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Chapter 1

Introduction

This introductory chapter explains the notion of quantum information processing and

why it might be useful.

1.1 Information processing machines

Information processing pervades our civilization. Examples of information process-

ing, essential to our way of life include communication, data storage and retrieval,

and problem solving machines. Digital information processing has become especially

important since the invention of the vacuum tube, and later, the transistor. We

spend enormous effort and resources improving our information processing hardware:

in 2013 Intel spent more than ten billion dollars on research and development [14].
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Figure 1.1: Two physical implementations of logic elements. a) A mechanical OR
gate. If either of the bottom rods is pushed, the output rod extends. If neither
input rod is pushed, springs retract the output rod. b) An electronic NAND gate. If
voltage is applied to both input wires then current flows freely through the transistors,
bringing the output node to ground.

1.1.1 Information is physical

A computer contains an array of physical elements, such as gears in a mechanical

computer, or transistors in an electronic one. The physical states of those elements

stores information. In the mechanical computer, the physical state is the rotational

orientation of the gears, and in the electronic computer it is the current and voltage

in the transistor. Physical interactions between elements, causing them to change

their state, achieves computation. In a mechanical computer, sliding rods pushing

on one another lead to the positions of a register of output rods which depend on

the positions of the inputs. In a solid state electronic computer, arrays of input

voltages are transferred from memory circuits into the central processing unit (CPU)

where they interact in logic circuits such as NAND or XOR gates to produce resulting

output voltages. Figure 1.1 illustrates two examples: a mechanical OR gate and an

electronic NAND gate. These examples are meant to emphasize the fundamentally
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physical nature of information processors.

1.1.2 Classical physics limits information processing

The above example computers, and in fact in any existing information processing

device, ignore a great deal of information associated to the physical elements in the

computer. A particular state of a transistor implicitly includes an enormous set of

possible microscopic states (“microstates”) of the individual electrons carrying the

current. This is illustrated in Fig. 1.2 where multiple microstates are shown for left

flowing and right flowing macroscopic current states in a wire. Information processing

in the computer is insensitive to these microstates by construction. Ignorance of

this information is essential for the operation of a real machine: if the logical state

of a transistor depended on the precise state of every electron, we would have to

eliminate phonon scattering and operate at absolute zero temperature in order to

have a usable machine. In other words, ignorance of precise microscopic dynamics

affords the computer robustness against real-world non-ideal effects.

On the other hand, it turns out that this ignorance restricts the computer to

physical processes which obey classical physics.1 At any point in the computation,

the computer’s state is described by independently specifying the state of each infor-

mation storage element,

|computer〉 = |state of 0th element〉 . . . |state of N − 1th element〉
e.g. |0〉|1〉|1〉 . . . |1〉|0〉|0〉 = |011 . . . 100〉, (1.1)

1A demonstration of why this is the case will be given subsequently.
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where 0 and 1 indicate the two possible states of a logic element. Note that a system

with N bits requires N 0’s and 1’s to specify its state. While this representation may

seem obvious and unavoidable, from a physical point of view it is somewhat limited.

We know that Nature fundamentally allows for physical states more complex than

the one in Eq. (1.1): quantum mechanics describes a physical state as a weighted

superposition of states, such as c0|0〉+ c1|1〉 where {ci} are complex numbers. These

superposition states are more complex than their classical counterparts, so use of only

classical states in information processors limits their power.

Suppose we want to compute properties of N quantum two level systems where

each one interacts with its nearest neighbours, a so-called “quantum spin chain”, as

shown in Figure 1.3 a. The system is described by 2N − 1 complex numbers ci,
2

|spin chain〉 = c0|00 . . . 00〉+ c1|00 . . . 01〉+ · · ·+ c2N |11 . . . 11〉. (1.2)

Note that each term in the sum corresponds to one complete classical state of the

spin chain as in (1.1). The number of parameters needed to specify one particular

quantum state is proportional to the number of all possible classical states. Suppose

each of the numbers ci is represented in a classical computer by an m bit number.

Then, to represent a single state of the quantum system we need m2N classical bits,

so the size of the classical computer needed to simulate a quantum system grows

exponentially in the size of the quantum system. This illustrates one limitation of

classical computers: they cannot efficiently store the information needed to represent

2Normalization and the irrelevance of the global phase reduce the parameter count by 2 real
numbers, or equivalently one complex number.

4



Figure 1.2: A wire with two different macroscopic current states.(a) and (b) show
three microscopic states corresponding respectively to rightward and leftward current.
Note that in each microscopic state some electrons may be moving in a direction
against the macroscopic current.
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quantum mechanical physics problems.

That classical computers cannot efficiently simulate quantum mechanics is not too

surprising since we know that quantum states are more complex than classical ones.

However, classical computers seem to be limited even in their ability to solve abstract

math and logic problems. A famous example of this is the problem of finding the prime

factors of an integer. Although this problem has been known since ancient times, no

polynomial time classical algorithm has ever been found.3 The best modern algorithm,

the general number field sieve [22], factors a b bit number in time asymptotically

proportional to

exp
(
(1.9 + o(1)) (b ln 2)1/3(ln(b ln 2))2/3

)
(1.3)

in the limit of large b. Note the super-polynomial (but sub-exponential) scaling.

1.1.3 Quantum Information

In the previous section, we showed that a quantum state cannot be efficiently stored

on a classical computer. This problem suggests its own solution: use an information

processor in which the logic elements themselves are quantum mechanical. A simple

approach is to build an analogous system out of elements that are amenable to ex-

perimental control and measurement, as shown in Figure 1.3 b. By engineering the

analogue system to have the same physics (ie. same Hamiltonian) as the spin chain,

we can infer properties of the spin chain from observations of the engineered system.

3A simple but slow algorithm for deciding whether a number is prime and finding its factors is
attributed to Eratosthenes of Cyrene (c. 276 BC - c. 195/194 BC).
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Figure 1.3: The physics of a quantum spin chain can be investigated by construction
of a controllable and measurable analogue system. a) A physical spin chain. b) An
array of two level systems engineered to match the physics of the spin chain.

A realistic analogue system for the spin chain could be a chain of ions trapped in an

optical lattice. Existing technology allows for exquisite control and measurement of

trapped ions. Note that this idea of building an analogous system, or “model” that

is amenable to precise engineering and measurement is not restricted to quantum

systems. Indeed, modeling has been used for architectural projects for centuries and

is in some sense the oldest form of information processing.

The modeling approach works for systems in which the physics is simple enough

that a controllable analogue system can be realized, but this will not always be

possible. It is difficult to imagine building a controllable analogue system for a high

energy particle scattering problem. For problems for which we cannot build models

we need a more abstract approach. Historically, we addressed this type of problem

by constructing a mathematical model of the physics problem and solving the model

with a numerical computer. However, we already saw that a quantum state cannot
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be efficiently stored on a computer which uses classical physics. Looking again at

Figure 1.3 b, we can re-imagine the array of controllable two level quantum elements,

originally conceived as a proxy for the spin chain, as a quantum bit register. This

suggests the notion of a general purpose abstract computer that uses quantum bits

instead of classical ones. Information would be processed by controlled interactions

between quantum bits in the register. We could engineer the interactions between

two quantum elements such that they undergo specific transformations, akin to the

classical logic gates used in normal computers such as XOR and NAND gates. A

quantum example is described by the following unitary matrix

|00〉
|01〉
|10〉
|11〉


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.4)

This operation is known as a “controlled NOT” or CNOT gate, because the state

of the second bit inverts if the first bit is on (ie. in the |1〉 state). This example

shares with the classical cases the general idea of using controlled interactions to

produce changes in the bits representing a logical computation. Importantly, the

quantum gate works on superposition states in addition to the usual classical states.

