/2π ≈ 15 MHz at a qubit frequency of 6 GHz, as discussed

in Chapter 6. Each qubit has a separate bias control line, and each qubit has a

separate measurement SQUID for joint readout.

Because every phase qubit is unique, the first step in operating any qubit

device is to calibrate the various qubit parameters for proper reset, operation and

readout. This process has been described in detail in the thesis by Ansmann[2].

128



With our four qubit device, the calibration procedure is essentially the same as for

single or coupled qubits samples. The main difference is that even during single-

qubit bringup operations, we must operate (though not necessarily measure) all

qubits because of small but non-negligible bias crosstalk. If we calibrate one qubit

while the others are left unbiased, then later when the other qubits are biased

to their operating points, the first qubit will shift and the calibrations will be

incorrect. The multi-qubit bringup is thus an iterative process, where we choose

a rough operating point for all qubits (based on SQUID steps), then whenever

one qubit operating bias is changed, the others are recalibrated and this process

repeated until the calibration stabilizes.

In practice this iterative process stabilizes rather quickly because the flux bias

crosstalk between the qubits is relatively small. This allows us to change the

operating bias on one qubit to choose a new operating frequency, then quickly

either recalibrate the other qubits or change their flux bias to compensate and

bring them back to the original operating point. We chose to operate the qubits

detuned from each other by ∼ ±250 MHz as indicated in Table 8.1, so that the

coupling interaction is off since the detuning ∆ is much larger than the coupling

strength (∆/g ≈ 20). Having chosen operating points for all qubits, we can then

characterize the performance of each individual qubit. The relaxation and spin-

echo dephasing times found from basic single-qubit experiments are likewise shown
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qubit T1 (ns) Techo (ns) f10 (GHz)
A 460 270 6.2995
B 460 300 6.5506
C 450 390 6.7988

Table 8.1: Single-qubit parameters.

in the table.

Turning the coupling interaction on requires tuning the qubits into resonance

with each other for some time. The required detuning pulses are calibrated pair-

wise between the qubits; for example, to calibrate the detuning pulse to couple

A with B, we first excite qubit B with a π-pulse and then adjust the amplitude

and length of the detuning pulse on A to maximize the transfer of this excita-

tion to A, as shown in Figure 8.2. The time and amplitude for optimum transfer

give a pulse that implements an iSWAP gate, as needed for the |GHZ〉 protocol.

The process is repeated for each pair of qubits, giving swap times and coupling

strengths as shown in Table 8.2. The coupling strengths are within 5% of each

other and also quite close to the design value of 15 MHz. The disagreement is

probably an indication of a slight underestimate of the island ground capacitance,

as was discussed in Chapter 6.

For the single-step |W〉 and |GHZ〉 protocols we must bring all three qubits into

resonance simultaneously, and the protocols assume that all coupling strengths are

equal. For the |W〉 protocol, we make an approximation by taking the interac-
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Figure 8.2: Multi-qubit coupling calibration.

qubits tiSWAP (ns) 2g/2π (MHz)
AB 40.3 12.4
AC 40.9 12.2
BC 38.8 12.9

Table 8.2: Qubit-qubit coupling parameters.

tion time to be tW = (4/9)t̄iSWAP ≈ 18 ns, where t̄iSWAP = 39.8 ns is the average

of the coupling times between the various pairs of qubits, which turns out to

work reasonably well. For the single-step |GHZ〉 protocol, Galiautdinov has con-

sidered techniques for modifying the protocol to account for inhomogeneities in

the coupling[11], however this protocol suffered from other problems that make it

difficult to implement given the small nonlinearity of phase qubits, as discussed

below in §8.4. In the end, the single-step |GHZ〉 protocol was abandoned, and

only the single-step |W〉 and iSWAP |GHZ〉 protocols were implemented.

Two final multi-qubit calibrations must be performed in order to implement

the desired entangling sequences. These are related to the discussion of reference
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frames in Chapter 3. First, we must calibrate the starting reference phase of

each qubit’s microwave reference frame, so that when the qubits are tuned into

resonance they share common X and Y axes[2, p. 240]. In addition, we must

perform a Ramsey fringe experiment to measure the change in phase experienced

by each qubit during the entire detuning pulse, compared to the reference frame.

This allows us to correctly set the phases of later microwave pulses in that frame1.

These multi-qubit phase calibrations are shown in Figure 8.3.

8.2 Time-evolution of the Qubit State

Having calibrated the single-qubit operation and multi-qubit coupling including

phases, we are now ready to implement the entangling protocols, which can be

translated directly into applied control signals as outlined in Chapter 3. To begin,

we consider the time-evolution of the state occupation probabilities during the

entangling protocols, measured using the crosstalk-free measurement and shown

in Figure 8.4 and Figure 8.5. In each row of these figures, the left panel shows the

pulse sequence with time on the horizontal axis and qubit frequency on the vertical

axis, while the right panel shows the measured state occupation probabilities as

a function of time during the sequence.

