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Abstract

A Macroscopic Mechanical Resonator Operated in the Quantum Limit

by

Aaron D. O’Connell

We report the experimental results of a superconducting quantum bit coupled

to a macroscopic mechanical resonator. The coupled sample was cooled in a

dilution refrigerator to T = 25 mK. At this temperature, we measured the phonon

occupation of the mechanical resonator and found it to be in the quantum ground

state with high probability P0 > 93 %. We then excited the mechanical resonator

from its ground state |0〉 to the single phonon state |1〉 by transferring a single

quantum excitation from the quantum bit to the mechanical resonator. Using

this ability, we probed the energy lifetime of the mechanical resonator, T1M = 6.1

ns, by monitoring the decay of a single phonon state. Next, we measured the

decay of the superposed phonon state (|0〉+ |1〉)/
√

2 in order to extract the phase

coherence time T2M ≈ 2T1M. Finally, we explored higher phonon energy levels by

directly exciting the mechanical resonator with a classical microwave source, thus

creating a mechanical coherent state.
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Chapter 1

Introduction

The theory of quantum mechanics makes a number of predictions that seem to

run contrary to common sense. However, these predictions have been experimen-

tally verified again and again. Since quantum theory has been used with a great

deal of success to describe the physical world, it stands to reason, then, that the

perceived peculiarity must stem from the physical world itself. This is not such

strange assertion considering quantum theory was predominantly developed to de-

scribe single particle phenomena; mostly in the context of electrons and photons.

Since single particles are not readily observable, one should not expect a descrip-

tion of these particles to be subject to the same notions one may have regarding

macroscopic objects.

However, since its inception in the early 20th century, there has been a heated
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debate over the extent to which quantum mechanics can be applied to objects in

our everyday world. This idea is usually conceptualized in the context of cats,

specifically, Schrödinger’s cat [43]. While we will not go into the details here, the

main idea of the thought experiment is to highlight the difficulty faced when at-

tempting to adequately describe the interplay between the seemingly incongruous

concepts of quantum and classical mechanics. What was thought at the time,

and is arguably still the prevailing notion of our time, was that microscopic ob-

jects obey quantum mechanics, macroscopic objects obey classical mechanics (à

la the correspondence principle), and quantum coherence is destroyed when the

microscopic interact with the macroscopic.

The idea, then, of a superposed macroscopic mechanical object strikes a chord

with the imaginative. However, the observation of such macroscopic quantum ef-

fects is technically challenging, hindered by the fact that most macroscopic objects

are strongly coupled to an environment that masks or destroys quantum behavior.

It may turn out that this environmental coupling is the primary factor prohibit-

ing macroscopic objects from displaying quantum behavior as opposed to some

fundamental size limitation imposed by quantum mechanics [19, 54]. However,

sufficient evidence supporting this claim has yet to be seen.

We have performed a series of measurements on one such sufficiently isolated

mode of a macroscopic mechanical object; the fundamental dilatational mode of

2



a film bulk acoustic resonator (FBAR). The results of these measurements are

consistent with the standard quantum description of a harmonic oscillator, the

appropriate model for the mechanical resonant mode. Although these measure-

ments constitute the first observations of quantum behavior in a macroscopic

mechanical oscillator, such large scale mechanical quantum behavior should be

observable in other systems as well. In recent years, there have been a number of

experiments, on disparate physical systems, that have produced promising results

near the quantum limit [17, 36, 12, 13, 41, 37].
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Chapter 2

The state of the art

The goal of measuring a mechanical resonator in the quantum ground state has

received much attention in recent years and has helped fuel the rapidly growing

field of quantum limited motion detection. The motivation to reach the quantum

ground state of a mechanical object is twofold. On one hand, the observation

of quantum effects in macroscopic mechanical systems probes some of the funda-

mental paradoxes of quantum measurement theory, an esoteric goal, and on the

other hand, the observation of the mechanical ground state necessitates the use

of extremely sensitive displacement sensing, a pragmatic engineering feat. The

innate challenges encountered when attempting to observe quantum effects in rel-

atively large mechanical systems have lead researches to pursue a diverse set of

experimental approaches. We will examine the criteria necessary for the obser-
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vation for non-classical behavior. From there, we will briefly introduce some of

the more promising physical systems that may eventually meet all these criterion:

Fabry-Pérot cavities formed from micro-mirrors atop flexural resonators, flexural

beam resonators parametrically coupled to coplanar wave guide resonators, and

laser cooled toroidal micro-resonators.

2.1 Quantum ground state considerations

Historically, it has been possible to model macroscopic mechanical systems en-

tirely within the context of classical mechanics. This is not entirely surprising

because mechanical systems are composite structures formed from the interaction

of a tremendous number of particles. The quantum to classical transition readily

occurs when a given system is strongly coupled to the “large” objects that com-

pose our everyday world, and while it is relatively easy to isolate ions in harmonic

traps, it has proven challenging to sufficiently decouple larger mechanical systems.

The basic approach is to first identify a resonant mode of a mechanical system

that is well separated in the frequency from the other mechanical modes. Once

a particular mode has been chosen, the degree to which this mode is decoupled

from the “environment” can be characterized by its quality factor [33],

Q = 2π
energy stored

energy lost per cycle
. (2.1)

For Q < 1, quantum effects would be smeared out by rapid energy loss and

5



associated decoherence. However, for Q > 1 the resonator enters the under-

damped regime where it is possible to store well defined quantum excitations in

the oscillator’s phonon number states.

Since the aim here is to observe non-classical effects, ignoring all other factors,

it may seem optimal to choose a system with the highest possible Q. In most

mechanical systems, it is experimentally found that higher quality factors can be

attained with lower resonant frequencies, Q ∼ 1/ΩM, where ΩM is the mechanical

resonant frequency [38]. Although it may be tempting to choose a low frequency

mechanical mode with correspondingly high quality factor, to do so would overlook

a fundamental issue.

Even with weak coupling to the environment, given a sufficient duration of

time, the mechanical resonant mode will come into thermal equilibrium with its

surroundings. A mechanical resonator in thermal equilibrium at a temperature

T , will contain, on average, a phonon number that follows the Bose distribution

〈n〉 =
1

e~ΩM/kBT − 1
, (2.2)

where ~ is Plank’s constant divided by 2π and kB is Boltzmann’s constant. The

corresponding thermal state will act to conceal quantum effects. Therefore, it is

necessary to rid the oscillator mode of these thermally induced phonons in order

to observe quantum behavior. In other words, before well defined non-classical

phonon states can be observed, the mechanical resonator must be in the quantum

6
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Figure 2.1: The expected phonon number of the mechanical resonant mode is
displayed for temperatures that roughly correspond to room temperature, L4He,
L4He evaporation, salt pillar adiabatic demagnetization, and 3He dilution refrig-
eration. The dotted line is drawn at 〈n〉 = 1.

ground state, 〈n〉 � 1.

It is clear form the Bose distribution that the quantum ground state can be

reached only when the energy level spacing of the harmonic oscillator is signif-

icantly greater than the thermal energy ~ΩM > kBT . In Fig. 2.1 we show the

expected phonon number for some common cryogenic temperatures. It is readily

apparent that for ΩM . 1 GHz the mechanical mode with not be in the ground

state when the system is in thermal equilibrium.

However, even with ΩM < 1 GHz, it is still possible to reach the quantum

ground state if additional cooling techniques are employed. Currently, there are

two standard avenues pursued when attempting to cool below dilution refrigera-

tor temperatures. Temperatures much below 10 mK can be achieved by attaching

7



a nuclear demagnetization unit from the cold stage of a standard cryogenic re-

frigerator. However, this setup is rather complicated and incapable of providing

continuous cooling power. The second approach leaves the environmental tem-

perature unchanged while selectively cooling the mechanical resonant mode.

One way to achieve mode selective active cooling is to couple the mechan-

ical resonator to an electromagnetic cavity. Since preparation of non-classical

states could be facilitated by such a coupling scheme, active cooling has received

more attention than adiabatic demagnetization. The drawback, of course, is that

this technique incorporates an electromagnetic cavity and increases the overall

complexity of the system. In some systems, coupling between mechanical and

electromagnetic resonant modes occurs naturally. However, even when coupling

does not occur naturally it may be possible to engineer.

A schematic example of one such specifically engineered system is illustrated

in Fig. 2.2 (a). In a configuration of this type, a Fabry-Pérot cavity is created

by trapping light between a large fixed mirror and a micron-sized mirror. The

micron-sized mirror is physically attached to a mechanical resonator, depicted

there as a mass on the end of a spring, so that the position of mechanical resonator

determines the optical path length of the cavity. As the mechanical oscillator

vibrates, the frequency of the optical mode is modulated, parametrically coupling

the two.
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Figure 2.2: a the canonical setup depicting a mechanical resonator with oscillation
frequency ΩM attached to a micro-mirror. The micro-mirror constitutes half of
the optical cavity formed between it and the larger fixed mirror (adapted from
[12]). b, spectroscopic response of the optical cavity in the resolved sideband limit.
The cavity frequency ω0 is split from interaction with mechanical resonator (as in
[42]). c, energy level diagram for coupled optomechanical system. Cooling occurs
when a laser drives the lower sideband preferentially causing the system to loose
a phonon to the optical mode (adapted from [42]). d, SEM of a Bragg micro-
mirror attached to a SiN doubly-clamped flexural beam resonator [13]. e, SEM
of a SiN doubly-clamped flexural beam resonator capacitively couped through
the gate electrode to a superconducting microwave resonator [37]. f, SEM of a
silica toroidal optomechanical resonator (left) and illustration of relevant optical
whispering gallery mode and mechanical radial breathing mode (right) [42].
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A situation of practical interest arises when the frequency of the mechanical

resonator is greater than the optical linewidth κ. When this condition is met, the

system is said to be in the resolved sideband limit and spectroscopic determination

of the combined resonant modes will produce three distinct frequencies in the

optical band as depicted in Fig. 2.2 (b). The center frequency corresponds to

the geometrically determined resonance of the optical mode ω0. The two distinct

sidebands at ω0 ± ΩM result from the photon-phonon interaction.

Cooling can be achieved by exciting the system with a laser frequency tuned to

the lower sideband ω0 −ΩM. Since the laser is detuned from the frequency of the

principal optical mode, incident photons will not have enough energy to excite

the optical resonance unless accompanied by the simultaneous absorption of a

thermal phonon [52, 7]. This scenario is depicted in Fig. 2.2 (c). Each absorption

event removes one phonon from the mechanical mode and creates one photon in

the optical mode. The loss of phonons from the mechanical mode effectively cools

the mechanical oscillator, with a resulting effective temperature determined by

the detailed balance between sideband cooling and thermal repopulation [29].

2.2 Experimental attempts

Resolved sideband cooling has been used in a number of recent experiments in

order to obtain low phonon populations. In one such experiment, a Bragg micro-

10



mirror was fabricated atop a doubly clamped flexural beam resonator [12, 13]. As

described schematically above, this micro-mirror formed one side of a Fabry-Pérot

cavity. A scanning electron micrograph (SEM) of a completed device is shown in

Fig. 2.2 (d). The Bragg micro-mirror was composed of 36 alternating layers of

Ta2O5 and SiO2, and the flexural beam resonator was formed from SiN that had

been released from the underlying substrate with a timed exposure to XeF2 gas.

The mechanical resonant frequency was measured to be ΩM/2π = 945 kHz with

a corresponding quality factor of Q ≈ 30, 000 at 5.3 K. By measuring the noise

power spectra it was seen that the mechanical mode could be cooled from an

initial temperate of 5.3 K to an effective temperature of approximately 1.5 mK,

corresponding to an expected phonon state containing 〈n〉 = 32 ± 4 [12].

Resolved sideband cooling of mechanical modes is not unique to optical cav-

ities. In recent experiments conducted on mechanical resonators coupled to su-

perconducting microwave resonators, very low phonon numbers were observed

[47, 37]. A SEM of one such device is shown in Fig. 2.2 (e). Instead of the po-

sition of the mechanical resonator changing the path length of an optical cavity,

in this configuration, the position of the beam alters the total capacitance of the

microwave cavity. Since the resonant frequency of the microwave cavity is pro-

portional to the total capacitance ωµ ∝ 1/
√
C, the mechanical motion creates a

time-varying capacitance that modulates the microwave resonant frequency. Side-
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band cooling is carried out in a similar fashion, where a microwave tone is applied

at the lower sideband frequency ωµ − ΩM. The thermal phonons are converted

to microwave photons and cooling proceeds as before. An average phonon num-

ber 〈n〉 = 3.8 ± 1.3 was reported for the ΩM/2π = 6.3 MHz flexural resonant

mode, cooled from an initial environmental temperature of T = 146 mK [37] to

an effective temperature of approximately 1.3 mK.

In both of the experimental systems discussed so far, the coupling between

mechanical resonator and electromagnetic cavity had to be specifically engineered.

However, such coupling may naturally arise in some systems, such as the toroidal

resonators shown in Fig. 2.2 (f). These resonators were formed from silica and

support both high quality optical whispering gallery modes and mechanical radial

breathing modes. The toroids were excited by a laser and displayed a sideband

resolved spectrum indicating a coupled mechanical resonant mode at ΩM = 73.5

MHz with a corresponding quality factor Q ≈ 30, 000. By exciting the lower side

band, the mechanical mode was cooled from an initial temperature of 1.65 K to

a final effective temperature of approximately 220 mK, corresponding to a state

with on average 〈n〉 = 63 ± 20 phonons [41].
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Chapter 3

The coupled qubit-FBAR approach

Active sideband cooling was a common theme running through the experiments

just described. While the use of this technique to cool a mechanical mode to the

quantum ground state is a promising future direction, the rate of cooling achieved

in the preceding experiments was insufficient to overcome thermal repopulation.

Instead of starting with a thermally excited mechanical mode, we took a differ-

ent approach and focused our efforts on circumventing thermal activation. We

sidestepped the issue of selective mode cooling by adapting our experiment to use

only proven commercial refrigeration techniques. This was accomplished through

the use of high frequency mechanical resonators, with resonant frequencies well

into the microwave regime. At temperatures easily reached with a dilution re-

frigerator, these high frequency mechanical resonators should be found in the
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quantum ground state. For example, the Bose distribution predicts an average

phonon number of 〈n〉 < 10−4 for a 6 GHz mechanical mode cooled to T = 25

mK.

The details of experiments conducted on one such high frequency mechanical

resonator coupled to a superconducting phase qubit, as well as a good deal of

theoretical background, are to be published in a Springer book on optomechanics,

edited by Markus Aspelmeyer, Tobias Kippenberg, and Florian Marquardt. A

preprint of this book chapter is presented below and composes the majority of

this dissertation. After the presentation of this book chapter, the next chapter of

this dissertation completes the story by filling in any relevant details that did not

find their way into the book.

Microwave-frequency mechanical resonators operated in the quan-

tum limit

Aaron D. O’Connell and Andrew N. Cleland

Abstract In this chapter, we describe fully an experiment in which the quan-

tum ground state of a mechanical resonator was reached when the structure was

cooled in a dilution refrigerator to T ∼ 25 mK. The resonator had a funda-

mental dilatational resonance frequency in excess of 6 GHz, so once cooled, the

omnipresent bath of thermal phonons was unable to supply enough energy to mea-

surably excite the mechanical resonator out of its quantum ground state. These
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results are a direct consequence of the high resonance frequencies obtainable with

the class of mechanical resonator used in the experiment, which is known as a film

bulk acoustic resonator, or FBAR. In this chapter, we begin by briefly describing

the mechanics of bulk acoustic resonance and FBAR structures, and we present

a simple electrical circuit model for the resonator. Experimental measurements

of this type of mechanical resonator, measured in the classical regime, are then

presented. Next, we introduce the Josephson phase quantum bit (qubit), a device

which forms the heart of the measurement scheme used to probe the mechanical

resonator in the quantum regime, and we describe the coupling mechanism be-

tween the qubit and a mechanical resonator. Lastly, we present the experimental

measurements of the resonator in the quantum regime, where the qubit was used

to both prepare and measure non-classical mechanical states in the resonator.

3.1 Film bulk acoustic resonators

Film bulk acoustic resonators are dilatational-mode mechanical resonators fab-

ricated using piezoelectric materials. Voltages applied to the electrodes on the

surface of the resonator cause piezoelectric strain, either dilating or contracting

the volume of the resonator. When the voltage is made to oscillate at a fre-

quency corresponding to a natural mechanical resonance of the structure, large

and sustained oscillations can be generated. The nature of the piezoelectric ma-
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terial means that the converse is also true: A mechanical resonance will generate

voltages on the same electrodes, which can be detected externally, allowing one

to monitor the state of vibration of the resonator.

These types of structures are of great interest in the telecommunications indus-

try, where they are used to mechanically filter electrical signals. Using mechanical

resonators in this fashion provides filtering that is significantly superior to purely

electronic filters. Strong coupling between the electrical signal and the mechani-

cal vibration is best achieved with film-like resonators, i.e. structures with large

lateral dimensions and small thicknesses, with thin-film metal electrodes applied

to the top and bottom surface of the film. The structure is typically driven in a

thickness-mode vibration, meaning that the top and bottom surfaces alternately

approach and recede from one another, at a frequency that is proportional to the

speed of sound in the material, divided by the thickness of the structure. With

typical sound speeds of ∼ 5 km/s, resonance frequencies in the GHz telecom-

munications band thus require structures with thicknesses of order 1 µm. For

example, the structure depicted in Fig. 3.1 might have a radius r that is a few

tens of micrometers, while the thickness of the piezoelectric layer d may be less

than a micron. When a voltage is applied across the electrodes, a nearly uniform

electric field is formed between the plates, a field that points along the z axis.

The piezoelectric material between the plates reacts to the imposed electric field
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Figure 3.1: Film bulk acoustic resonator geometry, piezoelectric response, and
model circuit representation. a, idealized geometry of a mechanical resonator,
comprising a piezoelectric material of thickness d with infinitely thin metal plates,
or electrodes, on both the top and bottom surfaces. b, sketch illustrating the di-
latational response of the piezoelectric structure to an externally-imposed voltage,
which generates an electric field between the electrodes; light gray indicates metal
electrodes, while dark gray represents piezoelectric material. The thickness di-
mension is grossly exaggerated for illustrative purposes, and the metal electrodes
are shown here with non-zero thickness. c, Equivalent electrical circuit model
for mechanical response near the fundamental dilatational mechanical resonance.
Cm, Lm, and Rm are the mechanical capacitance, mechanical inductance, and
mechanical resistance (representing mechanical energy dissipation), respectively.
The electrical branch is composed of a capacitor C0 representing the geometric
capacitance of the structure, and a resistor R0 representing electrical dissipation
with value R0. The capacitance is given by C0 = ε0εA/d, where A is the area of
an electrode, ε is the dielectric constant, and ε0 is the permittivity of free space.

by polarizing, which due to the piezoelectric response generates strain (displace-

ment) in the material. The electric field thus causes the piezoelectric to expand

or contract proportional to the sign and magnitude of the field. This is illustrated

in Fig. 3.1 b for the quasi-static case of a slowly varying voltage.