Operations like this could form a collection of quantum logic gates analogous to

classical logic gates, and we can imagine a generic Turing-style computer based on

transformation of quantum states through such gates. Similarly to how the NOT and

AND gates form a universal set of operations in classical computing, arbitrary single

qubit controls along with the CNOT form a universal set for a quantum computer
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[2].

Amazingly, this kind of generic quantum information processor might be able to

solve some types of abstract problems more efficiently than classical computers. A

famous algorithm for factoring prime numbers, Shor’s algorithm [43], runs on a quan-

tum computer in a time that goes as a polynomial in the number of input digits. This

is an example of a case where a quantum computer solves an abstract problem more

efficiently than a classical computer, and the practical application of prime factoring

in cryptography is a strong driving force behind quantum information research. It’s

important to note that the current lack of a known classical algorithm for prime fac-

toring does not preclude the possibility that one will be found in the future. It has not

been proven that efficient factoring on a classical computer is impossible, and so the

utility of quantum computers for abstract problem solving is not necessarily firmly

established. On the other hand, there is one known problem that quantum computers

can solve faster than is possible on a classical computer: function inversion. Given a

function f , a set of possible inputs {x} of length N , and an output y, the quantum

“Grover Search”4 algorithm can find x such that f(x) = y in time proportional to

√
N . Classically, the search time scales as N . This square root speed-up for the

quantum algorithm is less impressive than the near exponential speed-up associated

to Shor’s factoring algorithm, but is a strong indicator that quantum information

4The Grover Search is some times described as a database lookup. The connection to function
inversion comes by choosing f such that f(x) = True only when x is the desired database entry.
Note that, on a normal computer, structured databases can be searched in constant time by using
hash lookup or similar methods.
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processors are fundamentally more powerful than classical ones, at least for some

types of problems.

1.1.4 Summary

Quantum information processors may be able to efficiently solve some problems that

classical processors cannot. Quantum algorithms are known for prime factoring and

function inversion. The former represents a significant speed-up over known classical

algorithms and seems very likely to indicate that quantum processors are significantly

more powerful than classical ones. The latter establishes that in at least one case

quantum processors can solve problems faster than is fundamentally possible on a

classical processor, although the speed-up is modest. Quantum processors seem to

be clearly superior to classical processors for quantum physics problems as they can

more efficiently store the information needed to represent the state of the system

being simulated.

Two types of quantum information processors were described. In the first type the

processor is simply a model of a physics problem and is used to directly measure prop-

erties of the analogous system. In the second type an array of quantum elements are

used as an information storage register and computations are done through physical

interactions between them, just as in a normal computer.
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1.2 Quantum Bits

To build a quantum computer, we need quantum mechanical logic elements that

are controllable and measurable. As in the classical case, these elements could have

any number of possible states, but analysis and construction is simplest in the case

of two possible states. With homage to the term “bit” for a controllable two-state

information storage element in classical computers, we refer to the quantum analogue

as a “qubit”. In this section we explain why building usable qubits is hard. With

that understanding we explain the requirements for a working quantum computer.

Finally we discuss a few possible candidate physical systems for making qubits.

1.2.1 Qubits are hard to make because quantum states are

fragile

As discussed previously, classical computers are insensitive to many of the details of

the physical processes taking place inside their bits. As indicated in Figure 1.2, the

logical state of a transistor does not depend on the individual states of the electrons

in the wire, but rather only on the average of those states. The following states

correspond to upward current

{| ↑↑↑〉, | ↓↑↑〉, | ↑↓↑〉, | ↑↑↓〉} (1.5)

and the following correspond to downward current

{| ↓↓↓〉, | ↑↓↓〉, | ↓↑↓〉, | ↓↓↑〉} (1.6)
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where ↑(↓) indicates a single electron carrying current upward(downward). The com-

puter’s ignorance of the individual electron states means that if the system undergoes

a transition

| ↑↑↑〉 → | ↓↑↑〉, (1.7)

then the state of the transistor, and thus the logical state of the computer, does

not change. For classical computers this is an essential feature: if the computer’s

state depended on such microscopic processes we would have to completely eliminate

all scattering processes in the wires, a seemingly impossible task. By remaining

insensitive to these processes the classical computer can operate at finite temperatures

with imperfect materials, etc. Now, it turns out that ignorance of these processes is

also what makes the machine classical instead of quantum mechanical. To see why,

suppose we have a pair of transistors in an initial quantum state

|transistors〉 = | ↑↑↑〉| ↑↓↓〉+ | ↓↓↓〉| ↑↑↑〉 ≡ |1〉|0〉+ |0〉|1〉 (1.8)

where |1〉 means upward current and |0〉 means downward current. Now suppose the

first transistor suffers the transition given in (1.7). The resulting transition for the

computer is

physical: | ↑↑↑〉| ↑↓↓〉+ | ↓↓↓〉| ↑↑↑〉 → | ↓↑↑〉| ↑↓↓〉+ | ↓↓↓〉| ↑↑↑〉
logical: |1〉|0〉+ |0〉|1〉 → |1〉|0〉+ |0〉|1〉. (1.9)

The logical state does not change, so it appears that nothing important has happened.

However, the electron state change cannot happen in isolation. If the electron state

changes, it must be due to interaction with something else. Suppose the electron state
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change coincides with creation of a phonon in the wire. Adding the phonon state to

our representation, we re-write the electron state change process as

|computer〉 → |computer′〉
physical: | ↑↑↑〉| ↑↓↓〉|0〉+ | ↓↓↓〉| ↑↑↑〉|0〉 → | ↓↑↑〉| ↑↓↓〉|1〉+ | ↓↓↓〉| ↑↑↑〉|0〉

logical: |1〉|0〉|0〉+ |0〉|1〉|0〉 → |1〉|0〉|1〉+ |0〉|1〉|0〉 (1.10)

where here the third ket being |0〉(|1〉) represents the absence(presence) of the

phonon, and the prime indicates the computer’s state after the transition. The in-

formation carried by the state of the phonon is not available to the computer, so to

understand what information is still carried by the computer we must re-express the

state without the phonon . On the left hand side of Eq. (1.10) the phonon is always in

state |0〉, so the information available to the computer is easily written by dropping

the phonon part

|computer〉 = |1〉|0〉+ |0〉|1〉 (1.11)

The right hand side of Eq. (1.10) includes terms where the phonon state is not always

the same. It turns out that in this case, the state takes on a statistical nature 5

|computer′〉 =

{
|0〉|1〉 probability = 1/2
|1〉|0〉 probability = 1/2

. (1.12)

The state after the phonon scattering event, |computer′〉, is a statistical mix of either

|10〉 or |01〉 with no quantum superposition. You can think of this as a collapsed wave

function that occurs after the phonon measures the state of the first electron. With

the quantum superposition in the computer state now gone, the computer’s function

5This can be shown rigorously using the density matrix formalism.
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is limited to processes described in classical physics.

It only required one electron state change in a phonon scattering event to cause

the complete destruction of the computer state’s quantum superposition. In a real

transistor, with orders of magnitude more electrons, single scattering processes like

the one illustrated here are overwhelmingly likely to occur with extremely high fre-

quency. This explains why quantum coherence is so fragile and illustrates why normal

computers are classical.6 The phenomenon illustrated here, by which quantum su-

perposition of a subsystem is lost when it interacts with other degrees of freedom, is

known as “decoherence”. The surrounding degrees of freedom are called the “envi-

ronment”, and when some of the information of the subsystem has leaked into the

environment, the subsystem and environment are said to be “entangled”. Identifica-

tion of processes causing decoherence and elimination of those processes is one of the

crucial challenges of experimental quantum information.