1An alternative would be to add a correcting Z-pulse to compensate for this phase change
so that later microwave pulses need not be modified at all, though this increases the sequence
length and so was not done here.
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In the |W〉 protocol (Figure 8.4, top), one qubit is excited and then the sym-

metric interaction between all pairs of qubits is used to distribute that excitation

among all three. During the interaction, the excitation from qubit B (|010〉) is

swapped to qubits A and C (|100〉 and |001〉), then back again. Probabilities P100

and P001 are nearly equal throughout the entire sequence, indicating that the cou-

pling is nearly symmetric, as desired. When the interaction time is set at 18 ns,

the system reaches an equal superposition, and subsequently stays there while

the interaction is off (Figure 8.4, bottom). This is a |W〉-like state, up to phase

rotations due to the detunings. The small residual oscillations visible after the

qubits have been detuned are due to the residual coupling from the finite detuning

of the qubits; these features are also visible in simulations.

Figure 8.5 shows the state occupation probabilities during the |GHZ〉 protocol,

plotted in segments corresponding to the stages of the protocol as indicated. The

sequence is a direct translation of the circuit shown in Figure 5.5; the iSWAP gates

are implemented by tuning the qubits pairwise into resonance for time tiSWAP ≈

40 ns and the single-qubit rotations are implemented by 12 ns-long microwave
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pulses, for a total sequence length of 108 ns. The initial rotations create an equal

superposition of all qubit states, with all probabilities converging on 1/8 (1).

The effect of the two iSWAP gates is then primarily to adjust the phases of the

various components of the superpositions (1-2, 2-3), so that in the final rotation

constructive interference causes |000〉 and |111〉 to be populated, while all other

states are depopulated. For an ideal |GHZ〉 state, the probabilities P000 and P111

should approach 50%, though in the experiment this level is reduced due to the

effects of decoherence and errors discussed in §8.4.

Note that in the |W〉 protocol where one excitation is swapped among the

various qubits, the state evolution is clearly visible in the occupation probabilities

as they evolve in time. In the |GHZ〉 protocol on the other hand, the iSWAP gates

do not have much effect on the populations; rather, they modify the phases of the

various components of the equal superposition, so that the final rotations bring

the system into the desired target state. Most of the state evolution is hidden in

the phase information not captured by these probability measurements.

8.3 Tomography of Entangled States

To fully characterize the quantum states created by the entangling protocols, in-

cluding the phase information, we perform Quantum State Tomography (QST)[15]

by applying various combinations of single-qubit rotations before measurement.
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The details of this process, including how the density matrix is extracted from the

measured data using maximum likelihood estimation (MLE) to satisfy the physi-

cality constraints, are described in Appendix A. The theoretical and experimental

density matrices are shown for |W〉 in Figure 8.6 and for |GHZ〉 in Figure 8.7.

The real part of ρth
W = |W〉 〈W| is shown at the left in Figure 8.6. All nonzero

elements are equal to 1/3, and all imaginary parts (not shown) are identically

zero. The experimental ρW real part and imaginary part (middle) and imaginary

part (right) compare nicely with the theoretical prediction: the imaginary part is

small with |Im ρW| < 0.03 and the overall fidelity is FW = 〈W| ρW |W〉 = 0.78.

The real part of ρth
GHZ = |GHZ〉 〈GHZ| is shown at the left in Figure 8.7.

All nonzero elements are equal to 1/2, and all imaginary parts (not shown) are

identically zero. The experimental ρGHZ real part (middle) and imaginary part

(right) again agree nicely with theory, though not quite as well: the imaginary

part is somewhat larger |Im ρGHZ| < 0.10 and the overall fidelity slightly worse at

FGHZ = 〈GHZ| ρGHZ |GHZ〉 = 0.62. However, it is clear from the density matrices

that the structure of the state is qualitatively correct.

Another way of looking at the state is to consider expectation values of com-

binations of one-, two- and three-qubit Pauli operators. This is know as the

“Pauli set” of the state or, in optics terminology, the generalized Stokes param-

eters. These are shown for both states |W〉 and |GHZ〉 in Figure 8.8. The gray
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Figure 8.6: Quantum state tomography of |W〉.
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Figure 8.7: Quantum state tomography of |GHZ〉.
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bars show theoretical expectation values, with the experimental results overlaid

in color. While the same information is contained in both the density matrix and

the Pauli set, looking at the states in this way immediately shows the striking

differences between |W〉-type and |GHZ〉-type entanglement, as discussed above

in §4.2. In addition to the three-qubit correlation terms, the |W〉-state has two-

qubit correlations because tracing out one qubit from a |W〉-state still leaves the

others partially entangled. For |GHZ〉, the two-qubit correlations other than the

trivial ZZ-type are absent because tracing out one qubit leaves the others in a

completely mixed state.