We would like to examine the electrical response that occurs near a mechan-

ical resonance. Consider a piezoelectric material contained within ideally thin
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electrodes, vibrating at angular frequency ω close to a mechanical resonance fre-

quency. The electrical impedance Z across the metal plates can be determined

in the dissipation-free limit by solving the electro-mechanical equations of motion

for an acoustic angular frequency ω to yield [38],

Z(ω) ≈ 1

iωC0

(

1 − tan(ωd/2ν)

ωd/2ν
k2

eff

)

(3.1)

where C0 is the geometric capacitance of the structure, k2
eff is the so-called piezo-

electric coupling efficiency, typically of order 0.01, and ν is the speed of sound

in the piezoelectric medium. The impedance is a strong function of frequency

for frequencies near the mechanical thickness resonances ωn/2π = nν/2d, where

n = 1, 3, 5, ..., with the magnitude of the impedance |Z| displaying a minimum

and a maximum near these frequencies; the even-number modes do not appear

because their symmetry does not generate an electrical signal for symmetrically

placed electrodes, as in Fig. 3.1. In this model equation, the maxima occur exactly

at the mechanical resonance frequencies ωn, which correspond to the surface-stress

free normal thickness modes of the structure. A local maximum of the impedance

corresponds to a mode in which energy can be stored (essentially, the storage of

energy increases the voltage needed to store more energy, thus in a sense increas-

ing the impedance as the energy increases). The fundamental dilatational mode

occurs for n = 1 and is termed the “parallel resonance” frequency. The parallel

resonance occurs at
ωp

2π
=

ν

2d
, (3.2)
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and is analogous to the fundamental half-wave mode of a stiff vibrating wire

with two free ends, held at its midpoint. The frequency of this resonance can be

adjusted by changing the thickness d of the structure. For a piezoelectric material

such as aluminum nitride (AlN), with a sound speed ν ≈ 11 km/s, resonant

frequencies above 1 GHz are achievable for thicknesses less than 5 µm.

The impedance magnitude |Z| has a second feature, a zero, at frequency ωs

(the “series resonance” frequency, as explained below). This frequency is given

by the transcendental equation

tan(ωsd/2ν)

ωsd/2ν
k2

eff = 1, (3.3)

for which a closed-form solution does not exist. However, as the piezoelectric

coupling efficiency k2
eff is much smaller than unity, the impedance can be approx-

imated near its first pole by

Z ≈ 1

iωC0

(

1 − 8

π2 − (ωd/ν)2
k2

eff

)

. (3.4)

This leads the approximate expression for the series-resonance frequency

ωs

2π
≈ ν

2d

(

1 − 8

π2
k2

eff

)1/2

. (3.5)

The minimum in |Z| occurs at a slightly lower frequency than the maximum at

the parallel-resonance frequency.

It is interesting to note that in the dissipation-free limit, the piezoelectric

coupling efficiency can be determined from the two resonant frequencies ωp and
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ωs by combining Eq. (3.2) and Eq. (3.3):

k2
eff ≈ πωs/2ωp

tan (πωs/2ωp)
≈ π2

4

(

ωp − ωs

ωp

)

, (3.6)

indicating that the frequency spacing between the two resonances is proportional

to the coupling efficiency.

Although Eq. 3.1 is useful for finding the resonance frequencies and evalu-

ating their relation to the coupling efficiency, a lumped-element circuit model

that gives a good approximation to the electrical impedance near resonance is

quite invaluable. To the trained eye, Eq. 3.4 is the impedance of a static capac-

itor C0 in parallel with mechanically-determined components that are inductive

and capacitive. Such a model has been developed, and is dubbed the ‘modi-

fied Butterworth-van Dyke” (MBVD) model [18, 39]. This circuit model for a

piezoelectric resonator, including dissipation by way of resistors that represent

mechanical and electrical losses in the actual structure, is shown in Fig. 3.1 (c).

We will first examine the dissipation-free limit, where the resistances are set to

zero. Thus, the dissipation-free circuit consists only of the static capacitor C0, the

electrical branch, in parallel with an electrical equivalent mechanical inductance

Lm and capacitance Cm, which make up the mechanical motional branch of the

circuit.

As it is not obvious that this lumped-element circuit model captures the main

aspects of the impedance of the device as represented by Eq. 3.1, we now turn
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our attention to showing that there exists a simple mapping between the two

representations for frequencies near the fundamental resonance frequency ωp. The

impedance of the lossless lumped circuit is given by

ZLE =
1

iωC0

(

1 − Cm

C0 + Cm − C0CmLmω2

)

, (3.7)

which is clearly of the same form as Eq. 3.4. To relate the circuit elements to

the mechanical properties, we can use the requirement that both the Eq. 3.4 and

Eq. 3.7 should exhibit resonances at the same frequencies. The series and parallel

resonances of the circuit model occur at

ωp =
1

√

LmCm
C0

C0+Cm

, and (3.8)

ωs =
1√

LmCm

. (3.9)

Equating these relations to those derived from Eq. 3.4, we find the relations

Cm = C0

8

π2
k2

eff

(

1 − 8

π2
k2

eff

)

, and (3.10)

Lm =
d2

8k2
effν

2C0

. (3.11)

Hence, we can easily prescribe the electrical circuit element values from our knowl-

edge of the electromechanical properties (note the capacitance C0 is determined

already from the geometry).

Thus far, we have ignored dissipation in our description. However, any phys-

ical FBAR will exhibit both mechanical and electrical losses. Since the motional
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branch of the circuit strongly dominates the impedance near a mechanical reso-

nance, the series resistor Rm is included in the motional branch to account for me-

chanical dissipation. Far from the mechanical resonant frequency, the impedance

of the FBAR approaches that of a capacitor with value C0. Dielectric dissipation

in this capacitor is incorporated into the electrical branch with the resistor R0.

The entire MBVD circuit model, including these dissipative elements, is shown in

Fig. 3.1 (c). The electrical response of this circuit will exhibit resonances similar to

those previously derived. However, dissipation will suppress the amplitude of |Z|

near a resonant response. In addition, the exact frequency of a resonant response

will be slightly altered. In general the electrical impedance, even on resonance,

will arise from the combined interaction of all the circuit elements, and must be

treated accordingly.

3.2 Mechanical resonator characterization

Piezoelectric mechanical resonators of the FBAR design described above were fab-

ricated with aluminum metal electrodes and sputtered polycrystalline AlN as the

piezoelectric. The multi-layer structure was patterned on the surface of a high-

resistivity (> 10, 000 Ω-cm) 100 mm diameter silicon wafer using interspersed

lithographic processing steps of sputtered metal and dielectric deposition, optical

lithography, and plasma etching; all patterning was done by etching previously-
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deposited layers, with no “lift-off” steps in the process. No electron beam lithog-

raphy was needed to produce the structures. After processing the full wafer,

individual dies were diamond-saw cut from the wafer, each containing one res-

onator structure. To mechanically isolate the mechanical FBAR structure from

the substrate, the chip was then exposed to xenon difluoride gas in a custom-built

vacuum system that isotropically removed the silicon beneath the resonator struc-

ture. This process generated an undercut that entirely released the mechanically-

active part of the structure. The resonator was left suspended over the remaining

substrate, supported by the co-fabricated aluminum lead wires and underlying

AlN. A scanning electron micrograph (SEM) of a completed device is shown in

Fig. 3.2.

Visible in the image is the mechanically-active metal/piezoelectric/metal stack,

enclosed by the white dashed rectangle. The structure was supported by the two

metal beams leading from the left edge of the stack to the bulk substrate and the

external circuitry. In addition to providing mechanical support, the metal beams

also served as electrical connections to each electrode of the resonator stack. One

of these beams was connected to the circuit electrical ground, while the other

was connected to the microwave feed line shown at the top of the image. This

microwave drive line was electrically separated from wire bond pads by two on-chip

interdigitated capacitors, Cx, which were used to isolate the resonant structure
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Figure 3.2: Electron micrograph and electrical measurement of a mechanically-
suspended resonator. a, mechanically active part of the resonator highlighted by
white dashed rectangle. The resonator is supported on the left by the metal leads
that form the two electrical connections, with their underlying AlN. b, electrical
transmission measurement (gray points), with a fit to the equivalent circuit model
(black line) using the (inset) circuit model. The transmission from port 1 to
port 2 (inset) was measured with a calibrated network analyzer. Cx denotes
the capacitance of external capacitors associated with the wiring between the
measurement cables and the device, and LS represents the stray inductance of the
wiring leads [31].
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from the 50 Ω impedance of measurement lines (see inset circuit).

To characterize the electrical response of the FBAR, the chip was wire-bonded

with 25 µm diameter wire bonds to an aluminum microwave mount and connected

to a microwave vector network analyzer. The normalized complex transmission

S21 from port 1 to port 2 was then measured as a function of frequency, pro-

ducing the characteristic response illustrated in the main panel of Fig. 3.2 (b).

There are two prominent features in the data: First, the dip in transmitted sig-

nal at ωs/2π = 6.07 GHz is attributed to the low-impedance series resonance.

At the slightly higher frequency, ΩM/2π = ωp/2π = 6.10 GHz, the transmission

takes on its maximal value due to the high-impedance, parallel mechanical reso-

nance, which we have labeled ΩM as this is the relevant mechanical mode for our

“optomechanical” experiments.

To extract the equivalent circuit parameters from the spectroscopic data, the

measured transmission response was fit to the electrical model shown inset to

Fig. 3.2 (b). The capacitance C0 was calculated using the lithographically defined

area A of the electrodes, the estimated thickness of the AlN layer, d = 330 nm, and

an approximate dielectric constant εr ≈ 10 for AlN [9], so that C0 = ε0εA/d = 0.19

pF. The stray inductance was estimated to be Ls ≈ 1 nH, obtained by examining

the device response over a broad range of frequencies. The frequencies of the

resonant responses, along with the equations linking the reactive elements in the
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circuit model, yielded a mechanical capacitance Cm = 0.655 fF, a mechanical

inductance Lm = 1.043 µH, and a piezoelectric coupling coefficient k2
eff ≈ 1.2%

[39, 28]. The overall amplitude of the transmission indicates that the external

capacitors were Cx ≈ 37 fF. The amplitude of the resonant response gives the

resistive values Rm = 146 Ω and R0 = 8 Ω. The quality factor of the parallel

resonant mode is correspondingly Q ≈ 260.

We performed a number of experiments that ensured that the measured res-

onance feature was indeed mechanical in nature, and not a spurious electrical

resonance. One such test was conducted by physically removing the mechanically-

active part of the device and measuring the remaining circuitry. When measured

in this configuration, no resonant response was seen. This result indicates that

the response shown in Fig. 3.2 (b) is due (in part, at least) to the presence of

the suspended structure highlighted in Fig. 3.2 (a). We also fabricated an iden-

tical chip but using amorphous silicon nitride (SiN), a non-piezoelectric insulator

material, in place of the piezoelectrically-active AlN. When this device was mea-

sured in the same manner, no resonant response was visible, an indication that

the piezoelectric material is needed to generate an electrical response.

Two additional series of tests were performed, which more directly illustrate

the mechanical nature of the resonance. The first series of tests was conducted

to explore changes in the resonant response when the mechanically-active part
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of the resonator was not fully suspended. As previously mentioned, the active

part of the resonator is released from the underlying Si substrate with XeF2 gas,

which isotropically removes silicon from around and eventually underneath the

resonator. If instead of allowing the XeF2 to fully undercut the resonator, a

shorter exposure to the reactive gas is used, then the active part of the resonator

will remain partially connected to the substrate by a pillar of silicon. If the chip

is then exposed to additional doses of XeF2 gas, the diameter of the pillar will be

reduced in size, freeing a greater area of the active part of the structure.

Using this technique, one particular sample was measured electrically a num-

ber of times, each time after increasing the degree of mechanical release. The

FBAR structure was first measured prior to any exposure to XeF2, thus while

still fully connected to the substrate. No resonant response was observed. With-

out removing the device from the microwave measurement mount, the resonator

was then exposed to XeF2 gas for a time long enough to release approximately

30% of the area beneath the resonator. The sample was then re-measured and the

characteristic resonant response began to emerge. The FBAR was then exposed

to XeF2 and measured two more times. Each time the resonant response grew

in amplitude as illustrated in Fig. 3.3 (a). The trend toward greater amplitude

indicates that the measured response is most likely mechanical in origin, and indi-

cates that the structure is releasing less and less acoustic power into the substrate
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Figure 3.3: Measured mechanical dissipation and frequency dependence of a
FBAR structure. a, electrical resonant response of a resonator measured with
varying degrees of mechanical release. A larger amplitude response indicates less
mechanical dissipation. b, mechanical resonant frequencies ΩM/2π obtained by
measuring resonators with differing overall thicknesses t. The darker datum at
6.1 GHz corresponds to the resonator shown in Fig. 3.2.

as its connection to the substrate is weakened.

To further test the nature of the electrical resonance, we fabricated a series of

resonators with varying overall thicknesses t (including both the electrode thick-

ness as well as the AlN thickness d). Eq. 3.2 indicates that for greater thicknesses,

the resonant frequency should decrease, approximately as 1/t. This prediction is

in stark contrast with what one would expect for a purely electrical resonator

composed of the parallel connection of an inductor L and a capacitor C, where

the capacitance is due to the geometric capacitance of the FBAR structure. In

that case, one would have C ∝ 1/t, so that the resonance frequency would scale

as 1/
√
LC ∝

√
t.

The spectroscopically determined mechanical resonance frequencies ΩM/2π for
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a set of unique resonators with different thicknesses t are shown in Fig. 3.3 (b).

The reported thickness correspond to the approximate total thickness of the res-

onator, where the thickness was varied from resonator to resonator by changing

the deposition time of the AlN layer. It is clear from the data that the overall

trend is toward lower resonant frequency with increased thickness, as expected.

The data can be reasonably fit with the expected form ΩM/2π ≈ ν/2t, which

produces the dashed line shown in Fig. 3.3 (b). The speed of sound was fit to

ν ≈ 9100 m/s, and while not unreasonable, we emphasize that this oversimplifies

the behavior of these composite structures. As a side note, the variation in the

resonant frequency observed for a given thickness value was most likely due to

variations in the actual thickness of the structure. As the deposited films tend

to become thinner toward the edge of the substrate wafer, resonator dies taken

from different locations on the same wafer will have varying thicknesses and thus

resonant frequencies. The range of resonance frequencies we observe are within

the range expected for this thickness variation.

These check experiments indicate quite strongly that we have realized FBAR

structures with fundamental mechanical resonance frequencies in the few GHz

band. These frequencies provide promise for the observation of quantum effects

in such resonators when cooled to temperatures below 1 K. However, although the

high resonance frequency of these structures avoids the typical limitation set by
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the presence of a strongly decohering thermal bath, these resonators do suffer from

an inherent drawback: As the mechanical resonance frequency is increased, the

quality factor of the resonance is seen to decrease correspondingly. A commonly

used figure of merit that takes this effect into consideration is the f -Q product,

the product of the resonance frequency and the quality factor. Here we find

f -Q products of order 1012 Hz, within the range seen for most “high quality”

mechanical resonators. However, as the FBARs measured here did not exhibit

exceptionally high f -Q products, the high mechanical frequency comes at the

expense of a lower quality factor.

The low quality factor has a direct implication for quantum measurements,

as the lifetime T1 for a single quantum of energy can be related to the classical

quality factor, through T1 = Q/ωp. Here we can estimate for our FBAR structures

an energy lifetime of T1 = 6.7 ns. A quantum operation on the mechanical res-

onator must be completed within this time before the quantum state is destroyed

by dissipation. Creating and measuring quantum states in such a short time win-

dow requires careful planning, and in particular, a very strong coupling between

the system used to create and measure the quantum state and the mechanical

resonator. The approach we chose to use, to strongly couple a system that can

quantum control and quantum measure a mechanical resonator, was to couple the

resonator to an electrical equivalent of an atom: A superconducting Josephson
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phase qubit [24].

3.3 Josephson junctions as tunable two level sys-

tems

A Josephson junction is created when a superconducting path is interrupted

by a weak link that restricts the flow of electrons (or, in the superconducting

state, Cooper pairs) to quantum tunneling processes. For example, Josephson

junctions are often formed by separating two superconducting metal electrodes

with a thin insulating barrier, as depicted in Fig. 3.4, commonly referred to as a

superconductor-insulator-superconductor (SIS) junction. Although SIS junctions

were used for all the experiments to be described below, Josephson junctions can

be formed in other ways as well. Most notable are the superconductor-normal

metal-superconductor (SNS) junction, where the superconductor is interrupted

by a short normal metal section, sufficiently short that superconducting Cooper

pairs can sometimes survive the passage through the normal metal (proximity

effect); and the microbridge junction, where a very narrow constriction in a su-

perconducting wire limits the flow of Cooper pairs [48].

The physics of the Josephson junction has received much interest since its

discovery in 1962 [16]. This is is part due to two remarkable characteristics of
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Figure 3.4: A Josephson junction: SIS junction geometry, capacitively shunted
circuit model, and “washboard” potential energy diagram. a, perspective drawing
of an overlap Josephson junction. The two superconducting metal wires are sepa-
rated by an insulating barrier, shown in black; this is typically a very thin (1 nm)
metal oxide layer. The phase of the Ginzburg-Landau superconducting wavefunc-
tions in each superconducting wire is represented by φ1,2. b, circuit representation
of a Josephson junction, where the hourglass symbol (left side) represents the phys-
ical Josephson junction and is equivalent to an ideal Josephson junction shunted
by a capacitor (right). c, potential energy model for a current-biased Josephson
junction. The biasing current determines the overall tilt of the potential, while
the oscillations are due to the dc Josephson effect. The local, periodic minima
exist for bias currents I less than the critical current I0.
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these unique devices, as described mathematically by the dc and ac Josephson

relations. The dc Josephson relation describes the flow of a supercurrent through

a junction, even in the absence of an applied voltage. The dc Josephson relation

states that the supercurrent IJ through an SIS junction can be written as

IJ = I0 sin δ, (3.12)

where I0 is the junction’s critical current, and δ = φ2 − φ1 is the gauge-invariant

phase difference between the Ginzburg-Landau wavefunctions on either side of the

junction’s insulating barrier (in the absence of a magnetic field). If a voltage V is

applied across the Josephson junction, the phase difference across the junction is

predicted by the ac Josephson relation to evolve in time according to

δ̇ =
2e

~
V. (3.13)

Combining these two relations implies that a voltage-biased junction will have a

supercurrent that oscillates in time at a frequency 2eV/h.