Decoherence in qubits is typically characterized by the rates of two types of pro-

cesses. The first process is decay from |1〉 to |0〉 accompanied by absorption of a quan-

tum of energy from the qubit by something in the surrounding environment. This

process frequently occurs with constant probability per unit time and can therefore

be described by an exponential time constant T1. The second process is randomiza-

tion of the relative phase between |0〉 and |1〉, caused by fluctuations in the energy

difference between those two states. This is typically characterized by a time constant

6In fact, what we have illustrated here may be the essence of why we do not observe quantum
interference in common experience.
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T2, although in many systems the noise responsible for this process is correlated in

time, so the decoherence does not go exponentially and must be described by a more

complex function of time, such as exp [−t/Tφ1 − (t/Tφ2)
2 − · · · ].

1.2.2 Requirements for a quantum computer

The requirements for a working quantum computer are summarized in the “DiVen-

cenzo criteria” for a set of usable qubits:

1. Reliable qubit state preparation

2. Low qubit decoherence

3. Accurate quantum logic operations for single qubits and between pairs of qubits

4. Accurate measurement of the qubit states

Items 2, 3, and 4 are interrelated and warrant discussion. Low decoherence is not re-

ally a meaningful criterion by itself. If it were required that qubits maintain coherence

for the entire duration of a quantum computation, the task would appear hopeless:

in order to have a fixed system error rate, the coherence of each qubit would have

to scale exponentially with the number of qubits. However it is theoretically possible

to use qubits in an algorithm lasting much longer than the their coherence times by

using error correction. With quantum error correction, the important figure of merit

is the ratio of the qubit coherence times to the time needed for an error correction
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cycle. Error correction typically involves several single and two qubit logic gates fol-

lowed by projective measurement of a subset of the qubits, and succeeds in preserving

the logical state of the computer if those operations and measurements are done with

high enough accuracy and large enough system size. Therefore, in order to actually

run a quantum computer, we need to be able to do only a few logic operations with

high accuracy in times short compared to the qubit coherence times. Similarly the

projective measurement must be done in a time short compared to the qubit coher-

ence times, and must be done with high accuracy. The precise meaning of “high

accuracy” will be discussed later.

From the previous section, it is clear that there is an intrinsic tension between

accurate control for logic operations and qubit coherence. By construction, the hard-

ware coupled to the qubits to control their states introduces decoherence channels.

The same is true for the apparatus used to measure the qubits’ states. Navigating

this tension is the main challenge of experimental quantum information.

1.2.3 Candidate systems for qubits

In this section we describe two real qubit implementations and discuss the challenges

involved in using them to build a quantum computer.

Electron spin

Single electron spins have the natural advantage that they are two level systems by

nature and can be controlled via their magnetic dipole moment. Typical experiments
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Figure 1.4: Qubit implementations. a) Electrons embedded in a semiconductor are
used as qubits through their spin degree of freedom. This image shows a pair of
“double quantum dot” qubits. In each one, two electrons are used to implement a
single logical qubit. Note the large number of control wires. The image was taken
from the website of Amir Yacoby at Harvard. b) Ions trapped in a linear “Paul trap”.
Blue arrows indicate axes through which laser light is brought into the trap to control
the qubit states. State measurement is done through a state dependent fluorescent
technique and the outgoing light is collected by a CCD camera. The image was taken
from the website of Rainer Blatt at Innsbruck.
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work with electrons embedded in semiconductors, as shown in Fig. 1.4 a. Metal elec-

trodes formed lithographically on the surface of the semiconductor produce electro-

magnetic fields which contain and control the qubit states. A challenge with electron

spin qubits is that the parameters of the qubit depend on microscopic properties of the

semiconductor crystal in which the electrons are embedded. In engineering parame-

ters of the quantum computer, we are constrained not only by the general physics of

electron spins in a crystal, but also by what materials can actually be realized. The

problem of growing a material compatible with high accuracy two qubit logic gates

is a subject of ongoing research.

Another challenge comes from the weak and short range nature of the dipole

interaction, which requires that the electrons be kept very close together in order to

perform two-qubit logic operations. This presents a challenge for bringing control

wires into the system; the area needed by the control wires in Fig. 1.4 a is large

compared to the area of the qubits, which makes scaling to a large computer system

difficult.

Trapped ions

Another very successful qubit system is a single atom. For each atom, two electron

orbital states are chosen as the logic levels |0〉 and |1〉. This system has the advantage

of relatively long intrinsic coherence times, as it is possible to choose electron levels

for which conservation rules suppress spontaneous decay, as used in atomic clocks.

The single atom qubit suffers several challenges. First, their microscopic size and

18



gaseous state requires that they be ionized and held in space by RF or optical laser

fields, as shown in Fig. 1.4 b [8]. Second, to remove scattering processes between

the trapped ion and atmospheric molecules which would destroy the ions’ quantum

coherence, experiments must be done in ultra high vacuum. Third, the use of electron

levels for which coupling to the electromagnetic field is suppressed necessitates the

use of strong lasers to induce qubit state transitions. High power stable lasers are not

part of a large consumer market, so ion trap labs must expend a great deal of time and

effort to build lasers suitable for quantum computing. Finally, the coupling between

the ions’ logical states is intrinsically weak. While the ions, being charged, interact

through the monopole Coulomb interaction, that interaction does not depend on the

orbital state of the electrons. When an ion’s electron changes orbital state, that

ion’s electromagnetic field changes only in higher multipole moments. With a single

electron charge and subatomic displacement scales, the direct ion-ion interactions is

too weak to be useful.

This last difficulty has been overcome in practice by using laser pulses to transduce

the electron states to a vibrational motion of the ion within the trap, which then

couples to the vibrational motion of other ions via the Coulomb force [45]. This

strategy has been used to implement high accuracy two qubit logic gates [6].

The challenges found in the examples presented here can all be attributed fun-

damentally to the fact that the qubits are based on naturally occurring microscopic

objects. Because of this, the parameters of the qubit system come from Nature rather
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than from our own design. In the next section we introduce a type of qubit that solves

this problem.

1.3 Superconducting Qubits

Microscopic quantum objects like an electron spin or single atom constrain the design

of an information processor because the processor inherits restrictions imposed by the

fundamental physics of the microscopic system. Alternatively, we can start with an

engineered system, like an electronic transistor, and try to make it quantum. This

approach avoids restrictions imposed by e.g. the values of fundamental constants on

Nature.

1.3.1 Quantum modes with engineered parameters

As discussed in section 1.2.1, the current and voltage state of a normal metal wire is

not quantum because information is lost in internal scattering processes. To get rid of

scattering we could use a superconductor. In a superconductor there is an energy gap

above the ground state within which there are no available system excitations. As

long as the superconductor is not subject to stimulation by energy near or exceeding

this gap, the individual electrons remain in the superconducting condensate ground

state. Therefore, processes like the one illustrated in Eq. 1.7 cannot occur and it

should be possible to find quantum coherence in the macroscopic current.