To understand the significance of the measured fidelities, we compare these re-

sults to the entanglement witness operators that detect three-qubit entanglement,
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as described in §4.2.2. Three-qubit entanglement is witnessed[1] for the |W〉-state

provided that FW > 2/3, and for the |GHZ〉-state provided that FGHZ > 1/2. Both

inequalities are satisfied by the respective measured density matrices, indicating

that they are genuine three-qubit entangled states that cannot be decomposed

into mixtures of separable states.

While the |GHZ〉 fidelity is not high enough to violate the other witness op-

erator WGHZ2 which would unambiguously separate it from the class of |W〉-like

states, the measured state ρGHZ is found to violate the Mermin-Bell inequality

given in Equation 4.11. Experimentally we find GρGHZ
= 2.076±0.029 > 2; this is

far from the ideal value G|GHZ〉 = 4 for a pure state, but certainly an unambiguous

violation, indicating that the state is truly nonclassical and definitely separating it

from the |W〉 class. The violation is not loophole-free due to use of the crosstalk-

free measurement protocol rather than a simultaneous measurement protocol[3],

but it is nonetheless an indicator of genuine three-qubit entanglement.

8.4 Sources of Error

The lower fidelity of |GHZ〉 compared to |W〉 is due to two main factors: first, the

|GHZ〉 sequence is longer because of the two iSWAP gates; the sequence length

of 108 ns is a substantial fraction of the dephasing time T2 of the qubits, which

is particularly harmful because the sequence relies on precise phase adjustment
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and interference to populate |000〉 and |111〉 while depopulating all other states.

Longer coherence times would improve this, as would stronger coupling to reduce

the gate time.

Second, the presence of |2〉 and higher levels and the relatively small nonlin-

earity of the phase qubit cause errors due to transitions into higher excited states,

for example |110〉 → |200〉. These transitions can be ignored in the |W〉 protocol

since they are inaccessible with only one excitation in the system, but they cause

errors in the |GHZ〉 protocol since all qubit states are populated, including those

with multiple excitations. These higher levels also make the single-step |GHZ〉

protocol very difficult to implement because they perturb the qubit states, lead-

ing to phase shifts of the various levels so that the final rotations do not populate

|000〉 and |111〉 as desired. The effect of higher levels becomes particularly com-

plicated in this experiment when using fixed capacitive coupling with detuning to

turn off the interaction, due to spectral crowding from the higher qubit levels.

Spectral crowding greatly constrains the operation of a multiqubit device with

fixed coupling. When the detuning between coupled qubits is comparable to the

nonlinearity, then unwanted transitions to |2〉 are possible, resulting in errors.

This means detunings must be either kept smaller than the nonlinearity, in which

case it is hard to achieve a good coupling on/off ratio, or larger than the nonlin-

earity, in which case the system will still sweep through avoided-level crossings
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with |2〉 and thus potentially undergo leakage transitions if the sweep is not fast

enough. The problem is magnified with more coupled qubits and higher num-

bers of excitations in the system, as the number of potential leakage transitions

quickly becomes unmanageable. This highlights the need to replace frequency

detuning with tunable coupling schemes, or to use alternative architectures in the

qubits are not all coupled together simultaneously, both of which are currently

active areas of research. While the complete graph coupling works well for gen-

erating the highly symmetric entangled states we have discussed here, it will not

be particularly convenient for a universal quantum computer.

8.5 Conclusion

The experimental data show unambiguously that we have succeeded in creating

entangled states of both possible three-qubit varieties. Both states ρW and ρGHZ

were shown to violate the entanglement witnesses necessary to prove three-qubit

entanglement, and ρGHZ was also shown to violate the Mermin-Bell inequality,

which rules out a classical hidden-variable model and hence unambiguously sepa-

rates this from the |W〉 class.

From the standpoint of quantum computation and the future development of

superconducting quantum information processing devices, this work strengthens

the case for superconducting devices. A multi-qubit device was designed that
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took “off-the-shelf” qubit designs and dropped them onto a chip with a simple

coupling circuit whose properties could be worked out via straightforward circuit

analysis. The device worked as designed, showing the “modularity” that is avail-

able with the superconducting circuit approach. As the individual components

are improved, they can be easily combined to scale up, toward the eventual goal

of a full-fledged quantum computer.
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Appendix A

Quantum Tomography

“Tomography”, from the Greek tomos (“slice”) and graphein (“to write”), is a

method of imaging that involves taking slices and then combining them together

to reconstruct a complete image. In quantum mechanics, we know that no single

measurement can ever capture all information about the state of a system, because

measurement causes the system to collapse into one eigenstate, and hence only

reveals a small fraction of the information. By repeating such a measurement on

an ensemble of identically-prepared systems we can learn the probabilities for the

system to be projected into each eigenstate, but even these probabilities give only

a “slice” through the full quantum information contained in the pre-measurement

state. A quantum tomographic procedure is a way to reconstruct the complete

quantum state by slicing it in different ways before measuring, and then using
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the information to deduce the original state. This technique is in principle quite

simple, though in practice there are a few subtleties. Here we will describe briefly

the procedure we used for quantum state tomography (QST) in the data presented

in Chapter 8. We will also briefly describe the related procedure for quantum

process tomography (QPT) that has been used in previous works[26].