In order to exploit these novel properties, Josephson junctions have been in-

corporated into a wide array of superconducting circuits [1, 8, 20, 4, 27, 49, 25, 3,

21, 32, 53, 2, 6, 44, 50]. For illustrative purposes, we will examine a simple circuit,

the current-biased Josephson junction. It is easiest to proceed by first generating

an equivalent electrical circuit representation for the Josephson junction. Up to

this point in our discussion, we have treated the junction in the quasi-static limit,

where we have ignored the self-capacitance of the junction’s geometric structure.
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As the junction is formed from two metal electrodes separated by a dielectric in-

sulator, we expect that the resulting geometric capacitance will be electrically in

parallel to the junction itself. A model circuit for a single junction is illustrated in

Fig 3.4 (b), where the junction has been split into an ideal junction, represented

by an cross, and its parallel capacitance CJ . The ideal junction is assumed to

follow exactly the two Josephson relations.

With this circuit model, we can analyze the effect of adding a time-varying

current bias I to the circuit, as depicted in the insert of Fig. 3.4 (c). Kirchhoff’s

current law dictates that
I = CV̇ + IJ . (3.14)

Using the dc Josephson effect to relate IJ to the phase difference δ, and recognizing

that the voltage across the capacitor must be the same as that across the ideal

junction, we can combine this equation with the ac Josephson relation to yield

~

2e
Cδ̈ + I0 sin(δ) − I = 0. (3.15)

This is an equation of motion very similar to a classical particle moving in one

dimension, with mass proportional to the capacitance C, interacting with a force

proportional to I − I0 sin δ. We can cast this equation of motion into the La-

grangian formalism and find the associated kinetic and potential energies

T =

(

~

2e

)2
C

2
δ̇2 (3.16)

U(δ) = −EJ

(

cos δ +
I

I0
δ

)

, (3.17)
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where we have introduced the parameter EJ = ~I0/2e, the Josephson energy.

Here we see that our fictitious particle has mass M = (~/2e)2C, moving in the

potential U(δ). A plot of the potential energy is shown in Fig. 3.4 (c) for an applied

current bias I far from the critical current I0. This potential is commonly referred

to as the tilted washboard potential, with tilt proportional to the applied current.

The potential displays 2π-periodic local minima for I < I0, at which point the

minima become inflection points. For bias currents I ≥ I0, the particle is free to

run down the potential and the junction switches from the superconducting state

to the “voltage state,” where the junction develops a dc voltage.

To form the classical Hamiltonian, we first find the canonical momentum con-

jugate to the coordinate δ, [11]

p =
∂L

∂δ̇
=

(

~

2e

)

~C

2e
δ̇ =

~

2e
Q, (3.18)

where Q = Cδ̇ is the charge on the capacitor. The classical Hamiltonian is then

Hcl = pδ̇ − L =
Q2

2C
− EJ

(

cos δ +
I

I0
δ

)

. (3.19)

If we now recognize that the capacitor has a Cooper pair charging energy of

EC = (2e)2/2C, then we can rewrite the Hamiltonian as [51] as

Hcl = ECN
2 − EJ

(

cos(δ) +
I

I0
δ

)

, (3.20)

where N = Q/2e is the number of Cooper pairs.

The classical Hamiltonian can now be quantized. Following the customary pre-

scription, we define the quantum operators p̂ and δ̂ and impose the commutation
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relation
[δ̂, p̂] = i~. (3.21)

The coordinate representation of the momentum operator is then

p̂→ −i~ ∂

∂δ
, (3.22)

which produces the coordinate representation for the quantum Hamiltonian,

Ĥ → −EC
∂2

∂δ̂2
− EJ

(

cos δ̂ +
I

I0
δ̂

)

, (3.23)

The solution to the time-independent Schrödinger equation using this Hamil-

tonian will produce quantized energy levels (within the potential local minima)

because we have ignored dissipation in the previous description. Although these

energy eigenstates can be solved for directly, we instead examine a harmonic

approximation that captures the qualitative behavior of the lowest-lying energy

levels, as illustrated in Fig. 3.5 (a). For small current bias, the shape of the po-

tential minima can be well-approximated by that of a harmonic oscillator. The

energy eigenstates of the harmonic oscillator are determined by the curvature

of the potential function; in this approximation, this curvature is related to the

plasma frequency ωplasma, defined as [10]

ωplasma ≡
√

U ′′ |min

M
=

√
2ECEJ

~

(

1 − I2

I2
0

)1/4

. (3.24)

The plasma frequency is current-bias dependent, with its maximum value at

zero bias current. Eq. 3.24 is a good approximation for the energy level spacing
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Figure 3.5: Harmonic approximation and eigenstates of the washboard potential.
a, the dashed line overlay is a harmonic approximation to the local minimum.
The evenly spaced energy levels are qualitative representations of the harmonic
eigenstates. b, lowest energy levels of a local minimum (other eigenstates not
shown). The nonuniform spacing arises from the nonlinearity of the potential.
The two lowest-lying levels of a local minimum, the ground state |g〉 and the first
excited state |e〉, form the qubit states.

for a junction biased far from the critical current I0. However, as the bias current

approaches I0, the actual shape of the potential becomes increasingly anharmonic.

This anharmonicity results in a reduced number of energy levels, whose energy

spacing, and thus transition frequency, decreases with level number, as shown in

Fig. 3.5 (b). Thus, in a local minimum, the ground state |g〉 to excited state |e〉

transition can be addressed separately from the higher energy levels, as long as the

microwave signal used to stimulate transitions is carefully selected in frequency

and careful pulse shaping is used [23]. The two-state manifold |g〉 and |e〉 forms

the qubit computational basis.
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3.4 Coupling a qubit to a mechanical resonator

A straightforward way to strongly couple a Josephson qubit to a piezoelectric

mechanical resonator is to place the resonator so that it is electrically in parallel

with the Josephson junction. Using the modified Butterworth-van Dyke model

for the FBAR resonator, we can design circuits as shown in Fig. 3.6. The two cir-

cuits shown there will clearly support two resonant modes: One mode is primarily

associated with the qubit itself (here we are implicitly approximating the qubit

by its harmonic, that is linear, approximation), and the second mode is primarily

attributed to the mechanical resonator. Fig. 3.6 (a) shows a circuit representa-

tion for the coupling scheme we have just described, where we have replaced the

Josephson element with a tunable (linear) inductor, such that the Lq-Cq resonance

reproduces the qubit |g〉 ↔ |e〉 oscillation frequency. Note that the use of linear

circuit elements implies that we can only perform single quanta coupling analysis,

as the linear circuit will not reproduce the behavior of higher energy excitations.

The classical coupling strength between the two resonant modes in Fig. 3.6 (a)

can be found by examining the electrical admittance between the circuit nodes

separated by the qubit inductor Lq:

Y =
1

ZLq

+
1

ZCq

+
1

ZC0

+
1

ZCm
+ ZLm

, (3.25)

where Zx is the impedance of element x. The resonant modes are found by solving

for the frequencies where the admittance goes to zero. The positive solutions to
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Figure 3.6: Directly and capacitively coupled qubit-FBAR circuit representations.
a, the tunable inductor Lq and fixed capacitance Cq represent the qubit. The qubit
is directly connected to a FBAR, which is modeled by the modified Butterworth-
van Dyke circuit in the dissipation free limit. b, a coupling capacitor can be used
to decrease, and control, the electrical connection between qubit and FBAR.
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the resulting biquadratic equation are

ω± =

√

−B ±
√
B2 − 4AC

2A
, (3.26)

where A = Cm(C0 + Cq)LqLm, B = −CmLm − (C0 + Cm + Cq)Lq, and C = 1.

In the limit of small qubit inductance (thus higher qubit frequency), and for

qubit and FBAR with quite different self-resonant frequencies, these solutions

take on the limiting forms

ωL
+ → 1

√

Lq(C0 + Cq)
, and (3.27)

ωL
− → 1√

LmCm

. (3.28)

We can interpret the limiting form for ωL
+ as a qubit mode that resonates at the

angular frequency 1/
√

LqCq,eff with re-normalized capacitance Cq,eff = C0 + Cq.

Likewise, the limiting form for ωL
− can be attributed to the mechanical resonant

frequency at ωr = 1/
√
LmCm. Now, using the fact that the qubit inductance Lq

can be tuned, we can change the upper frequency ωL
+, and in particular tune the

qubit frequency towards the mechanical resonance ωL
−. Adjusting Lq to make the

two frequencies equal corresponds to the frequency that generates on-resonance

coupling between qubit and resonator; this is analogous to a system of two different

harmonic oscillators, coupled by a weak spring, and tuning the mass of one of

the oscillators to bring its frequency equal to that of the other oscillator. This

condition is colloquially referred to as the frequency for which the two modes are
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“on resonance”.

As the frequency of the qubit mode is tunable with respect to the fixed me-

chanical frequency, the amount by which their limiting forms Eq. (3.27) differ

is called the qubit frequency de-tuning, or simply the de-tuning, ∆ = ωL
+ − ωL

−.

When the two modes are on resonance, ∆ = 0. However, the frequency difference

between the full forms of the two modes, Eq. 3.26, is always nonzero, even at zero

de-tuning, due to what in quantum mechanics is often called “level avoidance”;

here we are seeing its classical representation. In fact, the frequency difference,

Ω = (ω+ − ω−)∆=0, evaluated at ∆ = 0, is a measure of the coupling strength

between the modes, Ω = 2g0/~, where g0 is the classical coupling strength, which

corresponds in the quantum limit to the single-quanta coupling strength.

The coupling strength can be solved for analytically. The general solution for

the difference between the positive roots of a biquadratic equation is given by

ω+ − ω− =

√

−B + 2
√
AC

A
(3.29)

For ∆ = 0 we find

Ω = (ω+ − ω−)∆=0 =

√

1

LmCq,eff

, (3.30)

where we have used the fact that Lq = CmLm/Cq,eff on resonance. Thus, if Cq,eff

is held fixed, we see that the coupling strength depends only on the mechanical

inductance Lm. This implies that larger-area FBARs with the same film thick-

nesses t will be more strongly coupled to the qubit, and the area of the FBAR
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can be adjusted to obtain the desired coupling.

However, relying on the size of the resonator to set the coupling strength may

prove inconvenient if the desired resonator size is difficult to realize in practice. To

further control the coupling between qubit and mechanical resonator, a coupling

capacitor may be added to the circuit, as shown in Fig. 3.6 (b). A similar analysis

indicates that the two limiting modes are on resonance when Lq = Cm,effLm/Cq,eff ,

where Cq,eff = Cq + C0Cc(C0 + Cc)
−1 and Cm,eff = Cm(C0 + Cc)/(C0 + Cc + Cm).

The frequency separation between the mode frequencies on resonance, and thus

the coupling strength, is modified by the coupling capacitance to become

ΩC =
Cc

C0 + Cc

√

1

LmCq,eff
. (3.31)

We see that the general form is preserved, and we can now adjust the coupling

strength via the coupling capacitor Cc as well as through the FBAR parameters.

3.5 Qubits as quantum transducers

Although cooling a mechanical resonator to its quantum ground state is not a triv-

ial procedure, for the discussion that follows we will assume this has already been

achieved. The next clear challenge is to excite the ground-state resonator into a

non-classical state. However, the method needed to produce such states is not

readily apparent. The use of classical excitation pulses to drive a harmonic oscil-
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lator will generate coherent states, whose subsequent behavior is indistinguishable

from those of a purely classical oscillator: The simple harmonic oscillator, which

is the appropriate model for a single harmonic resonance, is always in the corre-

spondence limit between classical and quantum mechanics [26].

To illuminate this point, it is useful to outline the process that creates a

coherent state. When a harmonic oscillator, initially in its ground state |0〉 (where

here we represent the oscillator state in terms of its quantum number, or Fock

state basis |n〉), is excited by an on-resonance classical force, the state of the

system gradually increases its amplitude in the first excited |1〉 state. However,

as soon as the resonator obtains any probability amplitude to be found in |1〉, the

excitation will begin to promote that population to the second excited state |2〉,

as the |1〉 ↔ |2〉 transition frequency is identical to the |0〉 ↔ |1〉 transition, a

consequence of linearity. The resultant state will be a superposition of partially

excited phonon number states |0〉, |1〉, |2〉. A measurement of the energy of the

oscillator will, for the ideal coherent state, yield phonon number probabilities

Pn(a) =
ane−a

n!
, (3.32)

where a is the average phonon number, and n is the index for the Fock state |n〉.

Classical signals can only generate coherent states of this form, and do not reveal

the underlying quantum structure of the oscillator’s behavior.

Instead of exciting the mechanical resonator directly, we chose to use the ex-

43



traordinarily strong nonlinearity displayed by the Josephson qubit, so that effec-

tively the qubit serves as a “classical-to-quantum transducer”. As the qubit can

be manipulated in a way that only involves its lowest two energy levels |g〉 and |e〉,

and the mode of excitation depends on the phase of the excitation signal, purely

classical excitations can be used to completely quantum-control the qubit state.

A qubit initially in |g〉 can be controllably excited, by an on-resonance, calibrated

amplitude and duration classical microwave pulse, to the final state |e〉. At this

point, further excitation will force the qubit to emit energy into the excitation field

and return to its ground state |g〉. The state dynamics for a microwave-frequency

classical current bias Irf , resonant with the |g〉 ↔ |e〉 transition, are described by

the Rabi formula [40]

Pe(t) = sin 2

(

IrfχegEJ

~I0
t

)

, (3.33)

where Pe(t) is the qubit excited state probability, and χeg is the dipole matrix

element between states |g〉 and |e〉 [10]. Classical radiation alone is sufficient to

place the qubit in any state on the Bloch sphere, provided the phase, amplitude

and duration of the pulse are properly chosen [46].

Since Josephson qubits can be placed into well-defined quantum states using

classical excitations, they provide an ideal means for quantum control of a har-

monic oscillator, such as a mechanical resonator. Producing a non-classical state

in the mechanical resonator now becomes a two-step process. First, one creates
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an arbitrary qubit state using a classical excitation, with the qubit well de-tuned

from the resonator to minimize interactions. Second, one transfers the quantum

state to the mechanical resonator, by bringing the qubit into frequency-resonance

with the resonator in a carefully controlled fashion, and then waiting as the ex-

citation transfers from qubit to resonator. This is completely analogous to the

classical transfer of energy that occurs between two coupled harmonic oscillators

when one is excited: The classical “beating” described in elementary classical

mechanics is the classical description of what here is the equivalent quantum pro-

cess. As mentioned previously, the transfer time for the excitation (in both the

quantum and classical systems) must be shorter or, at most, of the same order

as the mechanical oscillator’s energy relaxation time. For the FBAR resonators

described above, this time is only several nanoseconds. Since the transfer time is

inversely proportional to the coupling strength ΩC , strong qubit-FBAR coupling

is required.

The quantum dynamics of the capacitively-coupled qubit-FBAR system are

most easily understood by casting the full Hamiltonian into the form of the Jaynes-

Cummings model Hamiltonian (see [5]):

Ĥ

~
= −ωq

2
σ̂z + ΩMâ

†â− i
ΩC

2

(

âσ̂− − â†σ̂+

)

. (3.34)

In the Jaynes-Cummings Hamiltonian, written here in the rotating wave approx-

imation, the qubit is represented by the first term, which is that of a two-level
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system with tunable transition frequency ωq/2π, where σ̂z is the qubit z opera-

tor. The second term corresponds to the mechanical resonator, which takes on

the standard form of a harmonic oscillator with energy level transition frequency

ΩM/2π, and â† and â are the resonator phonon raising and lowering operators.

The last term of the Hamiltonian expresses the qubit-mechanical resonator cou-

pling, where σ̂− and σ̂+ are the qubit raising and lower operators, respectively

[10]. The rotating wave approximation is valid when the qubit-resonator coupling

is much smaller than the mechanical transition frequency, Ω � ΩM [45].

If a quantum state α|g〉 + β|e〉 is created in the qubit, it can be subsequently

transferred to the mechanical resonator by tuning the qubit |g〉 ↔ |e〉 transition

frequency into resonance with the mechanical resonator frequency ΩM. If we label

the probability amplitudes Cqr for the basis state |qr〉 of the coupled system, i.e.

a state is given by |ψ〉 = Cg0|g0〉 + Cg1|g1〉 + Ce0|e0〉 + Ce1|e1〉 (here including

only the two lowest resonator Fock states |0〉 and |1〉), then the dynamics of the

system are described by the set of equations [10]

cg0(t) = α, (3.35)

cg1(t) = β
ΩC

Ω(∆)
sin

(

Ω(∆)t

2

)

e−i∆t/2, (3.36)

ce0(t) = β

[

cos

(

Ω(∆)t

2

)

+ i
∆

Ω(∆)
sin

(

Ω(∆)t

2

)]

ei∆t/2, and (3.37)

ce1(t) = 0. (3.38)

Here ∆ = ωq − ΩM is the de-tuning and Ω(∆) =
√

Ω2
C + ∆2 is the Rabi vacuum
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frequency. In Fig. 3.7 (a) we plot the time evolution for the initial qubit state

|e〉 (i.e. α = 0, β = 1), with the qubit transition frequency exactly on resonance

with the mechanical resonator, ∆ = 0. The resonator is initially in the ground

state, but after a quarter of a swap period, ΩCt = π/2, the qubit and mechanical

resonator are maximally entangled, with an equal probability to find either in the

excited state. The state transfer from qubit to mechanical resonator is complete

after a time t = π/ΩC , which places the resonator in the quantum state |1〉 and

leaves the qubit in the ground state. The energy quantum is returned to the

qubit (up to a phase) if the interaction is allowed to proceed to t = 2π/ΩC . For

a more general state with both α and β non-zero, the same process occurs, with

the resonator in the swapped state α|0〉 + β|1〉 after a time t = π/ΩC , and the

state being completely returned to the qubit after a time t = 2π/ΩC .

If the qubit and mechanical resonator are not exactly on resonance, i.e. for non-

zero de-tuning, then the state transfer will still take place, but with a higher fre-

quency
√

Ω2
C + ∆2, and with a reduced maximal transfer probability Ω2

C/ (Ω2
C + ∆2).

We have illustrated this dependence on de-tuning by plotting the probability to

find the qubit in the excited state Pe = |Ce0|2, shown in Fig. 3.7 (b). The light

portions of the plot correspond to the quantum state being primarily found in

the qubit, while the dark portions indicate a preferentially excited mechanical

resonator P1 = 1 − Pe, from conservation of probability. Of course, in any real
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Figure 3.7: Qubit-mechanical resonator probabilities on resonance and for vari-
able de-tunings. a shows the on-resonance time evolution of the excited state
probability for the qubit, |Ce0|2 (solid line), and the |1〉 state probability for the
resonator |Cg1|2 (dashed line), for the initial state |e0〉. b shows the time evolu-
tion of the qubit |e〉 state probability Pe as for the same time evolution, but for
different de-tunings ∆. The trace for |Ce0|2 in a is the same as the evolution for
Pe in b for ∆ = 0.

system, energy loss and phase decoherence will cause the system to relax, so the

oscillations become less pronounced as time proceeds.