Consider an LC circuit as shown in Fig. 1.5 a. From Kirchoff’s laws we find the
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Figure 1.5: Superconducting qubits. a) A parallel LC circuit. b) The excitation
spectrum of the system constructed with normal metal includes a dense set of elec-
tron excitations. These excitations interact with the circuit resonance and destroy
quantum coherence. c) If the circuit is constructed with superconducting metal, the
electron states vanish, leaving the circuit mode isolated and able to exhibit quantum
coherence. d) The quantized mode of the LC circuit. The quadratic potential leads to
equally spaced energy levels. e) A Josephson junction is formed by a thin insulating
barrier interrupting two superconducting electrodes. The circuit model symbol for
a Josephson junction is a cross. f) Replacing the linear inductor with a Josephson
junction creates an anharmonic oscillator. g) The anharmonicity leads to unequally
spaced energy levels. The lowest two levels can be used as a qubit.
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equations of motion for the charge Q on the capacitor and flux Φ in the inductor,

Q̇ = −Φ/L Φ̇ = Q/C. (1.13)

Solving these gives charge and flux oscillating at a frequency ω0 = 1/
√
LC. This

mode corresponds to collective motion of the individual electrons in the metal. In a

normal metal circuit there are many other degrees of freedom, such as the individual

electron and phonon states. These degrees of freedom undergo constant scattering

processes which prevent the macroscopic charge and flux oscillation mode from ex-

hibiting quantum behavior, as illustrated in Fig. 1.5 b. However, if the electrons are

all in the superconducting ground state, then there are no spurious microscopic pro-

cesses and equations (1.13) represent the only dynamics in the system, as illustrated

in Fig. 1.5 c. The absence of interaction with environmental degrees of freedom pre-

serves the quantum coherence of the resonance mode, as explained in section 1.2.1. In

that case we can represent the mode by a Hamiltonian for just the resonance degree

of freedom,

Ĥ =
Q̂2

2C
+

Φ̂2

2L
, (1.14)

which, for the harmonic case, has a set of states spaced in frequency by ω0 = 1/
√
LC,

as shown in Fig. 1.5 d. This is a remarkable idea: the collective motion of electrons

in a superconducting resonant circuit should have quantum levels. This is surprising

if we are used to quantum mechanics applying only to microscopic objects.
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1.3.2 Superconducting circuits allow qubit engineering

The resonant system has many energy levels, and the bottom two levels could be used

as a qubit. As the level spacing is determined by artificially engineered components

L and C, we are at liberty to engineer our qubit’s frequency for our convenience.

Furthermore, as shown in Appendix D, it turns out that if we connect two circuits

through a capacitor Cg, the coupling energy g normalized to their frequencies is

g

~√ω1ω2

=
1

2

Cg√
C1C2

. (1.15)

Here ω1,2 are the frequencies of the two circuits, and C1,2 are their self capacitances.

The right hand side depends on no constants of Nature.7 As capacitors and inductors

are routinely built with values ranging over many orders of magnitude, supercon-

ducting circuits provide a great deal of flexibility in designing a quantum computer.

This should be contrasted against the situation with microscopic single particle qubits

where intrinsic coupling strengths are constrained by constants of Nature.

1.3.3 Non-linearity: Josephson junction

The linear oscillator discussed above cannot easily be used as a qubit. In the harmonic

system, driving the system into states which can carry out information processing re-

quires measurement of complex quantities such as parity. One way to see this is to

realize that an arbitrary array of linearly coupled harmonic oscillators is an analyti-

cally solvable problem. Classical computers use the nonlinear physics of the transistor

7Of course, realizable capacitances are limited by the value of the electrical permittivity ε0. Still,
realizable capacitance ranges over several orders of magnitude.
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to effect information processing. However, transistor physics is incompatible with the

superconducting state. To build a quantum computer with superconductors we need

a nonlinear superconducting element. Miraculously, there exists such an element:

the Josephson tunnel junction [20]. A Josephson junction is a thin insulating barrier

interrupting a superconducting wire, as shown in Fig. 1.5 e. The presence of the in-

sulating barrier allows the superconducting condensate phases of the two electrodes

to differ. We denote the phase difference as δ. Current and voltage at the junction

are related to δ through the Josephson relations [20]

I = Ic sin(δ) V =
Φ0

2π
δ̇. (1.16)

Here Ic is the “critical current” of the junction and Φ0 = 2× 10−15 Weber is the flux

quantum. The critical current is related to the normal state resistance of the junction

Rn and the superconducting gap ∆ by the Ambegaokar-Baratoff relation

Ic =
π∆

2eRn

. (1.17)

Introducing the flux Φ ≡
∫
V (t) dt and integrating the second Josephson relation

gives a relationship between Φ and δ,

δ = 2πΦ/Φ0. (1.18)

Using Eq. (1.18), the Josephson relations become

I = Ic sin (2πΦ/Φ0) V = Φ̇. (1.19)

To lowest order in Φ/Φ0, the first of equations (1.19) is

Φ ≈ Φ0

2πIc
I. (1.20)
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From the usual relation Φ = LI, Eq. (1.20) gives a small signal inductance for the

junction LJ0 ≡ Φ0/2πIc. For arbitrary signals we compute the differential inductance

LJ ≡ V/İ =
Φ̇

2πIcΦ̇ cos (2πΦ/Φ0) /Φ0

=
LJ0

cos(δ)
=

LJ0√
1− (I/Ic)

2
. (1.21)

This relation shows that the Josephson junction is a nonlinear inductor, with induc-

tance diverging to infinity as the current through the junction approaches Ic.

Integrating the work done on this nonlinear inductor gives an expression for the

energy stored,

E =

∫
IV dt =

∫
Ic sin(δ)

Φ0

2π
δ̇dt = −EJ cos(δ) = −EJ cos (2πΦ/Φ0) (1.22)

where EJ ≡ Φ0Ic/2π. Replacing the linear inductor with a Josephson junction,

we get the circuit shown in Fig. 1.5 f, where the potential energy is now a cosine as

shown in Fig. 1.5 g. In the cosine potential, the circuit oscillation frequency decreases

with increasing amplitude. This is easily understood as a decrease in the oscillation

frequency ω = 1/
√
LC as the junction inductance L increases with increasing current.

We now turn to the quantum mechanics of the nonlinear circuit. With the cosine

potential from the junction, the circuit Hamiltonian becomes

Ĥ =
Q̂2

2C
− EJ cos(δ̂) =

Q̂2

2C
− EJ cos(2πΦ̂/Φ0). (1.23)

The energy levels of this Hamiltonian are shown in Fig. 1.5 g. Note that, unlike

the case of the linear inductor with the parabolic potential, the energy levels in the

junction circuit are unequally spaced. This makes it possible, by bringing two qubits’
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|0〉 → |1〉 transitions on resonance with one another, to effect useful information

processing on pairs of circuits. Therefore, the circuit shown in Fig. 1.5 f can be used

as a qubit.

1.3.4 Advantages of superconducting qubits

We already saw that superconducting circuits allow enormous flexibility in construct-

ing the parameters for a quantum computer because the single qubit parameters and

two-qubit couplings are determined by engineered design rather than by constants of

Nature. Here we list some other important advantages.

• In order for a superconducting circuit to be used as a qubit, the spacing between

its energy levels must be larger than the surrounding thermal energy scale. In

other words, we need ~ω0 � kbT . Conventional dilution refrigerators attain

temperatures of ten to a few tens of mK. At T = 20mK we would need a fre-

quency of 3 GHz to keep the thermal occupation of the qubit’s excited state

below a part in one thousand. This microwave frequency range is readily ac-

cessible with commercial electronic hardware. High quality tunable microwave

sources available for a few tens of thousands of dollars are stable enough for use

with superconducting logic gates with errors less than a part in one thousand.

The commercial support in the frequency range needed for superconducting

qubits is a major advantage.

• Due to the prevalence of CMOS technology, fabrication of electrical circuits is an
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extremely well developed industry. Even the most complicated superconducting

qubit chips requiring seven layers of lithography can be made in a couple of

days in an academic clean-room facility. Construction by photo and e-beam

lithography also directly enables scaling to larger system sizes.

• Test and measurement instrumentation for electronics is extremely well devel-

oped. The dynamic range of standard microwave equipment such as spectrum

analyzers, sources, and even arbitrary waveform generators allows the researcher

to easily control and debug the superconducting qubit system. To give a sense

of scale, microwave frequency DAC chips with 14 bit (42 dB) resolution are

commercially available.

• The connectivity of a superconducting qubit network is subject only to the

constraints of on-chip wiring. This allows for very complex connectivity, as

illustrated by the DWave “chimera graph” in which some qubits are connected

to up to eight other qubits [9].