A.1 State Tomography

Consider first a single qubit. The state of such a system can be described as a

point lying in or on the Bloch sphere, with pure states lying on the surface and

mixed states lying in the interior. To locate a point in this sphere requires three

coordinates; a typical measurement reveals the probability P0 for the system to

be in state |0〉 and the probability P1 for the system to be in state |1〉, which

translate into the position along the Z-axis of the Bloch sphere: 〈Z〉 = P0 − P1.

To obtain the X- and Y -coordinates of the state, we simply rotate the Bloch

sphere before measuring: rotating about Y by −π/2 brings the X axis upright,

allowing a measurement of the X-coordinate, while rotating about X by π/2

brings the Y axis upright, allowing a measurement of the Y -coordinate. These

three measurements give the complete location of the point on the Bloch sphere,

allowing the full quantum state to be reconstructed.1

1Notice that we rotate about the Y -axis to obtain the X-coordinate and vice versa. In the
Bloch sphere picture it is convenient to think about the axes along which we are measuring,
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Now suppose instead that we have a system of N qubits in some unknown

state ρ. Performing a standard projective measurement will allow us to determine

the occupation probability Pk = ρkk of each eigenstate |k〉 of the system. These

2N numbers have 2N − 1 degrees of freedom due to normalization; this represents

a small “slice” of the full density matrix which has a total of (2N)2 − 1 = 4N − 1

degrees of freedom.

In order to obtain the other needed slices, we perform all possible combinations

of rotations on each qubit before measuring the system to obtain the diagonal

probabilities. With two qubits, for example, the rotations would be I ⊗ I, I ⊗X,

I ⊗ Y , X ⊗ I, X ⊗X, X ⊗ Y , Y ⊗ I, Y ⊗X, and Y ⊗ Y , where I is the identity

operation and X and Y represent rotations about the respective axes by π/2.

Similarly, for more qubits we apply all combinations of I, X and Y rotations on

all qubits. There are a total of 3N such combined unitary rotations which we

denote by U j, where the index j runs from 0 to 3N − 12. After rotation, the

system is in the state ρj = U jρ(U j)† and the measurement reveals the diagonal

elements

P j
k = (ρj)kk = 〈k|U jρ(U j)† |k〉 . (A.1)

Altogether, these measurements yield 3N(2N −1) = 6N −3N numbers from which

with the rotations simply being used to bring the measurement axis into coincidence with the
Z-axis. In general, however, it will be more useful to think in terms of the pre-measurement
rotations themselves.

2We can think of the index j as an N -digit base-3 number by making the correspondences
I ↔ 0, X ↔ 1 and Y ↔ 2.
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to determine the density matrix with 4N − 1 degrees of freedom. For N = 1

these quantities are equal, 61 − 31 = 41 − 1 = 3, so that we have exactly enough

information, as we saw above. For N ≥ 2 we have 6N − 3N > 4N − 1 so that

this tomographic measurement protocol gives more than enough information to

determine the density matrix. In fact the amount of extra information grows

exponentially with the number of qubits, so that this protocol is highly inefficient,

but for reasonably small numbers of qubits this is of little concern; even if we

had a perfectly efficient protocol, the information in the density matrix grows

exponentially, so tomography is never going to be a scalable procedure.

Having made the measurements and collected the results, the problem of to-

mography then becomes to invert the system of equations A.1, solving for ρ in

terms of the measurements P j
k . This can be solved by converting these equations

into a single matrix equation; we do this by straightforward but somewhat cryp-

tic manipulation of indices. First, we introduce dummy indices on all the matrix

multiplications to obtain

P j
k = (U j)kmρmn((U j)†)nk

= (U j)kmρmn(U j)∗kn
= (U j)km(U j)∗knρmn (A.2)

where there is an implied summation over indices m and n, and where in going

to the last line we have simply reordered terms since these three indexed terms
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are just c-numbers. The two U terms essentially combine to form a tensor object

with 4 indices k, j, m, and n. Instead of solving this tensor relation directly, we

can instead convert it into a matrix expression by “reshaping” the objects P j
k and

ρmn into one-dimensional vectors, and the U tensor accordingly into a matrix. To

do this, we introduce two new indices A(j, k) = 2Nj + k and B(m,n) = 2Nm+n.