3.6 Quantum ground state and single phonon con-

trol

Now that we have constructed the theoretical tools needed to understand the

quantum interaction between a qubit and a mechanical resonator, we can turn

our attention to the results we obtained for our experimental implementation of

this system. An image and circuit representation for the experimental device is

shown in Fig. 3.8, where, for clarity, we have not included dissipative elements for
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the qubit. In this device, a flux-biased Josephson junction qubit (phase qubit)

was used instead of the idealized current-biased Josephson qubit we discussed

earlier. In the phase qubit, the effective bias current is produced using an on-chip

flux bias coil, mutually coupled to the inductor LB which is connected across the

Josephson junction. This change means that the inclined “washboard potential” of

the current-biased junction is replaced by a larger parabolic shape with superposed

washboard oscillations, but the local behavior (in one of the metastable wells)

remains effectively identical. In addition, because better qubit performance is

obtained with small-area Josephson junctions, an additional shunting capacitor

CS is added to adjust the qubit resonant frequency to the desired microwave range

of 4 GHz< ωq/2π < 8 GHz.

There are slight changes in the dynamics of the flux-biased Josephson qubit in

comparison with the current-biased version. Although the additional capacitance

can be thought of as just an increased mass M = (~/2e)2(CJ +CS), the additional

linear inductor, as mentioned above, changes the overall shape of the washboard

potential by incorporating a term that is quadratic in the phase coordinate. This

eliminates the “running” non-zero voltage states, and forms the double-well poten-

tial depicted in Fig. 3.8 (c). Properly biased, the left well includes the qubit state

manifold, while the right well contains many lower-energy states. The two wells

are separated by approximately 2π in the phase coordinate, which corresponds to
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Figure 3.8: Optical micrograph and circuit representation of coupled qubit-
mechanical resonator. a, the qubit at the top of the micrograph is contained
within the blue dashed line. The Josephson junction is barely visible in the mid-
dle of the highlighted area and is shunted by an inductor to the left and an
interdigitated capacitor to the right. A wire connects the qubit to an interdigi-
tated coupling capacitor Cc, shown in the middle of the image. At the bottom
of the image a mechanically-suspended FBAR is surrounded by the red dashed
box. All circuit components are surrounded by an electrical ground plane. b,
Lumped-element circuit representation showing the capacitively-shunted Joseph-
son junction in parallel with a gradiometric inductor LB and a capacitance CS

resulting from the interdigitated inductor. The qubit is capacitively-coupled to the
FBAR, which here is represented by the modified Butterworth-van Dyke model.
c, double well potential energy of the phase qubit with left well, L, and right well,
R. The three lowest lying energy levels of the left well are depicted schematically.
The phase difference between left and right well corresponds to an approximate
difference of one flux quanta threading the qubit loop.
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approximately one flux quantum Φ0 through the enclosing inductance.

The qubit is initialized by adjusting the flux bias until the phase “particle” is

located in the left well, where in time it relaxes to the (metastable) ground state |g〉

of that well. This ground state, and the next higher energy level |e〉 in the left well,

form the qubit manifold, with their energy level spacing dependent on the bias flux

(instead of on the bias current). High-frequency microwave pulses can be applied

through the flux bias line to prepare the qubit in any desired superposition of these

states. In general, a sequence of these pulses, along with slower qubit frequency-

tuning pulses, determines the quantum evolution of the qubit state, either by

directly altering the state or by allowing the qubit to interact with the resonator.

Once a pulse sequence is complete, a measurement of the qubit is performed by

tilting the potential well with the external flux bias just enough so that the excited

state |e〉 will preferentially tunnel from the left well into the right well, while the

ground state |g〉 will remain in the left well. An on-chip superconducting quantum

interference device (SQUID) reads out the measurement by detecting the flux

threading the qubit loop, projectively differentiating between finding the phase

particle in the left or right well. This procedure yields a 90-95% visibility between

the excited and ground state. The probability Pe that the qubit was in its |e〉

state just before measurement can be evaluated by repeating the entire process

many (∼ 1000) times, and averaging the results.
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The coupled qubit-mechanical resonator sample shown in Fig. 3.8 (a) was

mounted in an aluminum box, attached to the mixing chamber of a dilution re-

frigerator, and cooled to the refrigerator base temperature of T ≈ 25 mK. At this

temperature, both the qubit and mechanical resonator should contain less than

one energy quantum, as the inequality ~ω � kBT is easily satisfied for typical

qubit and resonator frequencies of a few GHz. Previous experiments on phase

qubits have shown that the qubit is very reliably in its ground state at this tem-

perature, and our aim in the next section is to demonstrate that the mechanical

resonator is in its quantum ground state as well.

The first measurement is to determine the resonant frequencies of the combined

system. This was performed using qubit spectroscopy, as illustrated in Fig. 3.9.

For all measurements, the qubit was always first initialized to a |g〉 ↔ |e〉 transi-

tion frequency ωq/2π = 5.44 GHz, by setting the qubit flux bias to what we term

the “operating bias”, which we also used as the zero reference for the flux bias.

Qubit spectroscopy was performed by pulsing the qubit dc flux away from the

operating bias, and illuminating the qubit with microwaves at some frequency for

1.0 µs. After tuning the (excited) qubit back to the operating bias, the qubit was

measured, from which the excited state probability Pe could be determined (as

described above). For a given microwave drive frequency, a substantial increase in

qubit excited state probability was observed only when the qubit transition fre-
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Figure 3.9: Qubit spectroscopy: pulse sequence, qubit excited state probability,
and detail of the avoided level crossing. a, the qubit, initially in its ground state
|g〉, is moved away from its operating bias and illuminated with microwaves for
1.0 µs. The qubit is then returned to the operating bias and measured. This
experiment is repeated while varying both microwave frequency and flux bias
tuning. b, the probability for the qubit to be measured in the excited state,
Pe, is maximal when the |g〉 ↔ |e〉 energy level transition is resonant with the
microwave drive. The distinct splitting enclosed in the white dashed box is due to
the qubit-FBAR interaction. c, detail of b highlighting the avoided-level crossing
with a fit to the model (upper and lower dashed lines). The horizontal dotted
line indicates the frequency of the mechanical resonator ΩM/2π. The coupling
strength ΩC/2π = 124 MHz between qubit and resonator was determined from
the minimum frequency difference between the two curves.

quency was resonant with the driving field. For non-resonant driving frequencies,

the qubit remained in the ground state. Thus, by repeating the experiment while

varying both the qubit flux bias and the microwave drive frequency, the resonant

modes of the coupled system can be mapped out.

The avoided-level crossing, enclosed by the white dashed rectangle in Fig. 3.9

(b), is characteristic of two interacting resonant systems, and here arises from the
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interaction between the qubit and the mechanical resonator. The splitting occurs

from the interaction and hence the hybridization of the quantum states of the

qubit and resonator, leading to the splitting seen in the qubit transition frequency

as a function of bias. A detailed view of this behavior is shown in Fig. 3.9 (c),

where the fixed mechanical resonant frequency is indicated by the dotted line at

ΩM/2π = 6.175 GHz. The dashed white lines were produced by fitting the data

to the classical circuit model described above. The minimum frequency difference

between the modes is ΩC/2π = 124 MHz and indicates an energy transfer time

(Rabi swap time) between the qubit and mechanical resonator of approximately

4 ns.

We exploited the strong qubit-resonator coupling to verify that the mechanical

resonator was indeed in its quantum ground state. The general idea is to use the

qubit as a “quantum thermometer” able to detect any non-zero state occupation

in the system. If, for example, the mechanical resonator was not in the ground

state, then some of that energy would transfer to the qubit when the qubit and

resonator are brought into frequency resonance. Measuring that the qubit has a

non-zero excited probability would imply that the mechanical resonator was not

in the ground state, while a lack of qubit excitation would indicate that the FBAR

was indeed in the quantum ground state.

We used two pulse sequences to measure the effective temperature of the res-
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onator, as shown in Fig. 3.10 (a). As depicted in the upper pulse sequence, the

qubit, initially in its ground state |g〉, was brought to a frequency de-tuning ∆

from the mechanical resonance frequency and left there for 1.0 µs. The qubit was

then returned to its operating bias and measured. The probability Pe of measur-

ing the qubit in its excited state as a function of de-tuning ∆ is shown in Fig. 3.10

(b) (blue points). The lower pulse sequence shown in Fig. 3.10 (a), was used to

place a bound on the dynamic range of the qubit. In this pulse sequence, after

interacting with the mechanical resonator, the qubit was returned to its operat-

ing bias, but just prior to measurement the ground and excited state probabilities

were swapped by applying a microwave π-pulse. The results are shown in Fig. 3.10

(b) by the black data points.

During the interaction, the qubit and mechanical resonator will come into

thermal equilibrium, and the qubit excited state population will then reflect any

elevated population in the resonator excited states, modulated by the strength

of the interaction between the resonator and qubit, and by the qubit and res-

onator coupling to the thermal bath, as parameterized by their respective energy

lifetimes. The numerical simulations include this physics. However, no change

in qubit population was seen, even near zero de-tuning where the interaction is

the strongest. The lack of a peak (dip) in the qubit excited state probability for

the blue (black) data indicates that the mechanical resonator had no measurable
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Figure 3.10: Quantum ground state: pulse sequences and experimental data a,
the qubit, initially in |g〉, was tuned to within ∆ of the mechanical resonator and
allowed to interact with the mechanical resonator for 1.0 µs. The qubit was then
returned to its operating bias and measured. The experiment was repeated for a
range of de-tunings. In the lower pulse sequence, an additional microwave π-pulse
was used to swap the ground and excited state populations prior to measurement.
b, qubit excited state probability without (blue points) and with (black points)
the additional population-swapping π-pulse. The dashed lines are numerically
simulated qubit probabilities, in which the mechanical resonator was maintained
in a thermal state of 〈n〉 phonons during the qubit interaction process. The lack
of a peak in the blue data points around zero de-tuning, and the lack of a dip in
the black data points, which from the simulations would be evident even for a very
small number of residual phonons 〈n〉, indicates that the mechanical resonator is
with quite high probability (better than 93%) in its quantum ground state |0〉.
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thermal energy to transfer to the qubit. The degree to which the resonator was

in the quantum ground state was determined from dynamic quantum simulations

to be P0 > 93%, with a corresponding average phonon number 〈n〉 < 0.07.

With the assurance that the mechanical resonator was indeed in its quantum

ground state, our focus shifted toward demonstrating quantum control of the

mechanical resonator. We were able to use the qubit as a quantum transducer,

generating and measuring a single phonon in the resonator, by applying the pulse

sequence shown in Fig. 3.11 (a). The qubit, initially in |g〉, was promoted to its

excited state with a microwave π-pulse (defined as the pulse that exchanges the

populations of the |g〉 and |e〉 states, i.e. here exciting the qubit to its |e〉 state).

The qubit was then biased to bring its transition frequency toward that of the

mechanical resonator, and held at a de-tuning ∆ for a variable time τ . Finally, we

returned the qubit to its operating bias and measured its excited state probability

Pe.

The expected oscillatory behavior, corresponding to the quantum state swap-

ping between qubit and mechanical resonator, can be seen clearly in Fig. 3.11

(b). The oscillations occur at the correct Rabi swap frequency, and display the

expected Lorentzian dependence on detuning. There is very rapid decay of the

oscillations, due to the very limited energy lifetime of the resonator and the qubit.

The asymmetry in the magnitude of the probabilities around ∆ = 0 arise from the
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Figure 3.11: Excited mechanical resonator states: pulse sequence, quantum sim-
ulation, and experimental data. a, pulse sequence in which the qubit is first
promoted to |e〉 by a π-pulse, then allowed to interact with the mechanical res-
onator at a de-tuning ∆ for a variable time τ , before being returned and measured
at its operating bias. b, measurement of qubit excited state probability Pe as a
function of de-tuning and interaction time, showing a single quantum excitation
oscillating between the qubit and the mechanical resonator. The dotted white
lines show the expected Lorentzian dependence. The gray dashed line indicates
the mechanical resonance frequency. c, numerical simulation of the data in b,
for a qubit initially in its |e〉 state interacting with a mechanical resonator, with
the measured qubit and mechanical resonator parameters. d, qubit excited state
probability for de-tuning ∆ = 72 MHz, indicated by the white dashed line slice of
the experimental data shown in b. After a time τ = τph/2, the qubit and mechan-
ical resonator were maximally entangled. At interaction time τph, the qubit was
measured to be in its ground state, implying a single phonon excitation was cre-
ated in the mechanical resonator. At time 2τph the excitation had been returned
to the qubit, reduced in amplitude by dissipation (finite energy lifetime).
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exact shape of the tuning pulse used to bring the qubit toward and away from the

FBAR: The pulse is trapezoidal, due to the finite rise-time of the electronics that

control the flux bias. Since the ∼ 1 ns rise and fall times of this trapezoidal shape

are not fast compared to qubit-resonator swap time, setting the qubit frequency

somewhat above the resonator frequency favors higher state transfer probabilities.

This is borne out by the simulations presented in Fig. 3.11 (c). A line cut through

the experimental data is shown in Fig. 3.11 (d), for a de-tuning ∆ = 72 MHz, cor-

responding to the white dashed line in panel (b). Guided by the solutions to the

Jaynes-Cummings Hamiltonian presented above, the maxima of the oscillations

were fit to a swap frequency ΩC/2π = 132 MHz, quite close to the value obtained

from qubit spectroscopy.

We next used the ability to create a single phonon excitation in the resonator

to measure its energy relaxation and phase coherence times. Fig. 3.12 (a) shows

the pulse sequence used to extract the resonator energy relaxation time T1M . The

qubit, initially in the ground state, was placed in the excited state by a π-pulse,

then biased and held at ∆ = 72 MHz for τph, so that the qubit excitation was fully

transferred to the resonator, creating a one-phonon Fock state |1〉. The qubit, in

its ground state, was then returned to its operating bias for a variable time τ .

During this time the qubit and mechanical resonator were effectively decoupled,

confining the phonon excitation to the mechanical resonator and allowing it to

59



meas.

meas.

Xπ

Xπ/2 φπ/2

τ

τ

FBAR

Qubit

τph

FBAR

Qubit

Time τ (ns)

0.5

Pe

0.4

0.3

0.2

0.1

0.0
0 10 20 30 40

Time τ (ns)

0.7

Pe

0 6020 8040

0.5

0.4

0.3

0.2

0.6

(a) (b)

(c) (d)

τph

τph τph

Figure 3.12: Mechanical resonator energy relaxation and phase coherence times.
a, T1M pulse sequence. The qubit was placed into |e〉 by a π-pulse, then tuned
into resonance with the resonator for a duration sufficient to fully transfer the
qubit excitation to the resonator, generating a single phonon. The qubit was then
de-tuned from the resonator allowing the phonon to decay in the resonator for a
time τ , after which the qubit was brought back into resonance with the resonator
to transfer any remaining excitation to the qubit. b, Measured qubit excited
state probability Pe(τ). The fit line is a direct measure of the phonon decay time,
yielding T1M = 6.1 ns. c, Resonator phase coherence pulse sequence. This is
similar to a, but using a π/2-pulse to prepare the qubit in the superposed state
(|g〉+ |e〉)/

√
2. The phase of the second π/2-pulse was swept in order to produce

the oscillations seen in d, which is a measure of the resonator phase coherence.
The fit line indicates T2M ≈ 2T1M.
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decay. The qubit was then brought back to ∆ = 72 MHz for τph, transferring any

excitation remaining in the resonator back to the qubit. Finally, the qubit was

returned to its operating bias and measured. By varying the delay time τ , the

measured qubit probability is a direct measure of the single-phonon energy decay

in the resonator. The experimental data are shown in Fig. 3.12 (b), with a fit

exponential corresponding to a mechanical energy decay time of T1M = 6.1 ns.

The phase coherence time of the FBAR was measured in a similar fashion. The

qubit was first prepared in the superposed state (|g〉+ |e〉)/
√

2, using a π/2-pulse

with controlled phase. As discussed earlier, an initial qubit state α|g〉 + β|e〉 can

be transfered to the mechanical resonator phonon state α|0〉+β|1〉 by allowing the

coupled system to interact for a time τ = π/ΩC ; a length of time equivalent to the

experimentally determined single phonon swap time τph. Using this technique we

transfered the initial superposed qubit state to the mechanical resonator, creating

the superposed phonon state (|0〉+|1〉)/
√

2. After the state transfer was complete,

the qubit, now in its ground state, was detuned from the resonator to decouple

the system. The qubit was then held at its operating bias to allow the superposed

phonon state to decay in the resonator. After a time τ , the qubit was brought

back into resonance with the mechanical resonator and allowed to interact for τph

in order to transfer any remaining phonon superposition back to a superposition

of qubit states. The qubit was then returned to the operating bias and measured.
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This experiment was repeated for varying hold times τ .

However, in order to obtain an accurate measure of the decay of the resulting

superposed state, the measurement was conducted using a Ramsey fringe tech-

nique [35]. Just before the qubit excited state probability was read-out, a π/2-

pulse was applied to the qubit. The phase of this pulse φπ/2 was then swept at an

angular frequency ωφ, producing the oscillation frequency seen in the data ωφ/2π.

The phase coherence time was determined from a fit to the resulting oscillation,

T2M ' 20 ns.

The fact that the dephasing time was measured to be more than twice the

energy relaxation time (the theoretical limit) was most likely a result of the com-

plexity of the pulse sequence, where small pulse shaping errors can lead to longer-

than-expected phase coherence times. Note that during this measurement of the

resonator phase coherence, the mechanical resonator was placed in a superposition

of its ground and first excited states, a very non-classical quantum superposition.

We performed one final experiment to observe the effect of higher energy Fock

states |n〉, with n ≥ 2, in the mechanical resonator. These higher levels were

populated by directly exciting the resonator with an on-resonance Gaussian mi-

crowave pulse coupled through the on-chip external capacitor Cx. During this

microwave pulse, the qubit was kept off-resonance and thus not directly excited

by the microwave signal. As previously discussed, the state of the resonator after
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Figure 3.13: Coherent state pulse sequence, data, and simulation a, a classical
Gaussian microwave pulse was applied directly to the FBAR. After the microwave
pulse was turned off, the qubit was tuned into resonance and allowed to interact
with the excited FBAR for a time τ . The qubit, initially in its ground state |g〉, was
measured and the excited state probability Pe recorded. The experiment was then
repeated for varying initial microwave pulse amplitudes and interaction times. b,
experimental data showing the expected increase in swap frequency when the qubit
is allowed to interact with a more highly excited FBAR. c, quantum simulations
show similar expected shortening of swap period for the interaction between qubit
and mechanical resonator. For the simulations, the FBAR was initially placed in
a coherent state with average phonon number 〈n〉.
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this pulse will be a coherent state [15]. The qubit, initially in its ground state

|g〉, was then brought into resonance with the resonator, and allowed to interact

for a variable time τ at detuning ∆ = 0. The qubit was then returned to its

operating bias and its excited state probability measured. The amplitude of the

initial microwave pulse was varied while repeating this measurement. The pulse

sequence and resulting data are shown in Fig. 3.13 (a) and (b). From the data

presented there, the swap frequency can be seen to increase with higher microwave

pulse amplitude. Larger microwave pulse amplitudes create initial coherent states

with more highly populated Fock states |n〉. Since the qubit-resonator interaction

strength scales as
√
ng0, these more highly excited Fock states effectively cause

the qubit and resonator to be more strongly coupled [15]. Correspondingly, the

time needed to transfer energy between qubit and resonator is reduced. The in-

crease in swap frequency with increasing excitation, and thus phonon number n,

is reproduced in the numerical simulations presented in Fig. 3.13 (c).