1.3.5 Disadvantages - outstanding challenges

To complete the picture of superconducting qubits within the field of quantum com-

putation, we list some of their disadvantages and outstanding challenges.

• The large size of superconducting qubits makes them susceptible to decoherence

processes. A single superconducting qubit may interact with many material

defects on the metal surfaces, and inside the tunnel junction or capacitor gaps.
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These processes have limited the coherence time of the phase qubit to ∼ 1µs,

and have rendered the charge qubit essentially unusable.

• Superconducting qubits are not true 2-level systems. The one dimensional po-

tentials admit higher quantum levels which can be inadvertently populated

during information processing. Unwanted transitions to higher levels devas-

tate information processing protocols, as the qubit leaves the expected space

of states. In some types of qubits, such as the flux and fluxonium qubits, the

nonlinearity from the Josephson junction can be large enough that this is not

a problem in practice. However, in the transmon qubit [21], the |1〉 → |2〉 tran-

sition frequency differs from the |0〉 → |1〉 transition frequency by only 3 to

4%. This small nonlinearity places restrictions on the speed of quantum gates

in transmon qubits, and complicates two-qubit interactions, as the unwanted

|1〉 → |2〉 transition must be carefully avoided.

• Superconducting qubits rely on the disappearance of scattering states in the su-

perconducting state to maintain coherence. This requires the devices be placed

in a cryostat to keep the temperature below the critical temperature of the

superconducting material. Furthermore, the temperature must be such that

kbT << ~ωqubit. With ωqubit/2π ≈ 4 GHz to 10 GHz, this requires T . 200 mK.

Such low temperatures require Helium dilution refrigerators, limiting the avail-

able space for the experiment and accessibility for control wiring. The Helium

dilution process relies on 3He, which is rare and expensive.
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• Unlike qubits based on individual microscopic particles, the individual qubits

in a large array of superconducting qubits are not all guaranteed to be iden-

tical. Imperfections in the fabrication process of superconducting qubits leads

to devices with different inductance and capacitance. In systems where the os-

cillation frequency of the qubits cannot be tuned in situ, this poses a serious

challenge. Qubits with tunable frequency largely mitigate this problem.

1.4 Fault tolerance

Even in the superconducting state, the qubit oscillating mode interacts with external

degrees of freedom. Charged quasiparticle excitations of the superconducting conden-

sate can absorb quanta of energy from the qubit as they tunnel across the Josephson

junction. Charged material defects, in the junction or in the qubit capacitors, feel

the oscillating electric field of the qubit mode and can also absorb energy. Supercon-

ducting qubits are macroscopically large, so we do not expect that these and other

decoherence processes can ever be completely eliminated.

Suppose we were to try to build a quantum computer which would work in the

presence of decoherence processes. As illustrated in section 1.2.1, a single interac-

tion even between the qubit and an external mode can destroy the coherence of the

quantum state. Therefore, we would have to reduce the rate of such events to the

level that the probability of a single event is of order 1 or less over the entire dura-

tion of the quantum algorithm. The numbers are not favorable. The most efficient
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useful algorithms require a number of qubits nqubits ≈ 100 and a number of gates

Ngates ∝ N3
qubits. The probability that a single qubit with coherence time Tcoh does

not suffer a decoherence event is 8

P = e−t/Tcoh . (1.24)

Denoting the total algorithm time as Talg, the number of gates in the algorithm

Ngates, and the time of a single gate as Tgate, we find

lnP = − Talg

Tcoh

= −Ngates
Tgate

Tcoh

. (1.25)

To get a reasonable probability of the qubit remaining coherent, say P = 1/2, the

coherence time to gate time ratio is

Tcoh

Tgate

= −Ngates

lnP
& 106 (1.26)

where in the last step we assumed Nqubits = 100 and Ngates = N3
qubits. Current state

of the art qubit systems achieve Tcoh/Tgate ≈ 300 [4]. Improving coherence by a factor

of 104 is a daunting task, but even more importantly, qubit gate errors can also come

from the control pulses used to generate the gates. This means that the error per

gate from the control pulses must also be at the 10−6 level. Current state of the art

for two qubit gates is a bit worse than 10−3 [4].

So far, we have discussed the error rate for a single qubit. However, the quantum

computation is spoiled if any qubit suffers an error. This lowers the necessary error

rate by a factor of Nqubits, which is at least a few hundred for useful algorithms. This

8The discussion here pertains only to decoherence processes which are described as an exponential
decay, ie. with a rate. Not all decoherence processes produce exponential decay, most notably the
low frequency flux noise responsible for phase decoherence in superconducting qubits. Still, the
essence of the present discussion remains intact.
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puts the required error rate per qubit gate at 10−8, an apparently impossibly low

number. From this discussion we see that brute force improvement of qubit errors is

not a viable strategy for building a quantum computer. Fortunately, there is better

way.

It turns out that quantum information can be processed in way that tolerates

errors. The details of how this works are beyond the scope of this thesis, but we

explain the basic idea here. First, consider the state of a transistor in a classical

computer. As discussed in section 1.2.1, the transistor state tolerates errors simply

because it averages over the states of many electrons. In other words, the information

represented by the effectively perfect transistor state is distributed over many smaller

and imperfect elements. This allows feedback circuitry to stabilize the current in the

transistor. In a similar way, quantum information can be distributed over an array of

many imperfect qubits in such a way that faults on the individual qubits do not ruin

the quantum information represented by the whole array. Several schemes exist, but

we focus on a particular one called the “surface code”.

1.4.1 Surface code

In the surface code, a single qubit of quantum information is encoded into a two di-

mensional array of imperfect, physical qubits [17, 38]. The single qubit of information

encoded in the array is called a “logical qubit”, as distinguished from the physical

qubits. The array is stroboscopically measured in such a way that individual qubit
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errors are detected, while the logical qubit is not. In this way, the quantum state of

the logical qubit can be maintained for times greatly exceeding the coherence times

of the physical qubits. Error detection and correction protocols like the surface code

were a critical development in the field, as they render realistic quantum hardware

useful for applications in a quantum computer.

The surface code is a cyclic protocol. The physical qubits are manipulated through

unitary transformations as part of the error detection sequence, a subset of the qubits

is measured, and then the process is repeated indefinitely throughout the algorithm.

For the surface code to produce a logical qubit with coherence exceeding that of the

physical qubits, the error rate per qubit per surface code cycle must be on the order

of 1%, much more lax than the one we found for the brute force approach. Still, to

achieve the 1% error per cycle threshold, the repetition rate of the protocol must be

fast compared to the physical qubits’ coherence times. In particular, the time of the

qubit state measurement must be Tmeasure . Tcoh/100, with an accuracy of at least

99%. Achieving these specifications is the main goal of the work in this thesis.
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Chapter 2

Measuring a Qubit’s State

In this chapter, we discuss the basic physics of state measurement in superconducting

qubits. We give a physical and historical picture of state measurement so that the

reader will more easily understand the motivation for the work done in this thesis,

and the technical details presented in following chapters.

The chapter is divided into three parts. In the first section we explain why state

measurement is generally a hard problem and list the requirements for state mea-

surement in a quantum computer. In the second section, we discuss the basic mea-

surement mechanisms used in several different types of superconducting qubits. In

the third section, we explain the rationale behind the state measurement mechanism

used in the latest superconducting qubits and describe how the work in this thesis

was intended to improve upon prior techniques.
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2.1 Measurement is hard

Constructing an apparatus to measure the quantum state of a superconducting qubit

is inherently difficult. In order to measure the qubit state, we need to physically couple

the qubit to some kind of measurement apparatus, but this introduces unwanted

decoherence channels. A good measurement system must accurately distinguish the

quantum states of the qubit on demand, without spoiling the fragile coherence of the

state during the coherent control phase of the computation. Here we list the criteria

required of a state measurement system for superconducting qubits.