These relations are invertible3 by taking k(A) = A mod 2N and j(A) = bA/2Nc4,

and similarly for m and n. Hence, we can reshape the measured probabilities into

a vector P̃A = P
j(A)
k(A) and similarly ρ̃B = ρm(B)n(B). Likewise, the 4-index U tensor

becomes a matrix ŨAB = (U j(A))k(A)m(B)(U
j(A))∗k(A)n(B). This finally gives the

matrix equation

P̃A = ŨABρ̃B (A.3)

which can be inverted to obtain from the measured P̃A the desired ρ̃B, which

can then be reshaped one final time to obtain ρ. As mentioned above, the prob-

lem is overconstrained since 3N · 2N = 6N input measurements are used to find

4N elements of the density matrix, so that this inversion is typically done as a

least-squares optimization to find the closest fit solution. Given the presence of

experimental noise on the measured quantities, this overdetermination is quite

helpful in achieving a robust solution.

3Note that this sort of index manipulation is much more straightforward when indices start
with 0, rather than 1. This is one of the primary reasons for choosing this convention, rather
than starting indices from 1.

4In Python the builtin function divmod does what we need: j, k = divmod(A, 2**N).
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A.2 Process Tomography

In quantum computing we are often concerned not only with creating particular

quantum states, but with creating particular gates which are unitary transfor-

mations U that take any given input state |ψ〉 to a transformed output state

|ψ′〉 = U |ψ〉. Suppose we wish to understand how closely an experimentally-

realized gate approximates the desired unitary. To do this, we must recognize

first that experimental states are never completely pure states and second that

experimental gates are never completely unitary. Hence a more general descrip-

tion of the action of the gate is required, and this is provided by the theory of

quantum operations[29, chap. 8]. In this theory, a quantum operation E is de-

scribed as a mapping from an input density matrix ρ to an output density matrix

η = E(ρ). For our purposes, there are two important ways in which these quan-

tum operations can be expressed. First, in the χ-matrix representation, we pick

a basis of unitary operators Aj which span the space of all possible unitaries, and

then any operation E can be expressed as

η = E(ρ) =
∑
jk

χjkA
jρ(Ak)†. (A.4)

The matrix χjk depends on the choice of basis but otherwise contains all the

information about the quantum operation. Second, in the operator-sum represen-

tation, a quantum operation E can be expressed as E(ρ) =
∑

k E
kρ(Ek)†, where

the summation is over a single index k, and the Ek are unitary matrices known
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as the operation elements of E . This representation can be found by diagonal-

izing the χ matrix; in a sense it gives a set of basis operators for the operation

E . Because the operator-sum representation can be found by diagonalizing the

χ-matrix, we will discuss only how to determine the χ-matrix.

We begin by preparing a spanning set of input states ρi where i is an index

labelling the states. These input density matrices can either be assumed to be

created perfectly, in which case the ρi are taken from theory, or the input states

can be measured with state tomography as described in the previous section to

determine the input states that were actually created. Generally, we prefer the

latter approach. Next, each input state is subjected to the quantum operation we

wish to characterize, resulting in the output states ηi, which are likewise measured

using quantum state tomography.

Now, from the measured input and output states ρi and ηi we must determine

χ. To do this, we rewrite Equation A.4 by inserting all matrix indices, as we did

above for state tomography, and then reordering the c-number terms to group the

unknowns together. We obtain

(ηi)mn = χjk(A
j)mp(ρ

i)pq((A
k)†)qn

= χjk(A
j)mp(ρ

i)pq(A
k)∗nq

= χjk(A
j)mp(A

k)∗nq(ρ
i)pq. (A.5)

Now, we reshape the input and output density matrices by introducing two new
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indices A = 2Nm+ n and B = 2Np+ q, recalling that these are invertible so that

we can regard m and n as functions of A, and similarly p and q as functions of B.

After the reshaping we then have η̃iA = ρimn, etc., and Equation A.5 becomes

(η̃i)A = χjk(A
j)m(A)p(B)(A

k)∗n(A)q(B)(ρ̃
i)B. (A.6)

Note that the terms involving χ and the operator basis elements A depend only

on the indices A and B. Thus we can define an object we call the “pointer-basis”

χ-matrix:

χpointer
AB ≡ χjk(A

j)m(A)p(B)(A
k)∗n(A)q(B). (A.7)

The term “pointer basis” refers to the fact that each element of this object

χpointer
AB relates the elements ρB and ηA in the input and output matrices; in other

words, each element of χpointer “points” at one element each of the input and

output matrices, rather than relating them through some operator basis. This

matrix is useful primarily because it is easy to calculate; in Equation A.6 we

simply regard all the input density matrices as a matrix ρ̃Bi and similarly regard

all the output density matrices as a matrix η̃Ai (we take reshaped input and output

matrices as corresponding columns of these two matrices), and then we have

η̃Ai = χpointer
AB ρ̃Bi (A.8)

which can be easily solved for χpointer
AB by a simple least-squares inversion, as we
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did for state tomography above.