More complex experiments, such as arbitrary phonon state generation, similar

to those performed with microwave electromagnetic resonators [14], were not feasi-

ble with this system, due to the quite short energy relaxation time of the mechan-

ical resonator. Future experiments, such as those involving Wigner tomography,

to further verify that the mechanical quantum states were indeed non-classical, is

an obvious future direction. The primary improvement needed to perform mea-
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surements in this area would be to increase the energy lifetime (i.e. the quality

factor Q) of the resonator, preferably by a factor of ten or more.

In conclusion, we have created a novel system by coupling a qubit to a me-

chanical resonator, with which we were able to explore non-classical effects in a

mechanical resonator. Spectroscopic measurements displayed the characteristic

resonant mode splitting of a coupled system; an essentially classical result. We

then used the qubit as a “quantum thermometer” to measure the thermal occupa-

tion of the mechanical resonator. Using this technique, the mechanical resonator

was determined to be in the quantum ground state. To further reveal the quantum

nature of the mechanical resonator, we used the qubit as a “quantum transducer”

to prepare single phonon states, creating entangled qubit-phonon states in the

process. We then measured the single phonon energy lifetime of the mechanical

resonator T1M = 6.1 ns. A similar technique was employed to extract the res-

onator’s phase coherence time T2M ≈ 2T1M, which necessitated the creation of

superposed phonon states. Finally, to explore the effects of higher phonon levels,

we excited the resonator directly to create coherent phonon states. These mea-

surements provide strong evidence that we have achieved elementary quantum

control over a macroscopic mechanical system.
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Chapter 4

The loose ends

The aim of this chapter is to provide additional support for some of the statements

made in the previous chapter, or, in parts, to add to the discussion. Although the

flow of this chapter may seem stochastic, at least the topics are ordered in the

same way as they were presented in the previous chapter.

An outline of this chapter is as follows: In the first section we calculate the

expected electrical response of a mechanical resonator when measured spectro-

scopically. We begin by constructing a lumped element circuit representation

of a mechanical resonator attached to a vector network analyzer in a two-port

configuration. Using elementary circuit analysis, we obtain an expression for the

normalized transmitted signal recorded by the network analyzer S21. It was this

resulting expression which was used to fit the classical spectroscopic response,
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presented in Fig. 3.2 of the last chapter. The values for the circuit parameters,

quoted there, were also obtained using this fit.

The next section provides a plot of the classically obtained qubit-mechanical

resonator coupling strength. To produce this plot, we assumed the equivalent

circuit component values obtained from the fit of the measured spectroscopic

response, shown in Fig. 3.2. This analysis serves no greater purpose than to

place numeric values on the possible range of coupling strengths and to provide

justification for our choice of coupling capacitor.

We then examine the full form of the qubit-resonator interaction Hamiltonian

and identify the terms that were previously dropped when taking the rotating wave

approximation. Although the actual experiment was conducted in a regime where

the rotating wave approximation was applicable [45], the previously neglected

terms may become significant if future experiments are conducted on FBARs of

much larger sizes or with much higher piezoelectric coupling efficiencies.

Following that discussion, we switch gears to examine the expected off-resonant

performance of the qubit, subject to the possible energy loss mechanisms. We

sketch the results of a calculation that indicated an appreciable amount of dissi-

pation may arise from the combination of dielectric losses of the AlN contained

in the FBAR and the SiO2 layer upon which the qubit rests. We then present

the experimentally measured energy decay time of the qubit T1q, and find it to be
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significantly shorter than what was expected from the dielectric loss calculation,

although still within the same order of magnitude.

Lastly, we outline the Lindblad formalism used to incorporate decoherence into

the quantum simulations presented in the previous chapter. Also in this section,

we present the details of the procedure used to place an upper bound on the

quoted average phonon number 〈n〉 and ground state probability P0 of the FBAR

measured with the ground state pulse sequence presented in the previous chapter.

4.1 Classical FBAR spectroscopic analysis

The normalized transmission, S21, resulting from a spectroscopically measured

FBAR, can be modeled with the circuit presented in Fig. 4.1 (a). Fitting the

measured data to this model enabled the extraction of MBVD component param-

eters. In this model, a transmission measurement is conducted by exciting the

device under test with a voltage source Vin and monitoring the output voltage

at Vout, as indicated in Fig. 4.1 (a). Since the vector network analyzer used to

measure the FBARs was designed to be matched to 50 Ω, we have modeled this

built-in impedance with two in-line resistors, each with value Rx = 50 Ω. The

other circuit components were described in the previous chapter, where we have

included the full form of the MBVD model, the stray inductance LS, and the

impedance transforming external capacitors Cx used to ensure the FBAR is not
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Figure 4.1: a, full spectroscopic measurement circuit including the built-in vec-
tor network analyzer impedance Rx = 50 Ω. The network analyzer measures a
normalized voltage ratio S21 = 2Vout/Vin. b, Norton equivalent circuit. c, cur-
rent biased circuit depicting the fully combined impedance of the transformed
elements.

appreciably damped by Rx.

In order to express the measured signal S21 = 2Vout/Vin in terms of circuit

parameters, we transform the full circuit into the Norton equivalent circuit as

depicted in Fig. 4.1 (b). The voltage source has been replaced by a current bias

Vin/Zx, where Zx = ZCx
+ Rx, the series connection of the impedance of the

coupling capacitor and vector network analyzer resistor. For convenience, the

individual circuit elements of the mechanical resonator have been combined into

three impedances: the impedance of the stray inductance ZLS
, the mechanical

branch impedance Zm = ZLm
+ ZCm

+ Rm, and the electrical branch impedance

Z0 = ZC0
+ R0. In Fig. 4.1 (c), we have combined these impedances into a total
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impedance shunting the current bias of

ZT =







2

Zx
+

1

ZL +
(

1
Z0

+ 1
Zm

)−1







−1

(4.1)

Using Ohm’s law, we identify the voltage across the total impedance as V =

ZTVin/Zx. Now, to find the voltage measured by the vector network analyzer, we

recognize that Vout and V are related through the voltage division Vout = V Rx/Zx.

Thus, plugging in for V, the output voltage becomes

Vout =
RxZT

Z2
x

Vin (4.2)

Finally, since the vector network analyzer records the normalized voltage ratio

S21 = 2Vout/Vin,

S21 = 2
RxZT

Z2
x

. (4.3)
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4.2 Coupling capacitance determination from clas-

sical analysis

The design of the coupled qubit-mechanical resonator sample was mostly driven

by the somewhat limited performance of the mechanical resonators described in

the last chapter. They exhibited quality factors of roughly 260, which corresponds

to an expected energy decay lifetime of 7 ns at 6 GHz. To ensure the quantum

state would remain measurable after being transferred from qubit to resonator

and then back to the qubit, it was determined that a coupling strength of at least

100 MHz was needed.

If the only consideration were to create the strongest possible coupling between

qubit and mechanical resonator, then a direct electrical connection should be

made between the two. Since the mechanical resonator has a coupling efficiency

of k2
eff = 1.2 %, this places a natural upper bound on the maximum qubit-

resonator coupling strength. Optimal coupling can be achieved by forgoing the

qubit shunting capacitor entirely and relying on the electrical capacitance of the

mechanical resonator to shunt the qubit. The resulting coupling strength obtained

is shown as the largest coupling strength in Fig. 4.2, approximately 400 MHz,

where we have plotted the coupling strength for a qubit with fixed Cq,eff ≈ 1 pF

directly connected to a ∼ 6 GHz mechanical resonator.
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Figure 4.2: Directly connected qubit-mechanical resonator coupling strength over
the practical range of resonator electrical capacitances. The maximum coupling
occurs when the electrical capacitance of the mechanical resonator is used to
completely shunt the qubit, C0 = 1.0 pF. The corresponding radii of ∼ 6 GHz
disk FBARs with these electrical capacitances would range from 10-40 µm.

However, the disadvantage of direct coupling comes from the dependence on

the size of the mechanical resonator, and thus for fixed FBAR film thickness,

a dependence on the electrical capacitance. It may not be practical to make

resonators that differ greatly from a size proven to work well. A typical electrical

capacitance for many of the classical FBARs tested was C0 ≈ 0.2 pF. Therefore,

when designing FBARs coupled to qubits, we chose to preserve this electrical

capacitance. While directly coupling a C0 = 0.2 pF FBAR to a qubit would have

produced a tolerable coupling strength of around 175 MHz, we opted to introduce

an interdigitated coupling capacitor Cx = 0.5 pF to limit the interaction strength

to around 125 MHz. We would like to point out that since we have previously
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shown that a capacitively coupled qubit-FBAR can be mapped back to a directly

coupled qubit-FBAR circuit with renormalized capacitances, the choice to use a

coupling capacitor was only made out of convenience. For future experiments,

if one is willing to create FBARs of the appropriate size, a direct link between

qubit and FBAR may be preferable due to the corresponding reduction in the

complexity of the fabrication.

4.3 Coupled qubit-resonator Hamiltonian and RWA

The qubit and mechanical resonator are phase-charge coupled, also commonly

referred to as X-Y coupling. Although the rotating wave approximation (RWA)

should accurate describe the qubit-mechanical resonator coupling for the previ-

ously examined coupled qubit-resonator sample [45], in future experiments one

may wish to increase the coupling strength to the point where the RWA is no

longer applicable. To this end, and for completeness, we now examine the full

form of the coupling Hamiltonian [5, 10]

δH = −ig
∑

mm′

χmm′(a− a†)c†mcm′ , (4.4)

where χmm′ are the qubit dipole matrix elements, a† and a are the resonator

raising and lowering operators, and c†m and cm are the creation and annihilation

operators for the qubit states m = 0, 1 [45]. This full form of the coupling Hamil-
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tonian can be broken into
δH = δHJC + δHV , (4.5)

where δHV are the terms that were previously neglected

δHV = −ig
[

χ00c
†
0c0(a− a†) + χ01c

†
0c1a− χ01c

†
1c0a

† + χ11c
†
1c1(a− a†)

]

. (4.6)

We can rewrite this additional contribution to the coupling in terms of the pre-

viously introduced qubit, z, lowering, and raising operators σz, σ± as

δHV = −ig
{[

−∆χ

2
σz +

1

2
(χ00 + χ11)σ0

]

(a− a†) +
χ01

2

(

σ+a− σ−a
†
)

}

, (4.7)

where ∆χ = χ11 − χ00, and σ0 is the identity. These terms all oscillate with at

least a frequency of ΩM in the qubit-FBAR instantaneous interaction picture [10].

A discussion of the regime in which these terms provide a significant contribution

to the coupling can be found in Ref. [45].

4.4 Off resonant qubit characterization

Before finalizing the design of the coupled qubit-mechanical resonator sample,

we calculated the dissipative effect of the SiO2 substrate layer and the dielectric

loss resulting from the portion of the FBAR electrical capacitance C0 seen by

the qubit. Although, we found that these loss mechanisms should limit the qubit

energy decay time to T1q ≈ 60 ns for a 6 GHz resonator, this length of time would

have been sufficient to perform single qubit gate operations, and is significantly

longer than the estimated FBAR energy decay time of 6.6 ns.
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This result was calculated by estimating the expected qubit lifetime that would

result from dielectric losses alone. An upper bound on the loss was calculated by

assuming a substrate entirely composed of thermal SiO2. This reduced the overall

expected qubit lifetime to approximately 84 ns, taking into consideration the qubit

interdigitated shunting and coupling capacitors [30]. In addition, far off resonance,

the total qubit effective capacitance, Cq,eff , contains a non-negligible portion of

the FBAR electrical capacitance. For the values of the mechanical resonator and

coupling capacitor used in the experiment, the additional loss coming from the

AlN layer of the FBAR further reduced the qubit energy lifetime to around 60 ns

[30].

Once the qubit-mechanical resonator sample had been fabricated, mounted,

and cooled to base temperature, we were able to directly measure the off-resonant

energy lifetime of the qubit. However, prior to measuring T1q, a suitable off-

resonant qubit operating frequency had to be defined. This off-resonant frequency

was determined by examining the combined resonant modes mapped out by qubit

spectroscopy. We chose a frequency of 5.44 GHz, approximately 735 MHz detuned

from ΩM/2π, and effectively decoupled from the FBAR. The extent to which the

qubit and FBAR remain coupled at this operating frequency can be determined,

in the context of the RWA, to be Ω2
C/(Ω

2
C + δ2) = 0.03. It was at this operating

frequency where all single qubit operation were performed.
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Figure 4.3: a with the qubit far detuned from the resonator ∆ = −735 MHz,
a fixed amplitude microwave pulse as applied to the qubit for a variable time
τ . b measured Rabi oscillations induced by the microwave drive. For the fixed
microwave amplitude, τπ was the pulse length need to most fully exchange |g〉 with
|e〉. c the qubit was placed in |e〉 by a π-pulse then allowed to decay for a time
τ . Any remaining Pe was then measured. d the measured qubit Pe (blue points)
were fit to an exponential decay (red line) with a time constant of T1q ≈ 17 ns.
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Before measuring T1q we first determined the proper duration of a microwave

drive pulse needed to excite the qubit |g〉 → |e〉 transition. The necessary pulse

duration was found by exciting the qubit with fixed amplitude microwaves for

variable lengths of time τ . The resulting qubit excited state probability was then

recorded. As discussed previously, exciting the qubit with microwaves will produce

|g〉 ↔ |e〉 Rabi oscillations, where the optimal pulse duration is the length of time

needed to produce the point of maximal probability transfer. For the chosen

microwave drive amplitude, this time corresponded to τπ = 5.0 ns as illustrated

in Fig. 4.3 (b). A microwave pulse of this type is known as a π-pulse, since it

induces a π rotation in the Bloch sphere representation, most fully swapping the

ground and excited state amplitudes.

We now used this ability to monitor the energy relaxation of the qubit. The

pulse sequence, illustrated in Fig. 4.3 (c), begins with the qubit in |g〉. A π-

pulse then places the qubit in |e〉, from where it relaxes toward the ground state

for a duration of time τ before the excited state probability is read out. By

repeating this process many times for varying durations, Pe as a function of time

was mapped out. As shown in Fig. 4.3 (d), the data followed the expected form

of an exponential decay with a fit decay constant T1q ≈ 17 ns. This measured

time of T1q ≈ 17 ns is significantly shorter than the expected energy decay time

of around 60 ns, calculated from dielectric losses alone. Although the exact cause
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of this discrepancy is unknown, the shorter than expected decay time may be

a result of additional mechanical dissipation from off-resonant coupling to the

piezoelectrically active AlN layer of the mechanical resonator.

4.5 Lindblad formalism for quantum simulations

The material presented in this section follows, directly in parts, the discussion

originally appearing in the supplementary information of “Quantum ground state

and single-phonon control of a mechanical resonator” by O’Connell et al. [31].

To produce the numerical quantum simulations previously presented, we used

the approximate (RWA) coupling term of the Jaynes-Cummings Hamiltonian. We

have also modeled the FBAR as a harmonic oscillator, but, as needed we have

extended the number of energy levels composing the qubit term, using the known

level-dependent energy dispersion of the phase qubit.

For the quantum ground state simulations presented in Fig. 3.10 of the previous

chapter, we included five qubit levels, and six equally-spaced FBAR energy levels.

For the swap simulations (Fig. 3.11) we used two qubit levels, and five resonator

levels. For the more energetic coherent state simulations (Fig. 3.13), we used eight

qubit levels, and 38 equally-spaced energy levels for the resonator, which provided

sufficient energy range to accommodate relatively large resonator excitations.
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Decoherence was incorporated using the Lindblad master equation [22],

dρ

dt
= − i

~
[H, ρ] +

1

2

∑

k

[Lk, ρL
†
k] + [Lkρ, L

†
k], (4.8)

where standard Lindblad operators were used to include qubit energy decay, L1q =

√

1/T1q a, qubit pure dephasing Lφq =
√

2/Tφq a
†a, resonator energy relaxation

L1M =
√

1/T1M a and resonator pure dephasing LφM =
√

2/TφM a
†a. For all

simulations, we used the parameters T1q = 17 ns and T1M = 6.1 ns, as measured

for both the qubit and resonator. The phase coherence times Tφr,q were set to

an arbitrary value of 100 ns, sufficiently large that the qubit and resonator T2

coherence times, which satisfy 1/T2 = 1/2T1 + 1/Tφ, would exhibit T2 ≈ 2T1 as

measured. For thermal simulations, we included the thermal excitation operator

L↑ =
√

Γ↑ a
†, where we set the thermal excitation and energy decay Lindblad

coefficients to correspond to the Boltzmann factor, Γ↑T1M = e−hfr/kBT , with T

the resonator temperature and T1M the resonator energy relaxation time [34].

For the thermal simulations presented in Fig. 3.10, the resonator was initially

placed in a thermal state with temperature corresponding to a certain average

number of phonons 〈n〉, the qubit placed in its ground state |g〉, and the Lindblad

equation numerically integrated, for a given qubit-resonator detuning ∆, with a

time step of 0.05 ns. We observed that the coupled system reached a steady state

after roughly 150 ns, so the simulation was stopped at that time. The equilibrium

qubit Pe was calculated for each simulation, as a function of the qubit-resonator
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detuning ∆ and resonator thermal phonon occupation 〈n〉; the thermal occupation

was nearly the same at the start of the simulation and once the qubit and resonator

had achieved equilibrium.

The upper bound we quote for the maximum average phonon number, 〈n〉max <

0.07, was obtained using a very conservative formulation: This phonon number

yields a change in the qubit excited state probability Pe, between the calculated

on-resonance maximum and off-resonance minimum values, corrected by the qubit

visibility γ (the difference between the value of Pe measured for the qubit excited

state, as prepared using a tuned qubit π-pulse, and that measured for the qubit

ground state), equal to three times the standard deviation σ in the measured qubit

Pe over the full range of detunings: 〈nmax〉 3 γ(Pe,max − Pe,min) ≈ 3σ.

For the swap simulations presented in Fig. 3.11, the qubit was placed in its

excited state |e〉 while at the operating bias, and was then tuned to an interaction

detuning ∆ by applying a trapezoidal tuning pulse with a 1 ns rise time, a flat

top at ∆ detuning for a variable time, and a 1 ns fall time back to the resting

frequency; the simulation used a 0.1 ns time step. The qubit state was evaluated

immediately after returning it to the operating bias. The time axis in Fig. 3 of the

main text includes both the rise and fall times (i.e. τ = 0 starts at the beginning

of the tuning pulse).