1. Accuracy: Existing theoretical protocols for quantum fault tolerance require

qubit state measurement with accuracy of at least 90% if all other parts of the

computer, such as the logic gates, operate flawlessly. However, in a real system

with imperfect gates, current protocols require accuracy of ∼ 99%. Therefore,

we need to be able to distinguish the two computational states |0〉 and |1〉 with

99% accuracy.

The computational states differ by one microwave photon of energy. Microwave

photons, being 106 times less energetic than optical photons, are too low energy

to be directly counted with high accuracy. Energy measurement is therefore

not viable, and we have to find other properties of the qubit to use for state

discrimination. Two obvious candidates are the circuit’s charge and flux. If |0〉

and |1〉 correspond to different mean values of charge and flux, ie. 〈Q̂〉0 6= 〈Q̂〉1

or 〈Φ̂〉0 6= 〈Φ̂〉1, then we can use a charge or flux measurement to distinguish
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the qubit states. The charge difference between the qubit states is at most

2e, and the flux difference is at most Φ0.1 Distinguishing these weak signals

with the needed accuracy requires exquisitely sensitive and highly specialized

detection hardware. In order to couple to such weak signals the measurement

hardware must be integrated onto the same chip as the qubits, meaning that

the detector fabrication steps must be compatible with the fabrication of the

superconducting qubits themselves. Despite these difficulties, charge and flux

measurement with high accuracy is possible, as we will see below.

The requirement of high accuracy also means that the measurement time must

be a small fraction of the qubit lifetime so that the qubit does not change state

during the measurement.

2. Fast repetition: In order to be useful in cyclic fault tolerance protocol like

the surface code, any reset time in the measurement apparatus must be short

compared to the qubit life time. If it is not, then the qubits will lose coherence

while the computer waits to be able to use the measurement system.

3. Coherence: The measurement apparatus itself must not spoil the quantum

coherence of the qubit states during the coherent part of the computer’s op-

eration. The process of measuring a quantum state destroys its coherence by

construction, so it is essential that the measurement process can be switched

1To give an intuitive idea of these scales we can consider the voltage or current sensitivity needed
to measure them. One electron charge on a capacitance of 1 pF gives a voltage of 0.16µV, and larger
capacitance, including parasitic capacitance, lower the voltage. One Φ0 of flux in a 2 pH loop induces
1mA of current, and again larger inductance lowers the current.
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off. If it cannot, then the qubit lifetime can never exceed the measurement time.

Furthermore, the measurement system must not inject noise into the qubits or

load them with too much damping.2

4. Non-demolition: For the purpose of fault tolerance, when measuring a qubit

we want to know which state it was in when the measurement was first turned

on. Once we have that information, the qubit does not actually have to be in

that same state at the end of the measurement. As long as we know which state

the qubit was in at the end of the measurement, we can put it into whatever

other state we wish with control pulses. A measurement process in which there is

a one to one correspondence between the measurement output and the final state

of the measured system is said to be “non-demolition”. A measurement system

without this property leaves the qubit in an unknown state after measurement,

in which case the qubit cannot be reliably reused.

5. Multiplexing: In order for a qubit measurement system to be usable in a

quantum computer, it must work not only for single qubits, but for large qubit

systems. This requirement means that the measurement apparatus should be

comparable to or smaller than the the qubits in size, and should not significantly

increase the number of control wires needed to operate the computer.

2Injection of noise and damping are actually fundamentally the same thing, as described by the
classical and quantum versions of the fluctuation-dissipation theorem. For now, it is useful to think
of noise and damping separately for the sake of intuitive reasoning.
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We will keep these criteria in mind as we consider examples of qubit state mea-

surement systems, and comment on how each example does or does not satisfy each

criterion.

Note that the criteria presented above and the ensuing discussion are focused on

the case of strong projective measurement as appropriate for a surface-code style fault

tolerant system. Other fault tolerance strategies using continuous “weak” measure-

ment have been proposed and are the subject of ongoing research.

2.2 Examples

This section discusses a few existing superconducting state measurement systems.

The purpose of the section is to understand the practical difficulties in meeting the

criteria given in the previous section, and to get a historical picture of state measure-

ment in superconducting qubits.

2.2.1 Charge measurement

The first time resolved observation of quantum coherence in an electrical circuit was

done in 1999 in a charge qubit [34]. A charge qubit consists of a superconducting

island or “box” coupled to charge reservoir (ground) very weakly through a Joseph-

son junction, as shown in Fig. 2.1. The |0〉 and |1〉 states of the qubit correspond to

either zero or one extra Cooper pair having tunnelled from the reservoir to the island.

Because the coupling between the island and ground is so weak, the wave function of

37



Figure 2.1: The charge qubit used in the first time resolved superconducting qubit
measurements. (a) Micro-graph of the device in which can be seen the charge reservoir
and superconducting island (“box”). The probe electrode on the right is used for
charge based state detection. Note the extremely small scale of the device. This was
needed so that the self capacitance energy would be much larger than the junction
tunnelling energy, which allows charge to be a well-defined (ie. semiclassical) quantity.
(b) Schematic of the device showing the geometry of the reservoir, box, and probe
electrodes. The image was taken from Ref. [33].
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the qubit is very narrow in the charge basis, and the charge can be thought of as a

well-defined classical variable. This allows the |0〉 and |1〉 states to be distinguished

through charge measurement. A probe electrode is connected weakly to the island

through another Josephson junction. This probe electrode is voltage biased such that

when the circuit is in |1〉 with an extra Cooper pair on the island, two individual elec-

trons can sequentially tunnel out of the island through the probe junction, changing

the qubit state from |1〉 to |0〉 in the process. The tunnelling occurs stochastically

with a rate set by the parameters of the probe junction and of the qubit. The slight

change in island voltage when the qubit is in |0〉, combined with the probe bias volt-

age, blocks electron tunnelling through the probe junction via the Coulomb blockade

effect [33]. In this way the qubit states were discriminated based on the detection of

charge tunneling through the probe junction.

This measurement system has two shortcomings. First, because the measurement

worked through random tunnelling of electrons out of the island, with a corresponding

transition of the qubit from |1〉 to |0〉, it was by construction a decoherence channel

for the qubit. The probe junction and its associated decoherence channel is always

present, so the the excited state of the qubit could never live longer than the rate at

which electrons tunnelled out of the island through the probe junction. This means

that the qubit coherence time could not exceed the measurement time. Second,

the measurement required detection of an extremely weak charge signal, just two

electrons. In the original experiment, the authors repeated measurements many times
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to integrate over many two-electron detections, thus improving the signal to noise

ratio enough to distinguish the two qubit states.

In a later experiment, a single electron transistor (SET) was used to detect the

charges [1]. The SET is sensitive enough that the visibility of a single-shot measure-

ments was increased to 87% and 93% for the |0〉 and |1〉 states respectively, bringing

the accuracy near the threshold needed for a quantum computer. The tunnelling

process could be turned on and off with voltage biases applied to the readout cir-

cuitry, thus satisfying the decoherence criterion. The measurement circuit needed

to be pulsed on for 300 ns, while the qubit life time was observed up to 5.8 ns with

the measurement off. Unfortunately, the device had a long reset time of 2 ms, thus

failing the fast repetition criterion. Furthermore, a single SET was never shown to

measure more than a single qubit, and multiplexed readout with a SET is thought to

be prohibitively difficult [50].

A more fundamental problem is that the charge qubit itself has not been shown

to permit the coherence and precise control needed for use in a quantum computer.

Because the wave function is narrow in the charge basis, small noise charges near the

qubit lead to random phase noise in the its quantum state, causing loss of coherence.