A.2.1 Change of Basis

Having computed the pointer matrix χpointer
AB , we must now compute the χ-matrix

in the desired operator basis A. To do this, we start from the definition of the

pointer matrix in Equation A.7 and perform our reshaping trick one final time.

We introduce two new indices α = 4NA + B and β = 4Nj + k and the reshaped

matrices χ̃pointer
α and χ̃β and from this we obtain

χ̃pointer
α = (Aj(β))m(A(α))p(B(α))(A

k(β))∗n(A(α))q(B(α))χ̃β

= TAαβχ̃β. (A.9)

The 4N by 4N matrix TAαβ depends only on the operator basis A, and can thus

be computed one time and stored. This relation can then be inverted in the usual

way to find χ̃, and this vector is then reshaped to give χ in the operator basis, as

desired.

A.3 Enforcing Constraints

As was mentioned above, the matrix inversions used to find density matrices and

χ matrices are typically overconstrained so that they can be solved using a least-

squares minimization to invert the desired matrix relation. Efficient algorithms are
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available in most numerical linear algebra packages for performing this inversion,

making the process simple and ensuring that it will be somewhat robust against

the inevitable statistical errors in the measured values. However, efficiency and

numerical stability are not the only requirements on our procedure for extracting

a density matrix or χ-matrix. In addition, these matrices must satisfy certain con-

straints in order to be physically valid. For example, the density matrix must be

Hermitian (ρ† = ρ), positive semidefinite (〈ψ| ρ |ψ〉 ≥ 0 for all |ψ〉, or equivalently

all λi ≥ 0 for all eigenvalues λi of ρ) and have unit trace (Tr ρ = 1). A physically-

valid χ-matrix must satisfy the same set of constraints, Hermiticity, unit trace,

and positive semidefiniteness. In order for our tomographic reconstructions to be

meaningful, the matrices we extract from the measured data must satisfy these

constraints.

The first step in tomography is typically to perform the naive matrix inversion

as outlined above. We then check that the constraint violations, if they exist,

are small. For typical tomographic reconstructions, we find that Tr ρ ≈ 1 and

ρ† ≈ ρ, up to numerical error. The requirement of positive semidefiniteness, on

the other hand, is usually not satisfied; the resulting density matrix may have small

negative eigenvalues with a magnitude a few percent that of the largest positive

eigenvalues. The size of these negative eigenvalues typically corresponds to the

binomial uncertainty expected from the number of repetitions of the experiment,
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and so such small deviations from physicality are not surprising; they simply

indicate the statistical uncertainty of the measurement process and not that the

tomography procedure is faulty or the quantum state nonphysical. Having passed

these “sanity checks” that the matrix is as close to being physically valid as can

be expected, we can then employ one of two techniques to extract a matrix that

absolutely satisfies the required constraints.

A.3.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE)[15] is a common statistical technique for

estimating some quantity based on a set of measurements. For any given value

of the quantity, we calculate the “likelihood” that this value would produce the

observed measurement results. The estimated quantity is then taken to be that

for which the likelihood of the observed measurements is maximized.

Essentially all the qubit measurements we make involve trying to determine a

probability by repeatedly performing an experiment that gives a binary answer.

Suppose the underlying probability is p and we repeat the measurement n times.

The probability of obtaining a result of “1” exactly k times is given by the binomial

distribution, and is equal to

B(k;n, p) ≡
(
n
k

)
pk(1− p)n−k =

n!

k!(n− k)!
pk(1− p)n−k. (A.10)

Normally, we think of p as being fixed and the number of results k varying, but
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the trick of maximum likelihood is to reverse this. The number of results k is fixed

(this is the number we measure, the input data) and the probability p can vary

(this is what we wish to determine based on our measurement). Thus we think of

Equation A.10 not as giving the probability of getting k results given underlying

probability p, but rather as the likelihood that the underlying probability is p given

that the result “1” was obtained k times. We denote this likelihood by L(p), and

the problem is to find p that will maximize it.

Note that maximizing L is equivalent to maximizing

logL = log(n!/k!(n− k)!) + k log(p) + (n− k) log(1− p). (A.11)

The first term is independent of p, and so we only need worry about the latter

two. The derivative of logL with respect to p is

d logL
dp

=
k

p
− n− k

1− p
. (A.12)

Setting this derivative equal to zero and solving for p to find the extremum gives

p = k/n. This result is hardly surprising; it simply says if we perform n trials

and get the result “1” exactly k times, the most likely value of the underlying

probability is k/n, exactly as we would expect.

Now consider the crosstalk free measurement scheme described in Chapter 7.