The trapezoidal pulse was chosen as a reasonable approximation to the flux
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bias tuning pulse seen by the qubit, which includes an electronics-limited, ∼ 1

ns rise and fall time. The exact shape of the frequency tuning pulse strongly

effects the precise amplitude of the state transfer between qubit and mechanical

resonator. For example, simulations show that when the rise and fall time is set

to zero, no asymmetry in the response is observed. Using the trapezoidal tuning

pulse as described, however, the pronounced asymmetry emerges, as in Fig. 3.11.

However, this pulse shape is only an approximation of the actual tuning pulse, so

that some discrepancies remain between experiment and simulation.

In the coherent state simulation in Fig. 3.13, the resonator was initially placed

in a coherent state using a given microwave drive amplitude, quoted in terms of

√

〈n〉, where 〈n〉 is the average phonon number of the resulting Poisson distribu-

tion. We numerically integrated the free evolution of the Lindblad equation with

the qubit at the interaction frequency for a total time of 60 ns with 0.1 ns time

steps. For a given value of
√

〈n〉, the squared amplitude of the excited state of

the qubit, equal to Pe, was recorded for each time step. The time dependence of

Pe for a range of values of 〈n〉 was calculated.
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Chapter 5

Conclusion

Taking a cue from superconducting qubits, we designed our experiment to rely

only on commercial refrigeration to cool the mechanical resonator to the quantum

ground state. Using the Bose distribution to predict the expected phonon num-

ber at the base temperature of our dilution refrigerator, we were guided toward

high frequency mechanical resonators. In order to obtain suitably high resonant

frequencies, we fabricated film bulk acoustic resonators with fundamental dilata-

tional mode frequencies in the GHz regime.

We tackled the issue of quantum state creation and measurement by cou-

pling a mechanical oscillator to a superconducting phase qubit. The coupled

sample was cooled in a dilution refrigerator and the qubit-mechanical resonator

coupling strength was verified using qubit spectroscopy, where the combined res-
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onant modes of the system displayed the expected level avoidance of a coupled

system. We then used the qubit at a “quantum thermometer” to measure the

thermal phonon occupation of the mechanical resonant mode. By comparing the

measured data to quantum simulation, it was determined with high probability

that the mechanical resonator was indeed in the quantum ground state. From

there, the qubit was used as a “quantum transducer” to first convert a classi-

cal microwave excitation to a well defined single qubit state and then transfer

that state to the mechanical resonator. This technique was used to swap a sin-

gle quanta back and forth between qubit and mechanical resonator, creating, at

times, single phonon states and entangled qubit-resonator states. This ability to

create single phonon states was then utilized to measure the energy decay time

of the mechanical resonator, which was found to be T1M = 6.1 ns. We then con-

ducted a Ramsey fringe experiment on the mechanical resonator to extract its

phase coherence time T2M ≈ 2T1M. We would like point out that the phase coher-

ence measurement required the creation of the highly non-classical phonon state

(|0〉 + |1〉)/
√

2. Finally, we created a coherent state in the mechanical resonator

in order to observe its higher phonon levels, thus highlighting its bosonic nature.

Future experiments on similar resonators would benefit greatly from increased

mechanical energy lifetimes. If the quality factor, and correspondingly the energy

lifetime, of the mechanical resonators could be considerably increased (by a factor
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of 10), then the door would be opened to those experiments currently only achiev-

able with superconducting electrical resonators. Wigner tomography, to further

indicate the creation of mechanical quantum states, would be a significant step

forward. By coupling an additional mechanical resonator to the qubit, macroscop-

ically entangled superposed mechanical quantum states could be created between

the two resonators. It would also be interesting to use the mechanical resonator

as a quantum bus between two qubits or as a bridge between a qubit and another

mechanical resonator.
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Appendix A

Device fabrication

In the field of quantum computation, it is usually known what device specifica-

tions are needed for a successful demonstration of some new effect. Although

it may be easy to describe how a device should perform, or even to envision a

scheme for making such a device, it is far from trivial to actually create it. Fortu-

nately, the nanofabrication facility at the University of California, Santa Barbara

is equipped with many tools that enable the creation of micron and sub-micron

featured electronic devices. Using those tools to execute a well thought out fab-

rication process, along with a bit of luck, can occasionally result in a device that

meets performance requirements.
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A.1 Mechanical resonators

It was necessary to develop a reliable process for creating mechanical resonators

in order to facilitate their later incorporation into the qubit fabrication. A good

deal of effort resulted in a process that is reliable and easily reproduced as long

as one is familiar with the reasoning behind each of the steps.

A.1.1 L-Edit design

The fabrication process begins by carefully designing each photo-lithographic

layer. In the our group this is facilitated through the use of L-Edit, a computer as-

sisted design program by Tanner EDA. Once the design is complete these patterns

are transfered to photo-lithograph reticles (masks) for use in an I-line UV stepper.

Since we are conducting fundamental research instead of making small changes to

a known working circuit, the design of a successful mask can be quite challenging.

One of the major considerations is the interaction between subsequent layers and

those previously processed. One must not only ensure that the patterns make

physical sense but also pay close attention to the effects of subsequent etches on

all layers, especially if those etches accidentally of intentionally etch significantly

past their target layer.

Another important aspect of a successful design is the incorporation of ade-

quate tolerance. Using the machines found in the UCSB nanofabrication facility,
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a good rule of thumb is to design traces with a minimum width of 1.5 microns

and to allow five microns of interlayer alignment offset error. If it is absolutely

necessary trace widths just smaller than one micron can be used with a good bit of

effort tuning up the exposure and developing times. Also, it is possible to achieve

sub-micron alignment between layers but this requires test exposures and careful

attention to any irregularities in prior layers that caused their lateral dimensions

to vary from their design values.

The last major issue that plagues the designer of a new process is the fact

that one will almost certainly encounter problems with their design that become

apparent only after the fabrication process has begun. Many of these issues are

difficult if not impossible to predict beforehand. One technique to help ease this

concern is to create multiple designs with slight variations. The hope is that by

taking educated guesses at potential problems at least one combination of design

parameters will lead to a design robust enough to withstand these unforeseen

issues. Another benefit of creating many designs is that if more than one design

produces working devices, then the performance differences of those devices can

be compared for optimization purposes. With this in mind, we have created

an exposure technique that selectively exposes only parts of the entire design at

a given time. By puzzle-piecing these parts together, we produce the desired

pattern.
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The way this is accomplished in practice is to first separate out the novel

parts of the circuit from the generic. The novel part of the circuit, in this case,

is the mechanical resonator structure, its lead wire, and its connection to ground.

The rest of circuit elements: bond pads, ground plane, waveguides, and coupling

capacitors, make up the generic part of the circuit and exists only to facilitate

connection to the measurement lines. For each lithographic layer we created 36

novel element designs and one generic design, for a total of 37 patterns. We then

create two separate reticle layers, one for the 36 active element designs and one for

the generic design. Typically, these two reticle layers are then written to separate

masks. When it comes time to transfer this pattern to the photoresist, it takes

two exposures to create a complete pattern on the wafer. One of the exposures

uses the novel element mask and selectively exposes only one of the 36 patterns

(to be discussed below). The second exposure uses the generic mask and exposes

the rest of the pattern.

This technique was created to maximize the number of possible patterns with-

out requiring the creation of many more mask plates. Using this double exposure

method requires at most twice the number of masks for 36 times as many pat-

terns. We applied this idea of modular design once more by also separating out

the coupling capacitors, creating four coupling capacitance variations. However,

instead of designing a new mask composed only of coupling capacitors, we were

93



able to fit the relatively small patterns in the middle of the generic circuit mask.

Thus, with only twice the number of masks, 144 distinct patterns were available

during the fabrication process

There was one final technique used to cut down on the number of masks needed.

Since masks are relatively expensive and our die size is sufficiently small, we do

not need to transfer just one lithographic layer design to an entire mask. Instead,

by placing one lithographic layer in each corner, we were able to fit four different

lithographic layers onto a single mask. When exposed, only one quadrant of the

mask remains uncovered by shutters so that only the desired pattern is allowed

to illuminate the wafer.

With these technical details now covered, we illustrate the complete mask set

used to fabricate test mechanical resonators. A complete mechanical resonator

consists of four lithographic steps: base wiring, AlN vias, top wiring, and me-

chanical resonator (MR) define.

Base wiring

The design of the mechanical resonator base wiring layer is composed of one

generic wiring pattern, the novel resonator geometry, and the coupling capacitors.

The generic wiring pattern is shown in Fig. A.1 and consists of launchers leading

into a square space left for a coupling capacitor, and finally connecting to the
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Figure A.1: Generic mechanical resonator base wiring. The black areas represent
unexposed photoresist. Bond pads connecting to tapering waveguide leads to the
center of the chip where the novel part of the circuit has yet to be defined. The
alignment mark is the located above the center of the chip and can be identified
as the square shaped pattern containing a star. The other structures above the
alignment mark are used for testing purposes.
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Figure A.2: Novel mechanical resonator base wiring. All 36 possible choices for
the mechanical resonator.

center of the die where the dangling rectangular region exists as a space in which

to place the novel mechanical resonator pattern. The three other structures of

interest lie across the top of the die. From left to right they are a short test,

to ensure the launchers are actually sending signal to the resonator, a Dektak

strip to measure the height of each deposited layer, and the bottom electrode of

a capacitor, that once finished, will be large enough to be easily measured with

an LCR meter.

Along with the generic wiring pattern, the coupling capacitors and novel me-

chanical pattern are needed to complete the layer. The coupling capacitors were

designed with the standard interdigitated geometry, customarily used in the qubit

group. They are located in the center of the generic mask. The novel mechanical

96



Figure A.3: Expanded view of novel mechanical resonator base wiring. One of
the possible choices for the mechanical resonator. The leg connects the lead
wiring to the pentagonal section, which will serve as the bottom electrode of
the mechanically active part of the resonator.

mask is shown in Fig. A.2. Only one of these patterns is needed to complete the

layer. At the time of expose all but one are blocked with the automated mechan-

ical shutters of the GCA Autostep200. The number and spacing of the patterns

was limited by the smallest shutter aperture size the stepper would allow. A de-

tailed view of a particular mechanical resonator is shown in Fig. A.3 and features

the lead transmission line running across the top, and the bottom electrode of the

mechanical resonator, which can be identified as the pentagonal shape. We have

dubbed the lead connecting to the resonator, the “leg”, because there will be two

of them connected to the FBAR structure once the fabrication is complete.
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Figure A.4: Generic mechanical resonator vias. White area shows where holes
will be etched through the AlN layer.

Vias

When this pattern is exposed, the base wiring has already been blanket coated

with a layer of AlN. It is necessary to create holes through the AlN, while stop-

ping on the aluminum base layer, to allow electrical connection to the underlying

aluminum. Since all of the mechanical resonators are connected to the generic

wiring in the same way, there is no need for resonator specific vias and there is

only one generic pattern for this step (see Fig. A.4).
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Figure A.5: Generic mechanical resonator top wiring. Black features represent
the resulting aluminum pattern. The largest feature shown is the ground plane.
The rectangles shown on each side are extra aluminum to thicken the bond pads
to aid in the wire bonding process.

Top wiring

This layer has both a generic and a novel component. In Fig. A.5 the generic

part of the circuit is shown. The large dark areas from the ground plane and

are connected to each other through the base wiring layer. The ground plane

extends upward in the middle of the chip in a rectangular region left in order to

subsequently expose the novel pattern. Once again we have a pattern with 36

possible choices for the top electrode of the mechanical resonator, and we need

to shutter off all but one. However, this time, the pattern must correspond to

the previously chosen base wiring. We show such a pattern in Fig. A.6, where
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Figure A.6: Expanded view of novel mechanical resonator top wiring. View of
just one of the possible choices showing the top electrode aluminum layer of the
mechanical resonator. The leg leading away from the pentagon is connected to
ground.

the pentagonal shape is the top electrode of the mechanical resonator and the leg

leads to the ground plane. The top wiring pattern is radially five microns smaller

than the base wiring layer so that the pentagonal pattern fits within the area

defined by the bottom electrode. Although there should not be any holes in the

AlN, this was done to minimize the chance of having shorts between the electrode

layers at the step edge.

Mechanical resonator define

The last lithographic pattern is used to define the shape of the mechanical res-

onator by transferring its pattern though all the layers and slightly into the silicon
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Figure A.7: Expanded view of novel mechanical resonator defining pattern. This
defines the final shape of the mechanical resonator structure since the protected
area (black) is slightly smaller than previous layer. Plasma etching will form
vertical sidewalls that cut though all layers including the oxide on the substrate.

substrate. Since only the shape of the mechanical resonator results from this step,

there is no need for a generic pattern. The shape of the mechanically active part

is once again five microns smaller than the previous layers so that it produces

vertical sidewalls in this pattern, free from edge effects of previous layers, except

for the one place where the top wiring steps up onto the base wiring.

A.1.2 Stepper program

These patterns are transfered to a photoresist coating on wafer by using the GCA

AutoStep 200 I-Line Wafer Stepper located in the UCSB nanofabrication facility.
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In order to understand how these patterns are transfered to the photoresit, we

describe some of the specifics of stepper operation.

Shutter limits

The automatic capabilities of the stepper are what enables the previously de-

scribed flexibility in pattern choice. The stepper is equipped with shutters that

are capable of blocking off most of the mask area. There are four shutters called

X-Left, X-Right, Y-Front, Y-Rear. Each shutter can range from fully open with a

value of zero, to fully closed with a value of 100. However, since the shutters are

physical objects, they can collide if improper values for their position are entered,

e.g. X-Left = 52, X-Right = 52. In addition to the obvious limits on shutter po-

sitioning with respect to each other, it has been experimentally determined that

there must be at least 5.5 percentage clearance left between opposing shutter, e.g.

X-Left = 31, X-Right = 63.5. Thus, the shutters have a minimum exposure size

that corresponds to an on-chip size of approximately 1 mm by 1 mm (when pro-

gramming the stepper all units are expressed as their 5x reduced exposed values

so that is what we will use for the remainder of this section). Taking this into

consideration when designing the novel mask plates, unique patterns were spaced

1 mm apart in both the x and y directions, beginning at -2.5 mm in both x and y.
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Pass shifts

The final consideration, to determine shutter positioning, is the fact that we only

use the top left corner of the mask plate for any given layer, as discussed above.

The pass shift offset we typically use to define the center of this pattern is (−4.0

mm,−4.0 mm). The directional sign is a little strange here as the negative x

direction moves the wafer in the negative x direction with respect to the mask,

while the negative y direction moves the wafer in the positive y direction with

respect to the wafer. One could interpret this as lying underneath the mask with

one’s head closest to the door of the stepper and looking upwardly at the mask,

however I do not find this mental exercise particularly helpful so we will just take

the negative y direction as up.

To correctly position a particular novel pattern this pass shift must be taken

into consideration so that the effective positions of the patterns range from -6.5

mm to -1.5 mm in both the x and y directions.

Shutter positions

The necessary values of the shutters to expose an individual novel pattern were

determined experimentally. The edge of the pattern occurs at a value of 16 for

both the X-Left and Y-Rear shutter. By only allowing for the minimum exposed

area the other two shutter positions can be determined to be 78.5 for X-Right and
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row pass shift x (mm) shutters (XL, XR)
1 -6.5 (16, 78.5)
2 -5.5 (21, 73.5)
3 -4.5 (26, 68.5)
4 -3.5 (31, 63.5)
5 -2.5 (36, 58.5)
6 -1.5 (41, 53.5)

Table A.1: Pass shift and shutter positions for novel pattern row.

column pass shift x (mm) shutters (YF, YR)
1 -6.5 (78.5, 16)
2 -5.5 (73.5, 21)
3 -4.5 (68.5, 26)
4 -3.5 (63.5, 31)
5 -2.5 (58.5, 36)
6 -1.5 (53.5, 41)

Table A.2: Pass shift and shutter positions for novel pattern column.

Y-Front. Since the mask plate has roughly 100 mm of usable lateral dimensions,

to move the shutters 1.0 mm chip distance corresponds roughly to a 5 mm shutter

adjustment, which is 5 percent. Thus, the other shutter positions for the possible

novel pattern choices are calculable as ranging from 16 to 41 in both X-Left and

Y-Rear, and 78.5 to 53.5 in X-Right and Y-Front, in increments of 5.

Lookup table

It is taxing to calculate the proper shutter positions and pass shift for every novel

pattern, so here we present a lookup table for convenience. Using standard row

column notation to denote a specific novel pattern position in the L-Edit file, we
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can easily find the desired shutter positions and pass shift using table A.1 and

table A.2.

Test resonator program

It is a good idea to create a new job file for each layer. Each job can have up to

10 passes, all of which can be automatically exposed with a single pass command

’*’. Each pass contains specific exposure times, shutter positions, and pass shifts.

In order to create test mechanical resonators, one such series of four jobs has been

created and has the prefix MULTI. The individual jobs are:

MULTIBW - exposes generic mechanical resonator base wiring, novel mechan-

ical resonator base wiring and coupling capacitors. The top half of the wafter has

5 patterns, the middle row of the wafer is its own pattern, and the lower half of

the wafer has 5 patterns. Coupling capacitors are 10 fF in the top half, shorts in

the middle row, and 5 fF in the bottom half.

MULTIVIAS - exposes generic vias.

MULTITW - exposes generic mechanical resonator top wiring and novel me-

chanical resonator top wiring.

MULTID - exposes novel mechanical resonator define.
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A.1.3 Lithography and etches

For completeness, all lithography and etch steps needed to fabricate a mechanical

resonator are described here although only two of them were developed specifi-

cally for this process. All of the exposes are intentionally overexposed. The mask

set was designed with this intentional overexposing in mind. Overexposing en-

sures that no residue films of photoresist will remain after developing and thus

substantially increases yield.

Photoresist processing

Two different thickness of photoresist were used during the fab. The mechanical

resonator base wiring uses SPR-955 0.9 microns, while the remaining layers use

SPR-955 1.8 microns. Irrespective of the thickness, the resist spinning procedure is

always the same. First HMDS micro-primer is spun onto the wafer at 2500 rpm for

30 seconds with a ramp rate of 500 rpm/s. The wafer is then transfered to another

spinner and photoresist is spun onto the wafer also at 2500 rpm for 30 seconds.

The wafer is then heated on a hotplate for 90 seconds at 90 degrees Celsius. The

wafer is then exposed in the stepper. After exposure, another bake is performed

at 115 degrees Celsius for 90 seconds in order to set the photoresist. The wafer is

then submersed and agitated in AZ 300 MIF for 60 seconds, immediately followed

by a 10 second DI dip. The wafer is then rinsed under gently running water and
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Step number 1 2 3 4 5
Cl2 (SCCM) 40.0 40.0 40.0 0.0 0.0
CF4 (SCCM) 0.0 0.0 0.0 3.2 3.2
Ar (SCCM) 0.0 0.0 0.0 40.0 40.0
Pressure (Pa) 3.0 0.7 0.7 3.0 0.2
Vac time (s) 0.0 0.0 45.0 0.0 45.0
Rf wait (s) 15.0 0.0 0.0 15.0 0.0
SRC FWD (W) 300 300 300 400 400
Bias FWD (W) 0.0 0.0 70 0.0 150
Step time (s) 5.0 5.0 VAR 10.0 VAR

Table A.3: AlN via etch recipe for Panasonic 2, number 152.

blown dry with a nitrogen gun set to a pressure of 15 psi.