The charge qubit is so sensitive to charge noise that practical noise levels render it

unusable unless it is operated at a specific frequency at which it has a first order

insensitivity to charge noise. Not only is this single frequency operation a major

constraint, but the charge noise is so large that even operating at the insensitive
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Figure 2.2: Potential energy curves and circuit diagram for the flux qubit. a) The
flux qubit is a superconducting loop interrupted by three Josephson junctions, one
with lower critical current than the other two. An external bias flux Φext controls the
shape of the energy potential. b) When the system is biased by an external flux of
Φ0/2 the potential is symmetric. In the absence of quantum tunnelling, there would
be two degenerate ground states localized within the potential wells, as shown in gray.
Tunnelling causes these states to hybridize into symmetric and anti-symmetric states
as shown in blue and red respectively. c) When the external flux bias is changed from
Φ0/2 (increased or decreased) the degeneracy of the left and right states is removed,
and |0〉 and |1〉 localize into the left and right wells.

point the charge qubit has not yet been shown to permit the degree of control and

coherence in a multi-qubit system needed for a quantum computer. As such it has

mostly been abandoned as a candidate for a quantum computer.

2.2.2 Flux measurement

Flux qubit

In the same year as the first time domain measurements in a charge qubit, quantum

behavior was observed in a qubit where the wave function is narrow in the flux basis
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[28, 46]. This qubit, named the “flux qubit” uses three junctions3 in a superconducting

loop, as shown in Fig. 2.2 a. When the circuit is biased by an external magnetic flux

equal to Φ0/2 the potential takes a symmetric double-well shape. If the energy barrier

separating the two minima were infinitely large, then the system would have two

degenerate ground states |L〉 and |R〉 as shown by the gray curves in Fig. 2.2 b. With

the finite height of the barrier and the nonzero width of the wave functions, the left

and right localized states hybridize to form one symmetric and one anti-symmetric

state as illustrated by the blue and red curves. These states are the |0〉 and |1〉 states

of the qubit.

The qubit states shown in Fig. 2.2 b have the same mean flux and charge (the

values are zero). This degeneracy precludes discrimination between the states. As

the degeneracy arises fundamentally from the reflection symmetry of the potential,

changing the external bias flux breaks the symmetry, and lifts the degeneracy, as

shown in Fig. 2.2 c. A small change in the bias flux causes one well to become lower in

energy than the other. When this happens the hybridization of the two states within

the energy wells decreases and the states become more localized. If this change is

made slowly with respect to the frequency of the |0〉 → |1〉 transition, then the system

will remain in whichever energy state it was in initially. Therefore, if the system starts

out in |0〉, the lower energy state, then after the change in external flux it will be in

the left well. On the other hand, if the system starts out in |1〉, then after the flux

3The use of three junctions instead of just one has to do with design details not covered here. As
the junctions are all in series, we can just think of them as a single junction.
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change it will be found in the right well. The horizontal axis of the plots in Fig. 2.2 is

the self flux of the qubit circuit loop, so measurement of magnetic field near the loop

yields a measurement of the qubit state. This strategy was used in Ref. [46].

This measurement technique has a major advantage. The left and right wells are

separated by a flux difference of nearly Φ0, which is a large enough flux to be detected

by a superconducting quantum interference device (SQUID) magnetometer with very

high signal to noise ratio. Therefore, the flux qubit state can be measured in a single

shot. Although single shot measurement was not achieved in the original work of Ref.

[46], it has become routine in subsequent works using SQUID based measurement.

SQUID readout has several disadvantages. Operation of a SQUID leads to gener-

ation of electrons excited into states above the superconducting gap. These excited

electrons can interact with the qubit mode, so they impose a decoherence channel.

Furthermore, this measurement strategy requires a dedicated SQUID for each qubit,

which complicates scaling to larger systems.

Phase qubit

Another double-well qubit, the “phase qubit” was introduced in 2002 [25]. The wave

functions of the phase qubit are so narrow in the flux basis that they would not

normally feel enough of the anharmonic shape of the potential wells to behave with

the non-linear character needed for a qubit. To recover the non-linearity, a bias

(current in the original work, but flux in later versions) introduces asymmetry in

the potential, making one of the wells very shallow, as shown in Fig 2.3 b. In this
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Figure 2.3: The phase qubit. a) The phase qubit is operated such that the wave
function sits in an asymmetric shallow well of the potential energy. Tunneling out of
this well is used as a mechanism for measurement. b) The ground (blue) and excited
(red) states in the shallow well are meta-stable. By momentarily lowering the height
of the potential barrier, the excited state tunnels out of the well, while the ground
state remains in the well. c) Once the excited state has tunneled, external bias is
used to bring the potential into a symmetric shape where the states are separated by
a large flux and can be measured with a SQUID.

arrangement, the wave function feels the asymmetric potential shape enough to form

unequally spaced levels. The two logical states of the qubit are the ground and first

excited states of this shallow well.

To measure the state, we selectively tunnel the the excited state into the right

potential well, as shown in Fig. 2.3. A short bias pulse is used to momentarily lower

the height of the barrier seen in Fig. 2.3 b. This allows the excited state to tunnel out

of the shallow left hand well and fall into the deep right hand well. The ground state

remains in the left hand well. The bias is then changed to bring the potential into

the symmetric shape shown in Fig 2.3 c where the two states can be distinguished by

their now different fluxes using a SQUID.

The benefit of this measurement strategy is that the states can be distinguished

with > 90% accuracy using a very fast measurement pulse. However, there are several
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drawbacks. First, the decay of the tunneled excited state to the bottom of the right

hand well is a dissipative process. Emission of energy during this process has been

observed to drive neighboring qubits into excited states, causing measurement cross-

talk errors. Second, the process of tunneling into the right hand well renders the

phase qubit no longer a qubit: it has undergone fundamentally dissipative evolution,

destroying its phase coherence, and it no longer resides in the shallow nonlinear well.

This means that a phase qubit measured in this way cannot be used to store and

process quantum data in a protocol requiring more than one measurement step, such

as the surface code. Note, however, that the phase qubit could still be used as a

measurement device by mapping the state of a data qubit onto the phase qubit and

then measuring the phase qubit. This idea is discussed further below. In any case,

once the phase qubit tunnels, it must be reset into the shallow well if it is to be used

again. This is complicated by the fact that we may not know whether or not the

phase qubit tunneled. Practical reset times for the phase qubit are in the tens to

hundreds of microseconds, which is much too long compared to the coherence times

of currently available devices.

2.2.3 Inductance measurement

Also in 2002 a superconducting qubit called the “quantronium” was introduced [47].

This device has characteristics in between those of the charge and flux qubits. A

circuit diagram of the quantronium is shown in Fig. 2.4. Focusing first on the part of

45



Figure 2.4: The quantronium qubit. The leftmost branch is essentially a charge qubit
with two junctions connecting the island to the reservoir. The extra capacitance in
the next branch reduces the quantronium’s sensitivity to change noise. The rightmost
three branches, shown in dotted line, are used for measurement. With the current
source off, the circuit mode is symmetric from top to bottom and does not couple into
the amplifier or large junction. Turning on the current bias breaks this symmetry,
and when the large junction switches to the voltage state that voltage is measured
by the amplifier.

the circuit drawn with solid line, the device is essentially a charge qubit: a supercon-

ducting island coupled to a charge reservoir through a junction, but here the single

junction of the charge qubit is replaced by a nominally symmetric pair of junctions.

This branch is shunted by a parallel capacitance. The additional capacitance causes

the qubit wave function to broaden in the charge basis while simultaneously narrow-

ing in the flux basis, which reduces sensitivity to charge noise.4 Note that due to the

symmetry of the circuit, the qubit mode has equal voltage on the top and bottom

(points A and B in Fig. 2.4).