For the moment we will assume there are three qubits with perfect measurement

fidelity. We measure each subset of qubits n times and record the number of

null results k000, k00x, etc. Normally we would immediately convert these to
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probabilities P000 = k000/n, P00x = k00x/n, etc. and then use Equation 7.10

to solve for the state occupation probabilities themselves. However, when this

equation is inverted we obtain

P =



1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
1 −1 −1 1 0 0 0 0
−1 0 0 0 1 0 0 0
1 −1 0 0 −1 1 0 0
1 0 −1 0 −1 0 1 0
−1 1 1 −1 1 −1 −1 1


·Pnull

=

(
1 0
−1 1

)
⊗
(

1 0
−1 1

)
⊗
(

1 0
−1 1

)
·Pnull. (A.13)

The problem with this equation is those minus signs. Because the k’s are mea-

sured independently, they are each subject to independent statistical noise, so we

have no guarantee that, for example, 0 ≤ P001 = P00x−P000 = (k00x−k000)/n ≤ 1,

as required of probabilities. To solve this we need to do two things: first, we need

to constrain the search so that we only consider valid probabilities, and exclude

negative numbers; second, we need to maximize the likelihood for probabilities

given all the measured data, rather than considering individual null counts k

independently.

To enforce the constraints, we can reparametrize the problem. Instead of min-

imizing a likelihood function over occupation probabilities P = (P000, P001, . . .)
T ,

we introduce a new set of variables t = (t000, t001, . . .)
T and we define Pabc =
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t2abc/(t · t). From this definition, it is clear that Pabc ≥ 0 due to the square, and

that
∑
Pabc = 1 due to the normalization, so that the components of P will be

a valid set of probabilities, no matter what the value of t. Now, if we rewrite

the likelihood function L in terms of t, then the problem to be solved is still to

minimize this function, but the minimization is completely unconstrained with

respect to t. Of course the solution is no longer unique in terms of t, but will still

give a unique answer when we calculate the probabilities P.

To make the maximum likelihood work for the combined set of measurement

data, rather than the individual null counts, note that the counts are taken in in-

dependent experiments, so the probability of getting a set of results (k000, k00x, . . .)

is just the product of several binomial distribution factors

(
n
k000

)
P k000

000 (1− P000)n−k000 ×
(

n
k00x

)
P k00x

00x (1− P00x)
n−k00x × . . . (A.14)

where P00x = P001 +P000, etc. We now regard this instead as a likelihood function

L(P), rewrite it in terms of t as described in the previous paragraph, and then

take the logarithm as we saw above to obtain finally

logL(t) = C + k000 logP000(t) + k00x logP00x(t) + . . . (A.15)

where C is a constant from the various combinatorial factors that can be ignored

in the minimization, and where P00x(t) = P001(t) + P000(t) = (t2001 + t2000)/(t · t)

and so on for the other probability terms. To find the actual occupation prob-
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abilities, we then simply perform a numerical minimization of this log-likelihood

function, for example using fminsearch. Including finite measurement fidelity

simply changes slightly the equations relating the null result probabilities to the

occupation probabilities.

Finally, we discuss briefly the problem of using MLE with state tomography

to determine a density matrix given a set of measurement results. Again, the

structure of the problem is the same as what we have just seen above. We obtain

a set of counts k, each one of which is determined by applying a unitary operation

U to the density matrix ρ and then measuring a certain set of qubits, possibly

with finite measurement fidelity. The probability we expect for this measurement

is p = F · diags(UρU †) where diags(M) is a vector consisting of the diagonal

entries of the matrix M , which for a density matrix are the accessible occupation

probabilities, and where F is a “fidelity vector” that determines the relationship

between these diagonals and the actual measured result, due to measuring a subset

of qubits and/or finite measurement fidelity (given by the rows of the fidelity

matrix in Equation 7.12).

The likelihood of obtaining the measured counts is a product of binomial terms,

one for each measured count k and expected probability p, and the log-likelihood is

a sum of terms, as we have seen above. The only thing remaining is to parametrize

the search for the maximum likelihood in such a way that the matrix ρ is always
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physical, but the search itself is unconstrained.

It turns out that such a parametrization is quite straightforward[31, chap. 4].

We define a lower-triangular matrix with real diagonals as

Γ ≡


t0

t1 + it2 t3
t4 + it5 t6 + it7 t8
t9 + it10 t11 + it12 t13 + it14 t15

...
. . .

 (A.16)

with a total of 64 entries for the 8 × 8 three-qubit case. We then set ρ =

ΓTΓ/Tr(ΓTΓ). It can be shown that ρ defined in this way is Hermitian, positive

semidefinite, and has unit trace, as required for a physical density matrix. What is

more, every Hermitian positive semi-definite matrix can be written in this way, so

that by rewriting our likelihood in terms of these variables t = (t0, t1, . . .) through

the parametrization of ρ, we can perform an unconstrained minimization of L.

This yields the most likely density matrix ρ, given the measured null results.