Mechanical resonator base wiring

The photoresist is exposed for 0.75 seconds multiplied by a correction factor of

0.35, for an actual exposure time of 0.263 seconds. The wafer is then plasma

etched using our standard BCl3/Cl2 aluminum etch recipe, which can be found

on the Martinis group TWiki page. The etch time depends on the Al thickness

but for 130 nm, 30 seconds was used successfully.

AlN vias

The pattern is exposed in the stepper for 1.45*0.35 seconds. It is then etched in

Panasonic 2 using recipe 152. This recipe was specifically developed for etching

though AlN and stopping on the underlying Al layer. The details of the etch can

be found in table A.3. The idea is to remove most, but not all of the AlN layer
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with chlorine. Then, the second part of the recipe is just an Ar mill to remove

the remaining AlN. CF4 is added to the mill to promote the formation aluminum

fluoride once the mill has eaten into the aluminum layer. The aluminum fluoride

acts to protect the aluminum from milling away too quickly. It is difficult to

determine the precise etch rate of this process, but it seems that the Cl2 etch time

is proportional to the thickness of the AlN film, and the exact Ar/CF4 mill time

is not essential as long as it is not completely forgone. In practice, the mill time is

kept at 7 minutes and the chlorine etch time is adjusted (37 seconds is sufficient

chlorine etching time for 300 nm).

Mechanical resonator top wiring

The expose time is increased to 1.6*0.35 seconds because of the underlying layers.

The wafer is plasma etched using the standard Al recipe. For the usual thickness

of 154 nm, 40 seconds works well.

Mechanical resonator define

After a 1.6*0.35 second exposure the wafer is plasma etched in Panasonic 2 using

recipe 152. Although recipe 152 was used earlier to create vias, it this process

step it serves a different purpose. Instead of trying to stop on the underlying

layers, the intent of this etch is to cut though all the layers, including the SiO2

wafer oxide. For the usual layer thicknesses, 4 minutes pure Cl2 etch is barely
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adequate to cut though all the layers. The second part of the etch contains CF4,

which etches the SiO2. The Ar is really not necessary and it may be preferable to

remove it. A note of caution here, photoresist is not indestructible so care must

be taken not to increase the time of this etch beyond what is absolutely necessary.

A.1.4 Xenon difluoride etcher

When we first set out to make mechanical resonators the UCSB nanofab did not

have a xenon difluoride etcher. Instead of waiting for them to acquire one, we

decided to build our own. At the time of writing, the xenon difluoride etch is

located in Broida Hall room 1310. The computer software was written in Delphi

and runs with labRAD server abstraction. The source code can be found on the

attached computer, on the CD on top of the computer, as well as on Skynet.

We will briefly describe the typical operation of the etcher. The first step is to

vent the etching chamber and load the sample to be etched. Next, pump out the

chamber. At this point the chamber should be repeatedly (about 20 times) flushed

with nitrogen gas and pumped down to base pressure. This rids the chamber of

most of the water vapor, which would otherwise react with the XeF2 forming HF

acid. Once all the pump-purge cycles have finished, the etch is ready to commence.

The etch is carried out by iteratively flooding the etching chamber with xenon

difluoride gas, allowing enough time for it to react with exposed silicon, and
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pumping the resulting gases out of the etching chamber. Specifically, the machine

operates by allowing XeF2 crystals to sublimate to about four Torr in its vacuum

bottle. The valve between this bottle and the expansion chamber is then opened

for an amount of time long enough for the expansion chamber to reach the desired

pressure. The flow rate of the XeF2 gas is controlled by a metering valve between

the bottle and the expansion chamber. The valve between the bottle and the

expansion chamber is then closed and the valve between the He line and the

expansion chamber is opened long enough for the expansion chamber pressure to

reach the desired total pressure. The He flow rate is controlled by a different

metering valve. After the He pneumatic valve has been closed, the valve between

the expansion chamber and the etching chamber is opened for the desired etching

time. A good rule of thumb is to allow the etch to occur for at least one minute so

that most of the XeF2 gas has been consumed. After the etch time has expired,

the gate valve between the expansion and etching chambers is closed and the

valve between the etching chamber and pump is opened to pump out the etching

chamber. Once the etching chamber has reached an acceptable pressure, the

valve between the pump and the etching chamber is closed. This constitutes one

etch cycle. This process is repeated as many times as necessary to fully release

the device (typically less than 10 times at 3.5 Torr XeF2 for a few dies). The

amount of release can be monitored with the binocular microscope and it may
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be more convenient to intentionally enter a value much too large for the number

of intended etch cycles and then simply press the “next step” button when the

device is sufficiently released.

The sample is now ready to be removed from the etch chamber. However,

the chamber should first undergo another pump-purge process to rid it of any

remaining xenon difluoride gas. This should be done in a similar fashion to the

pre-etch pump-purge, and executed for at least 16 cycles.

A.2 Coupled qubit and mechanical resonator

The Martinis group had previously developed a relatively robust process for cre-

ating superconducting phase qubits. Our aim, then, was to combine those tried-

and-true steps with those needed to create a mechanical resonator.

A.2.1 L-Edit design

By itself, the mechanical resonator process contains four lithographic steps, and

to make qubits by themselves utilizes seven lithographic exposures. Näıvely, it ap-

pears as though the FBAR top wiring step could be combined with the base wiring

step of the qubit, producing a total of only 10 lithographic patterns. However,

it was not possible to use just 10 lithographic patterns because of the difficulties

faced when combining the essentially two-dimensional qubit layers with the inher-
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Figure A.8: Generic Mechanical resonator bottom electrode. Black represents the
resulting aluminum pattern. The wires lead into mechanical resonator area. The
horizontal wires will connect to CPW drive lines, and the vertical wire will lead
to a coupling capacitor that is connected to the qubit.

ent three dimensionality of the FBAR. To overcome this issue, it was necessary

to add an additional three layers to the process.

Mechanical resonator base wiring

To begin, the mechanical resonator base wiring is broken into two separate designs,

the generic leads (Fig. A.8) and a mask containing many possible choices for the

FBAR geometry. One particular resonator pattern is shown in Fig. A.9. The

horizontal lines will be connected through coupling capacitors to CPWs, which

lead to microwave launchers. The idea behind these lines is that they allow for

classical transmission measurements to be made to ensure that the co-fabricated
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test mechanical resonators perform as expected. In addition, to drive the FBAR

directly, even when connected to a qubit, one of these lines may be used. The

vertical lead will connect to the qubit coupling capacitor.

Note that the generic pattern is small enough to be combined with another

mask plate in order to save space. This could be done with future mask sets. At

this point, as a technical aside, it is also worth mentioning that in a given quadrant

of the novel mechanical resonator base wiring pattern, there was enough room to

include and entirely different pattern. We included patterns for qubit top wiring

shunting capacitor and qubit top wiring coupling capacitor. The purposes of these

patterns will be mentioned later and they were only included in this quadrant to

minimize the total number of masks needed.

Mechanical resonator vias

In order to connect to the mechanical resonator CPW leads, holes need to be

made that penetrate through the AlN and stop on the underlying aluminum.

These holes are the same for all resonators and are illustrated in Fig. A.10.

Mechanical resonator plasma frame

This is the first of the patterns needed to facilitate the connection between the

mechanical resonator and subsequent qubit base wiring. The problem we address

with this pattern is that it would very detrimental for qubit performance to create
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Figure A.9: Expanded view of novel mechanical resonator bottom electrode. One
of the possible 36 choices.

Figure A.10: Generic mechanical resonator vias. White area indicates where
the holes will be cut though the AlN layer to facilitate future contact with the
mechanical resonator lead wires.
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Figure A.11: Generic mechanical resonator plasma frame. The white rectangular
picture frame shaped region in the lower right indicates where a plasma etch will
cut though all the layers, stopping on the substrate. Using plasma gives vertical
sidewalls and good lateral edge dimensions.

it atop an AlN layer. The resulting energy lifetime would most likely be abysmal

and it would be difficult to create the small features needed for the junctions. To

this end, we would like to remove as much of the AlN as possible. This would be

best done using a selective wet etch that isotropically erodes AlN. However such

an etch it is not possible at this point.

The reason a wet etch would be detrimental stems from the fact that wet

etchants etch laterally as well as vertically. This would most likely destroy the

mechanical resonator leads. In addition, any material that still remained would

be dramatically undercut. Finally, AlN etches much slower than Al so it would
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be impossible to allow the etchant to come in contact with the vias, which are

exposed Al, without etching away all the Al. Without etching directly up to

the exposed Al of the vias, subsequent wiring layers would have to be deposited

over a minimum step height equal to the sum of the thicknesses of the mechanical

resonator base wiring and the AlN layer; a step height sufficient to make a reliable

connection unlikely.

For the reasons mentioned above, a wet etch was impossible. Inductively cou-

pled plasma, on the other hand, etches anisotropically, creating vertical sidewalls

and well defined lateral dimensions. With a plasma etch we can allow the etch

to cut into the Al vias without risking their demise and also without substantial

undercutting of the pattern. The draw back of plasma etching is that it transfers

the vertical topology as it etches. Thus, if the layer to be etched is rough, the

stop layer will have a roughness proportional to the etch selectivity.

Since it would be difficult to fabricate a qubit on a rough substrate, we sought

a solution that incorporated the good substrate clearing properties of the wet

etch with the lateral definition of the plasma etch. The idea was to etch vertical

sidewalls in the desired pattern while etching as little of substrate area as possible.

Then, in a subsequent step, use a wet etch to clear the rest of the substrate. The

pattern shown in Fig. A.11 represents the first of these two steps. It is designed to

cut partly into the via and extend just past the edge of the mechanical resonator
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Figure A.12: Generic mechanical resonator wet etch. The rectangular area is sized
so that the edge of the pattern extends into, but not past, the area defined in the
plasma etch. Any material not protected within this black area will be removed
by a wet etch, which selectively stops on the SiO2 substrate oxide layer.

structure on all sides.

Mechanical resonator wet etch

The second part of the substrate clearing process is carried out using a wet etch.

The pattern shown in Fig. A.12 extends into the middle of the etched strip defined

with the previous plasma etch. By having the edge of the photoresist pattern ex-

tend past the mechanical resonator pattern so that its perimeter rests on the wafer

oxide layer, the wet etchant is blocked from laterally etching into the mechanical

resonator area. Thus, all of the AlN outside of the region can be removed without

affecting the previously defined resonator pattern.
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Figure A.13: Generic qubit-mechanical resonator base wiring pattern. Black
shapes represent resulting aluminum. Two CPW feed lines leading from the bond
pads to the mechanical resonator area are shown in lower right corner. Also illus-
trated are a CPW originating from the left side of the chip and connecting to the
SQUID circuitry, and a CPW feed line originating from the right side of the chip
and leading to the qubit flux bias.

Qubit base wiring and mechanical resonator top wiring

These patterns are exposed onto a blanket layer of aluminum that serves as the

qubit base wiring, the qubit shunting capacitor base wiring, the coupling ca-

pacitor base wiring, the mechanical resonator CPW feed lines, the mechanical

resonator external capacitors, and the top electrode of the mechanical resonator.

Figure A.13 is a generic pattern showing qubit base wiring. Also shown are the

FBAR CPW feed lines and and the qubit CPW feed lines and launchers. The

unexposed areas correspond to where the mechanical resonator top electrode, the

118



Figure A.14: Expanded view of novel mechanical resonator top electrode. The
large area leading off the bottom of the lead leg connects to the chip ground plane.

qubit shunting capacitor, coupling capacitor, and FBAR external capacitors will

be subsequently patterned. Figure A.14 shows a novel mechanical resonator top

wiring pattern where the wiring extends from the top electrode of the active part

of the mechanical structure and terminates at ground.

Mechanical resonator CPW clear

This pattern constitutes the final part of the process needed to connect the me-

chanical resonator to the qubit base wiring. During the previous step, CPW lines

were patterned, which lead from the mechanical resonator to the feed lines and

coupling capacitors. However, the underlying area where these CPW lines connect

to the mechanical resonator leads will be very rough. This roughness is due to the
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Figure A.15: Generic qubit-mechanical resonator CPW clear. The small white
areas represent holes etched on either side of the center strip of CPWs connecting
the mechanical resonator to the feed lines and qubit coupling capacitor.

small area which needed to be plasma etched and then covered with photoresist

during the wet etch in order to protect against lateral etching.

A subtle processing issue occurs in such situations. The problem arises from

of the aluminum oxide layer ubiquitously found on all aluminum surfaces exposed

to air. This aluminum oxide layer is much more difficult to etch than aluminum.

If the aluminum layer is rough, it will be composed of hills and valleys where their

normal direction is not perpendicular to the normal of the wafer. An anisotropic

plasma etch, which basically etches downwardly, will see an effectively thicker

layer of aluminum oxide wherever the underlying aluminum is sloped. Thus, one

etch time will be insufficient to etch both smooth aluminum and rough aluminum
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without severely over-etching the flat sections. In the previous step, the aluminum

was etched with a time sufficient to remove aluminum from the smooth areas but

potentially insufficient to remove all of the aluminum from these small rough areas.

If any aluminum has remained unetched in the previous step it could short the

center part of the mechanical resonator CPW lines to the ground plane. Thus,

the pattern shown in Fig. A.15 was created to allow for these small sections to

undergo a wet etch, ensuring that they are free of aluminum. Note that this step

is unnecessary if there is no aluminum remaining to short the CPW lines. The

amount of remaining aluminum in these areas, if any, was never quantified due to

time constraints. This step was done solely as a precaution.

Since this step concludes the connection of the mechanical resonator to the

qubit wiring it may be helpful to present a review of the patterns used thus far,

and how they come together to form the connection itself. These patterns are

presented in Fig. A.16. Figure A.16 a shows the mechanical resonator bottom

electrode. Figure A.16 b represents the vias holes as small black rectangles, c

shows the resulting area etched by the plasma frame step as a light green region

superimposed on existing patterns. Figure A.16 d illustrates the area protected

by photoresist during the wet etch as a superimposed gray area. Figure A.16

e shows, in solid gold, the pattern of the remaining aluminum after the qubit

base wiring step. Note that the coupling capacitors are not illustrated. Finally, f
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Figure A.16: All layers involved in the connection between mechanical resonator
and CPWs.
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Figure A.17: Expanded view of mechanical resonator define. Black pattern indi-
cates protected area and is slightly smaller than existing shape of the mechanical
resonator. After etching, this pattern will define the shape of the mechanical
resonator.

indicates, in red, the small rectangular region of the CPW to be wet etched and

cleared of unwanted aluminum.

Mechanical resonator define

The novel pattern shown in Fig. A.17 defines the shape of the resulting mechanical

resonator structure in the usual fashion. As an aside, it should be noted that

the result of etching this pattern will create an object with height being the

sum of the mechanical resonator base wiring, AlN, and mechanical resonator top

wiring thicknesses. Usually this height is approximately 750 nanometers, which is

quite a large step height. Step heights this large can cause fabrication problems
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Figure A.18: Generic junction area clear. White ares are holes where the amor-
phous silicon will be cleared to allow the junction trilayer to be formed on the
substrate.

such as insufficient photoresist coverage or streaking, nearly vertical features of

subsequently sputter deposited metal layers, or inadequate dielectric coverage.

Junction area clear

The performance of the resulting mechanical resonator relies on the ability to

release the structure from the substrate. With this in mind the substrate was

specifically chosen to be silicon, a material that etches selectively over aluminum

and aluminum oxide when exposed to XeF2 gas. This, however is not the conven-

tional choice for a qubit substrate. Usually, qubits are fabricated on single crystal

sapphire substrates because of their low dielectric loss and high etch selectivity.
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At this point in the fabrication process, the Martinis group customarily com-

bines two ideas into one lithography step. The first idea is to etch vias through

the hydrogenated amorphous silicon and stop on the underlying aluminum layer.

The second idea is to remove all of the amorphous silicon from a small area of

the substrate in order to subsequently create the qubit junction in an amorphous

silicon free area. However, the conventional plasma etch for this step contains

CF4 which also readily etches SiO2, the oxide layer of our silicon substrate. We

do not wish to penetrate this oxide layer unnecessarily. This oxide layer will later

help protect the silicon substrate from being etched away when the entire chip is

exposed to xenon difluoride gas.

To selectively etch amorphous silicon while leaving the SiO2 layer, thus avoid-

ing future problems, a pure chlorine plasma may be used. However, it is impossible

to use this etch for both of the purposes described above, because chlorine etches

aluminum. These considerations forced us to break the two ideas into two dif-

ferent lithographic steps. The first of these patterns is illustrated in Fig. A.18

and generically clears the area of amorphous silicon in order to subsequently form

junctions.
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Figure A.19: Generic qubit and wiring vias. White areas are holes where the
amorphous silicon hydride will be removed to allow connection of subsequent
aluminum layers to the base wiring.

Wiring vias

The second of the amorphous silicon generic etching steps is shown in Fig. A.19

and acts to create holes in the amorphous silicon that lead to the underlying base

wiring.

Junction gap

The pattern used to open up small holes in the blanket aluminum layer is barely

visible in Fig. A.20. The purpose of these holes is to define a step edge where the

overlap junctions can be formed.
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Figure A.20: Generic junction holes. Small white rectangles represent holes
through the aluminum layer needed to create a nonconducting area over which a
junction will be subsequently formed.

Overlap junction

The overlap junction triangular shape is barely visible as the small dark spots

in Fig. A.21. This is the standard overlap junction pattern used in the Martinis

group, so a detailed discussion will not be presented here.

Qubit top wiring

The generic pattern shown in Fig. A.22 is composed of qubit top wiring, squid

capacitor top wiring, jumpers for the CPW lines, and extra aluminum rectangles

that prove to be useful when bonding. Not shown are the novel patterns used

to from the qubit shunting capacitor and coupling capacitor top wiring. One
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Figure A.21: Generic overlap junctions. Small black patterns indicate remaining
aluminum atop the aluminum oxide, bridging the junction gap.

Figure A.22: Generic qubit top wiring. Black area represents the resulting alu-
minum pattern, which serves as the top wiring of the qubit, jumpers that keep
the ground plane connected across the CPWs, and bond pads.

128



Figure A.23: Generic qubit shorting strap removal. When the small white rectan-
gles are exposed, they create holes in the photoresist. When the wafer is immersed
in aluminum etchant, the electrical connections between the junctions and the
ground plane are severed.

possibly useful feature of this pattern is illustrated as the black rectangle at the

bottom of the mechanical resonator area of the chip. This aluminum pad can

be used to directly wire bond the ground of the mechanical resonator to the chip

ground, although a wire bond of this type was not used in the previously described

experiment.

Shorting strap removal

The junctions must remain shorted to ground during plasma etches or the tend

to short. The generic pattern, shown in Fig. A.23, is used to expose those areas

to a wet etch in order to remove the shorting straps. Also involved in the wet
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etch, but not illustrated here, is a novel pattern similar in shape to the one used

when defining the shape of the mechanical resonators. The only difference is

that is covers a slightly smaller area of the mechanical resonator. This pattern is

designed to be a slightly smaller size in order to allow the sidewalls of the FBAR to

be wet etched. Any aluminum that may be coating these walls, shorting the stack,

will be removed in the wet etch. Note that this novel pattern is not necessary if

there is no aluminum coating the sidewalls of the mechanical resonator. Due to

time constraints the amount of aluminum shorting the sidewalls, if any, was never

quantified. This pattern was always used, but only as a precaution.

A.2.2 Stepper program

The stepper programs required for this process were substantially more complex

than those needed to create mechanical resonators alone. In all, five different

mask plates were used. They are labeled A through E. The patterns on each of

the plates are:

Mask A - FBAR base wiring generic, FBAR vias generic, FBAR plasma generic

(not used), FBAR wet etch generic, also 10fF FBAR drive line external capacitors

Mask B - qubit base wiring generic, qubit vias generic, junction vias generic,

junction gap generic, also 2.1, 1.1, 0.5 0.3 fF FBAR drive line external capacitors

Mask C - junctions generic, qubit top wiring generic, SiN removal generic (not
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used), shorting strap removal generic

Mask D - FBAR base wiring and coupling capacitor/qubit capacitor top wiring

novel, FBAR plasma frame generic, coupling capacitor/qubit capacitor base wiring

novel, FBAR define and coupling capacitor/qubit capacitor vias novel. Note that

most of this mask, except for the plasma frame pattern, goes unused because it

was succeeded by Mask E.

Mask E - FBAR base wiring and coupling capacitor/qubit capacitor top wiring

novel; FBAR top wiring, coupling capacitor/qubit capacitor base wiring, and

FBAR CPW clear; FBAR define and coupling capacitor/qubit capacitor vias;

shorting strap and FBAR sidewall Al removal.

There are a total of 14 job files that utilize these masks to create the coupled

sample:

2MRBW - masks A and E: Mask A contains the generic mechanical resonator

patterns. This job exposes the base wiring. Mask E houses all of the novel pat-

terns. Columns 1-2 and 13-14 are membrane type resonators, columns 3 and 12

are extended leg geometry, columns 4-5 and 10-11 have rounded features, and

columns 6-9 have wingtip leg overlap. The geometric capacitance of all the me-

chanical resonators is roughly 0.2 pF.

2MRVIAS - mask A: generic FBAR via pattern on every die.

2MRPF - mask D: generic plasma frame pattern.
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2MRWET - mask A: FBAR wet etch pattern.

2MRTW and 2QBW are exposed onto the same photoresist. 2MRTW - mask

E: novel FBAR top wiring. 2QBW - masks A and B: generic qubit base wiring;

novel coupling capacitor/qubit capacitor base wiring and FBAR external capac-

itors. Columns 1-7 1.0 pF coupling capacitor, columns 8-14 0.5 pF coupling ca-

pacitor. Columns 1-3 0.74 pF qubit shunting capacitor. Columns 4-14 0.98 pF

qubit shunting capacitor.

2MRFU - mask E: generic FBAR CPW clear

2MRD - mask D: novel FBAR define. Note: mask E may be used here instead

of D.

2QJVIAS - mask B: generic junction vias.

2QVIAS - masks B and D: generic qubit vias and novel coupling capaci-

tor/qubit capacitor vias.

2QHOLE - mask B: generic junction gap

2QJ - mask C: overlap junction pattern. Rows 1-3 300 nm larger, rows 4-5 150

nm larger, rows 6-9 no pass shift, rows 10-11 150 nm smaller, rows 12-14 300 nm

smaller.

2QTW - masks C and E: generic qubit top wiring and novel coupling capaci-

tor/qubit capacitor top wiring.

2QSS - masks C and E: generic qubit shorting strap removal and novel FBAR

132



sidewall Al removal.

A.2.3 Lithography and etches

In this section we describe all of the necessary exposures and etches in order to

create the coupled sample. Many of these etches and exposure techniques were

developed by the Martinis group, but they are all listed below for completeness.

Photoresist processing

Two thicknesses of photoresist were used, SPR-955 0.9 micron and SPR-955 1.8

micron. Independent of which resist was used, the wafer was always primed with

HMDS for 30 seconds at 2500 rpm with a ramp rate of 500 rpm/s. The wafer

was then moved to a different spinner and the photoresist applied and spun in

the same way. Following the spinning, the wafer was baked for 90 seconds at 90

degrees Celsius. Following each exposure, a resist hardening bake was performed

at 115 degrees Celsius for 90 seconds. The developing procedure of first immersing

and agitating the wafer in AZ 300 MIF for 60 seconds, then dunking the wafer in

DI water for 10 seconds, followed by a flowing water rise and nitrogen gun blow

dry at 15 psi was a standard procedure for most of the layers. However, there were

two exceptions. The developing time was reduced to 45 seconds, the flowing water

rise was forgone, and the nitrogen gun pressure was dropped to about 5 psi for the
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qubit base wiring and mechanical resonator top wiring step. This was to ensure

that the one micron lines of the interdigitated capacitors would come out more

reliably. The second exception was that the qubit top wiring was only developed

for 55 seconds, the ideal developing time (60 seconds is actually an overdevelop)

Mechanical resonator base wiring

Using 0.9 micron photoresist, both the generic and novel FBAR base wiring pat-

ters were exposed for 0.75*0.35 seconds, which is a significant overexposure. The

pattern was then plasma etched in Panasonic 2 using the Martinis group standard

aluminum plasma etch for 30 seconds.

Mechanical resonator vias

The mechanical resonator pattern was exposed onto 1.8 micron photoresist for

1.45*0.35 seconds. The wafer was then etched using the AlN via etch previously

described (recipe number 152 on Panasonic 2) for 36 seconds with chlorine and 7

minutes with the CF4/Ar mill.

Mechanical resonator plasma frame

The plasma frame pattern was overexposed for a time of 1.6*0.35 seconds, trans-

ferring the design to 1.8 micron resist. A pure chlorine etch was developed to

remove the unwanted Al and AlN material while stopping on the silcon dioxide
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Step number 1 2 3
Cl2 (SCCM) 40.0 40.0 40.0
Pressure (Pa) 1.0 0.7 0.7
Vac time (s) 0.0 0.0 45.0
Rf wait (s) 15.0 0.0 0.0
SRC FWD (W) 300 300 300
Bias FWD (W) 0.0 0.0 70
Step time (s) 5.0 5.0 VAR

Table A.4: Plasma frame etch recipe for Panasonic 2, number 160.

substrate layer. This etch has the same parameters as the first three steps of the

AlN via etch. The plasma frame recipe is number 160 on Panasonic 2 and has the

parameters denoted in table A.4. The etch was performed for 3 minutes.

Mechanical resonator wet etch

The wafer was exposed for 1.6*0.35 seconds using 1.8 micron photoresist. The

wafer was then submersed in Transene Al etchant “Type A”, which had been

allowed to equilibrate to a programmed hotplate temperature of 75 degrees Celsius

(the actual temperate of the bath is lower). The wafer was suspended with the

pattern facing upward to allow for visual monitoring of the etch. The wafer was

agitated periodically for 22 minutes. A note about this etch, it may seem as

though most of the AlN is removed after a few minutes. However, there remains

a white milky film across the entire wafer. Allowing the wafer to remain in the

bath for the remainder of the etch time allows that layer to be broken off and
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dissolved. It is important to carry out the full length of this etch to ensure the

resulting roughness is minimized.

Qubit base wiring and mechanical resonator top wiring

There are two different exposure times for this step. For the qubit base wiring,

qubit shunting capacitor, and qubit/FBAR coupling capacitor, a 0.62*0.35 sec-

ond exposure was used to imprint the pattern into 0.9 micron photoresist. This

time would be a slight over exposure for a standard develop time, but with the

special 45 second develop time used for this step, it is the ideal exposure time.

The mechanical resonator top wiring was exposed for 1.8*0.35 seconds, a gross

overexposure. The pattern was then etched using the standard Martinis group Al

recipe for 40 seconds.

Mechanical resonator CPW clear

With a photoresist thickness of 0.9 microns, the 1.0*0.35 second exposure is def-

initely long enough to fully transfer the CPW clear pattern. A hotplate tem-

perature was set to 80 degrees Celsius and the bath allowed to equilibrate for at

least half of an hour. The wafer was then submersed and agitated in Transene

aluminum etchant Type A for one minute.
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Step number 1 2 3
Cl2 (SCCM) 8.0 8.0 8.0
Pressure (Pa) 1.0 1.2 1.2
Vac time (s) 0.0 0.0 15.0
Rf wait (s) 15.0 0.0 0.0
SRC FWD (W) 500 400 400
Bias FWD (W) 0.0 0.0 40
Step time (s) 5.0 10.0 VAR

Table A.5: Junction clear etch recipe for Panasonic 2, number 158.

Mechanical resonator define

The thicker, 1.8 micron, photoresist was used to ensure the plasma etch would

not accidentally penetrate the resist. The pattern was overexposed for 1.6*0.35

seconds before being plasma etched using recipe number 152 with a 4 minute

chlorine time and 9 minute CF4/Ar mill.

Junction area clear

The pattern was transfered to 1.8 micron photoresist using a 2.0*0.35 second ex-

posure time, a time much longer than likely necessary. The wafer was then etched

in Panasonic 2 using a pure chlorine plasma etch recipe specifically developed for

this step for a time of 2 minutes and 56 seconds. The number of the recipe is 158

on Panasonic 2 and is documented in table A.5. This recipe was designed to use

chlorine because it has little effect on silicon dioxide but etches amorphous silicon

relatively rapidly.
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Wiring vias

The thicker resist was used for this step with an exposure time of 2.0*0.35 sec-

onds. The wafer was then etched using the standard Martinis group amorphous

silicon etch recipe for 2 minutes and 40 seconds. This recipe has been previously

documented and can be found on the Martinis group TWiki.

Junction gap

The pattern was transfered to 0.9 micron photoresist using a 1.0*0.35 second

exposure. The thinner resist was used to attempt to produce better pattern

definition, although a 1.0*0.35 second exposure is a substantial overexposure and

smears out the edges of the resulting pattern. The wafer was etched in Panasonic

2 using the standard Martinis group aluminum etch for 49 seconds.

Overlap junction

The overlap junction pattern was exposed for 0.8*0.35 seconds onto 0.9 micron

photoresist. The pattern was then milled in Panasonic 1 using the standard

Martinis group junction chlorine/argon mill. The parameters for this mill can be

found on the Martinis group TWiki. The wafer was milled a total of five times:

four times for 53 seconds and once for an additional 18 seconds.

138



Qubit top wiring

The 0.9 micron photoresist was exposed for 0.85*0.35 seconds. The wafer was then

etched in Panasonic 2 for 49 seconds using the standard Martinis group aluminum

recipe.

Shorting strap removal

Finally, 1.8 micron photo resist was used for the shorting strap removal pattern,

which was exposed for 1.6*0.35 seconds. The wafer was then immersed and ag-

itated in Trasene aluminum etchant Type A for 30 seconds. The bath had been

allowed to equilibrate to a programmed hotplate temperate of 80 degrees Celsius.

A.3 Tips and tricks

This section contains some useful concepts and techniques that were used to create

the coupled qubit and mechanical resonator sample. Unfortunately, successful

fabrication cannot be learned from reading about proper techniques. There are

many very subtle aspects of a clean fabrication that are difficult to describe.

A.3.1 Spinning photoresist

We shall begin with photoresist spinning. It is standard procedure to change

spinners between HMDS application and the spinning of photoresist. Although
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this technique has been used for the fabrication described above, it may not be

necessary to switch spinners. When performing tests to this end, it was seen that

if thirty seconds were allowed to elapse between spinning HMDS and photoresist,

then no problems emerged as long as an excessive amount of HMDS was not used.

A.3.2 Stepper alignment

Using the stepper can be frustrating because it is quite tricky to operate properly.

The alignment aspect of the process can be made much easier if great care is

taken when aligning the wafer to the chuck, and subsequently, the chuck to the

stage. One way to ensure a good wafer to chuck alignment is to rest the flat

of the wafer against the bottom two pins while ensuring that it does not touch

the left pin. By gently rocking the wafer back and forth it can be seen that the

wafer is resting squarely on the bottom pins. Once the wafer is flush with those

pins, slide the wafer to the left until it touches the left pin. Repeat the rocking

and sliding procedure until the wafer is resting flush with respect to all three

pins. The rule of thumb here is that if is possible to still rock the wafer to the

left, then it is not flush with all three pins. Once the wafer is in place, carefully

engage the chuck vacuum. Then slide the chuck onto the stage and engage the

stage vacuum. At this point it is still possible to move the chuck with respect

to the stage because the vacuum seal is sufficiently weak. To ensure reproducible
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chuck to stage alignment, rotate the chuck handle counterclockwise then back into

position. The chuck should now be aligned with the two alignment posts of the

stage. If this procedure is carefully done every time, the alignment mark should

never be off by more than 100 microns when first viewing the alignment screen.

A.3.3 Using the Unaxis properly

Depositing amorphous silicon in the Unaxis ICP PECVD system is always unre-

liable. To help minimize errors, one should fabricate on a wafer size expected by

the Unaxis, namely a 100 mm wafer. As a side note, processing on a 100 mm

wafer produces almost twice the number of devices as processing on a three inch

wafer.

A.3.4 Plasma etching in the Panasonic

Etching in the Panasonic is quite tricky. The difficulty arises because the Pana-

sonic is designed to process six inch wafers. Since the other machines in the clean-

room, the Unaxis for example, are incapable of handling six inch wafers, then

necessarily the Panasonic is the odd-man-out. Thus, a smaller size wafer must

be mounted on a six inch carrier wafer in order to be processed in the Panasonic.

Mounting to the six inch carrier wafer is difficult because it involves sticking the

wafer to be processed to the carrier wafer using pump oil. This pump oil secures
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the wafers together and also creates a thermal connection between the two. Too

little pump oil and good thermal contact is not made. Too much pump oil and it

will come out the sides when first placed in vacuum. The pump oil will then be

sprayed all over the wafer by the plasma. Also, if the wafer is only barely stuck

to the carrier wafer, when the two are loaded into the Panasonic, movement by

the robotic arms may jostle the wafers apart.

The procedure for properly applying pump oil to the carrier wafer is as follows:

First, get a wooden handled cotton swab. Obtain an eyedropper full of pump oil.

Squeeze the pump oil out of the eye dropper and onto the end of the wooden

handle of the cotton swab. A medium sized drop is sufficient. Take the wooden

handle with the pump oil and quickly dab it in the center of the carrier wafer to

transfer part of the oil. Dab the remaining pump oil left on the wooden handle in

six equally spaced locations radially, about one inch from center. Place the wafer

to be etched on top the carrier wafer. Take the tweezers and find an open spot

in the center of the wafer. Press firmly with the tweezers and try to gently move

the wafer in a circle with respect to the carrier wafer. This should be possible at

first and then become hard to move as the pump oil is distributed.

Then, take tweezers and the back end of a razor blade and press the wafer

down simultaneously on opposing sides of the circumference of the wafer to be

processed. Next, use the razor blade to block the carrier wafer from sliding with

142



respect to the clean wipe by placing it as a stopping point on the clean wipe

just outside the carrier wafer. Take the tweezers and gently slide the wafer to be

processed toward the razor blade by catching the tweezers on the edge of the wafer

to be processed. Try not to scratch the carrier wafer too badly. By sliding the

wafers with respect to each other, the oil becomes distributed in that direction.

Slide the wafer to be processed back to the center of the carrier wafer by moving

the razor and tweezer to their respective antipodal positions and sliding the wafer

with the tweezers. Rotate the position of the tweezers and razor blade by 90

degrees and repeat the process described from the beginning of this paragraph.

After about four repetitions the oil will be uniformly distributed and the wafers

will become very difficult to move with respect to each other. The wafers are now

adequately attached.

The final tip for plasma etching is to encourage the practice of watching the

sample in the load lock when it is first loaded into that chamber. At this time, the

robotic arm rotates the carrier wafer by 180 degrees. If the wafer to be processed

rotates with respect to the carrier wafer then it is a sure sign that the mounting

procedure was improperly done. The process should be immediately stopped and

the sample removed and remounted. This is always a good check to do although

there is rarely a problem once the art of attaching the wafers together has been

mastered.
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A.3.5 Etching aluminum

To create micron or smaller aluminum features, it is necessary to soak the wafer

in water immediately after the plasma etch. It has been found that a ten minute

soak time increases feature sharpness by passivating any residual chlorine, thus

preventing the chlorine from etching laterally into the aluminum, creating what

looks like bites taken out of the traces. For trace sizes larger than a micron

a five minute water soak should be sufficient. Note that water does slowly etch

aluminum so if one is attempting to produce trace widths of just a few nanometers,

this technique may etch through those lines.

A.3.6 Microscope dark field

It is highly recommended to examine the wafer after every step in both regular

illumination and the dark field setting on the microscope. Height information be-

comes obvious only in the dark field setting. To become acclimated with using the

dark field setting, try comparing dark field images with atomic force microscopy

data taken for the same device. By only looking at a film in an optical microscope

it is possible to get a good estimate of the film roughness.
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A.3.7 Viewing undeveloped photoresist

Developing photoresist on aluminum or AlN layers should only be done once it

is verified that the pattern has been exposed correctly. If there has been an er-

ror and the pattern must be shot again then some non negligible amount of the

aluminum or AlN has been etched away by the developer. This can cause future

unforeseen problems and should be avoided. Fortunately, there is an easy solution.

Ensure that the pattern has been correctly exposed before developing by examin-

ing it under the optical microscope with the GIF filter and polarizer in place. If

the aperture, luminosity, and polarization angle are adjusted properly, then the

exposed areas of the photoresist should be clearly visible without developing.

A.3.8 Removing photoresist

This technique was developed in response to the AlN via plasma etch recipe, which

involves a 7 minute CF4/Ar mill. This mill heats the wafer quite substantially

and greatly hardens the photoresist. Simply sonicating the wafer in acetone at

any power proved unable to fully remove the hardened photoresist. However, by

adding a directed acetone spray to the middle and end of the standard procedure,

full removal of the photoresist was observed. The details are as follows: First,

sonicate the wafer in the tabletop device for four minutes at the usual power.

Then, remove the wafer from the bath while spraying it with acetone. While
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ensuring that the wafer never dries, spray every die with an acetone spray bottle.

If there are pieces of photoresist remaining on the wafer they will produce a wake

in the acetone stream. Target those pieces with the acetone, spraying until they

are removed. When satisfied, sonicate the wafer for another minute and repeat

the acetone spraying procedure. At this point all of the photoresist should be gone

but if there are still remaining pieces, target them with the spray and then repeat

the one minute sonication step. When the wafer looks clean, switch to spraying

it with IPA and spin dry. Implementing this photoresist procedure had dramatic

results on the final cleanliness of the devices.
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