As might be expected, the minimization of the likelihood function over the

64-dimensional space given by the vector t can be rather inefficient. The process

must be seeded, which we do by taking the output from the simple least-square

inversion described above, zeroing out any negative eigenvalues, and renormalizing

the resulting matrix to have unit trace. This is a simple though non-rigorous

means of finding a “close” physical density matrix that serves as a reasonable

initial guess and typically allows the unconstrained search to find a minimum
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reasonably quickly. However this entire approach quickly breaks down for larger

numbers of qubits due to the exponential growth of the dimensionality of the

search space.

A.3.2 Semidefinite Programming

Semidefinite programming (SDP)[37] is another technique that can be used to find

a physical density matrix given our measurement data. SDP is one of a family of

optimization algorithms that generally fall under the term “convex optimization.”

A full explanation of these techniques is far beyond the scope of this text; we will

note only that the problem of finding a “nearby” matrix that is close to the one

derived by the naive matrix inversion and satisfies the physicality constraints on

a density matrix falls into this category of optimization problem. As such, we

can rely on the well-defined mathematical structure of these problems, and the

many techniques that have been developed for solving them efficiently. Using a

solver package such as YALMIP5 for MATLAB allows such a problem to be stated

concisely and solved quickly.

Figure A.1 shows a simple MATLAB function that uses YALMIP to enforce

physicality constraints. The function accepts a matrix rho which typically will be

the density matrix determined from a simple least-square inversion as described

5http://users.isy.liu.se/johanl/yalmip/
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function [rhoFit, twoNormDist] = fitTwoNorm(rho)

% find the 2-norm-closest physical density matrix

[m n] = size(rho);

% define matrix to be optimized

rhoVar = sdpvar(n, n, ’hermitian’, ’complex’);

% build constraints: unit trace and non-negativity

C = [trace(rhoVar) == 1, rhoVar >= 0];

solvesdp(C, trace((rhoVar-rho) * (rhoVar-rho)));

twoNormDist = sqrt(double(real(trace((rhoVar-rho) * (rhoVar-rho)))));

rhoFit = double(rhoVar);

Figure A.1: Enforcing physicality constraints with YALMIP.

above. The problem is set up by defining a variable rhoVar which we declare to be

of the same size as rho and to be Hermitian. We then set up a list of constraints, in-

dicating that rhoVar should have unit trace and be positive semidefinite. Next this

list of constraints is passed to the solvesdp function, which solves for the value

of rhoVar that minimizes the quantity trace((rhoVar-rho) * (rhoVar-rho))6.

Finally, we return the solution matrix rhoFit and the distance between the initial

matrix and the solution.

There are a few things to note about this semidefinite programming solution

for enforcing constraints. First is the fact that we wrote very little code; we

essentially just described our problem to the YALMIP library and it determined

6This is equivalent to minimizing the trace 2-norm
√

Tr(A†A), where the conjugate transpose
operation is unnecessary since the matrices involved are Hermitian. Minimizing with or without
the square root is equivalent, since the square root function is monotonic.
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how to solve the problem in an optimized way. This is possible because of the

well-defined mathematical structure of this class of optimization problems, which

makes for a very convenient method of solution. Second, note that the choice

of matrix norm or distance measure was somewhat arbitrary; we chose the trace

2-norm
√

Tr(A†A) because it is very easy to implement, but in fact there are

no good criteria by which to judge which matrix norm is the “right” one. Each

matrix norm simply gives a slightly different answer as to what is the “closest”

physical density matrix.

Hence, the semidefinite programming approach has a well-defined mathemati-

cal structure that can be solved quickly and efficiently, but it requires an arbitrary

choice of distance measure and does not take into account any information about

how the data were taken, such as the number of repetitions. In addition, the SDP

solution assumes that the starting density matrix coming from the least-square

fitting procedure is “close” to the true physical density matrix, and then applies

a purely mathematical transformation to correct it for physicality. To get the

initial guess for input to SDP, we must apply fidelity corrections to the measure-

ments themselves and even apply some other technique such as MLE to correct

the probabilities measured in a given run so that they are are non-negative and

sum to one. In other words, SDP allows for complete freedom in the way we

do the tomography, and then no matter what density matrix it is given, it will

161



produce a physical density matrix. It is simply a bolt-on final step in the process,

but the overall soundness of the tomography procedure depends more on the steps

leading up to the application of SDP.

The MLE technique outlined in the last section, on the other hand, is an all-in-

one approach. It takes as inputs the raw experimental measurements and directly

outputs a physical density matrix, taking into account the statistical aspects of

the measurements and requiring no intermediate steps. There is just one correct

way to implement the tomography using MLE. However, finding the solution

requires an unstructured search over a very high-dimensional space, which can

be quite inefficient, and scales poorly as the size of the density matrix increases.

However, for the three-qubit density matrices measured in our experiments the

MLE technique worked sufficiently quickly and was used for all the tomography

presented in Chapter 8.

162



Bibliography
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