The quantronium uses an integrated measurement circuit, as illustrated by dotted

part of Fig. 2.4. The measurement circuit consists of a large Josephson junction, a

current source, and a voltage amplifier connected in parallel with the qubit. In

4Reduced charge noise incurs increased flux noise, but with the parameters used at the time this
change lead to an over-all improvement in the device performance.
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normal operation the current bias current is set to zero, and in that case, because of

the symmetry of the circuit, the qubit oscillation mode couples neither to the large

junction nor to the amplifier. This prevents the readout circuit from loading the qubit

with a decoherence channel.

To measure the state of the quantronium, the bias current is pulsed on. The

current pulse divides between the branch with the small junctions and the branch

with the large junction. The pulse height is nearly the critical current of the large

junction. Depending on the state of the qubit, the inductance of the small junctions

will be slightly different, and additional current may flow into the large junction,

causing the total current to exceed the large junction’s critical current. This causes

the large junction to switch out of the superconducting state and produce a voltage

pulse which is detected by the amplifier. The important feature of this system is that

the readout circuitry does not couple to the qubit mode during normal operation.

Only when the current source is turned on does the qubit mode couple to the readout

circuit. This prevents the readout system from introducing unwanted decoherence

into the qubit while the measurement system is off.

Still, this system has disadvantages. Exceeding the large junction’s critical current

to produce a voltage signal generates electron excitations above the superconducting

gap, just like the SQUID used to measure flux qubits. Additionally, this system

requires a bias current line and voltage amplifier for every qubit, which would bring a

large and difficult to engineer overhead into design of a quantum computer. However,
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Figure 2.5: The transmon circuit and energy potential. a) The transmon is similar
to a parallel LC oscillator, but with a nonlinear inductor. The potential energy has
the shape of a cosine, and the large C, analogous to a large mass, prevents the wave
functions from tunneling between wells. b) The single junction is replaced by a loop
with a pair of junctions. External flux is used to modulate the effective critical current
of the loop, which changes the height of the potential energy. This in turn causes the
resonance frequency to shift.

as is the case with the charge qubit, the most important problem is that control of

the quantum state of quantronium qubits has not been demonstrated to be accurate

enough to effect the single and multiple qubit logic gates needed for a quantum

computer.

Note that this system does not directly measure charge or flux. The switching of

the large junction depends on the qubit state through the intrinsic inductance of the

small junctions, rather than on a electric or magnetic field produced by the circuit.
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2.3 The transmon qubit - RF measurement

As of this writing, the only superconducting qubit which has been demonstrated to

support high accuracy control in single and two qubit logic gates is the transmon

[21, 4]. The basic transmon circuit is shown in Fig. 2.5 a. It is essentially an LC

oscillator, but with a Josephson junction in place of a normal inductor to make it

non-linear. This is precisely the simple circuit we considered in Chapter 1 with the

Hamiltonian

H =
Q2

2C
− EJ cos (2πΦ/Φ0) , [Φ, Q] = i~. (2.1)

The first term is completely analogous to the kinetic energy of a mechanical system

T = p2/2m if we think of Q as the momentum and C as the mass. Similarly, we can

think of Φ as the position of the particle in a cosine shaped potential energy with

height EJ . Noting that in the mechanical case [x, p] = i~ completes the analogy. The

transmon is designed with a large C to make it insensitive to charge noise. This, being

equivalent to a large mass, prevents the wave function from tunneling between the

minima of the cosine potential. As a result, we can consider only a single minimum,

as indicated by the solid line part of the potential in Fig. 2.5 a.

In practice the single junction is replaced by a pair of junctions in a loop, as

illustrated in Fig. 2.5 b. This allows the resonance frequency of the transmon to

be modulated dynamically. The loop acts like a single junction, but with a critical

current Ic which depends on external flux threading the loop. Because the inductance

of a junction is related to the critical current by LJ = LJ0/
√

1− (I/Ic)
2, we can
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control the inductance, and therefore the resonance frequency ω0 of the circuit, via

the external flux. Another way to think about this is that the external flux changes

the effective EJ of the two-junction loop, thus changing the height of the cosine

potential, as illustrated in Fig. 2.5 b. This change in the shape of the potential causes

the energy difference between the states to change, thus changing their resonance

frequency.

The transmon is particularly difficult to measure. Like the flux qubit the wave

functions are broad in the charge basis, so the states cannot be distinguished via

charge detection. On the other hand, because of the symmetric shape of the poten-

tial the states all have the same mean flux. Therefore, charge-based and flux-based

measurements are both impossible.

2.3.1 Qubit as a photo-detector

One measurement strategy is to transfer the transmon state into a different kind of

qubit where charge or flux measurement is available. This idea, which is essentially

using a qubit as a microwave photon detector, is illustrated in Fig. 2.6. The measure-

ment process is turned on by dynamically tuning the transmon into resonance with

the detector, in this case a phase qubit. If there is a quantum of energy in the trans-

mon, then when the transmon comes on resonance with the phase qubit, the photon

begins to oscillate between the two qubits. Once the photon is completely swapped

into the phase qubit, the transmon is taken off resonance to stop the interaction. The
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Figure 2.6: Qubit measurement by swapping the excitation into an auxiliary circuit.
(a) The qubit starts in a superposition of the ground (blue) and excited (red) states.
(b) The qubit is brought on resonance with the detector. If it was in the excited state,
one quantum of energy is swapped into the detector, otherwise nothing happens. In
either case, the qubit is left in the ground state. (c) The qubit is brought off resonance
with the detector to turn the interaction off. The detector is now in one of two
measurably different states corresponding to the two possible qubit states.

phase qubit is then measured in the normal way. If the phase qubit is measured to be

in the excited state, then there must have been a photon collected from the transmon

and so the initial state of the transmon is inferred by the measured state of the phase

qubit.

This strategy does work, and in fact was used in the initial transmon experiments

at UCSB. However, it inherits all of the problems already mentioned with phase qubit

measurement, most importantly the long dead time needed to reset the phase qubit.

2.3.2 Energy measurement with travelling waves

We consider briefly the notion of directly measuring the qubit energy, as it will shed

light on the subsequent discussion. Suppose we allow the qubit energy to leak out from

the qubit into an amplifier as a travelling wave, using a circuit as shown in Fig. 2.7 a.

The qubit state would then be determined by measuring the amplitude of the wave

after the amplifier by conventional means. Crucially, many qubits could be attached
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in parallel to the same transmission line and amplifier with the various output signals

discriminated via frequency multiplexing. The problem with this solution is that the

signal to noise ratio is fundamentally limited to near unity. The theoretical limit on

the input referred noise power of a phase preserving linear amplifier is PN = (1/2)~ωB

where B is the amplifier bandwidth [11].5 For a measurement of duration T , the

collected noise energy would be EN = PNT = (1/2)~ωBT . To measure a pulse of

length T the amplifier bandwidth must satisfy B ' 1/T , so EN ' (1/2)~ω. This is

already half as large as the maximum energy that could be collected from the qubit

in a system with perfect efficiency. Therefore, the signal to noise ratio fundamentally

cannot exceed 2, which is too low. The intrinsic suitability of this circuit for scaling

to larger numbers of qubits suggests we find a way to fix the signal to noise ratio

problem.

2.3.3 Dispersive measurement

As we can measure neither the charge, flux, nor energy, we need to find another

parameter of the qubit that differs between the two states. Because the qubit is

non-linear its resonance characteristics depend on its energy state. This suggests

that a spectroscopic measurement might be possible. Think of the qubit as a simple

harmonic oscillator, but whose resonance frequency depends on whether it is in |0〉

or |1〉. As a probe signal applied to the circuit is swept in frequency, the phase

shift acquired by that signal undergoes a sharp change across the resonance. As this

5We consider linear amplifiers because we want frequency multiplexing.
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Figure 2.7: Measurement based on traveling waves. a) The qubit state is determined
by the presence or absence of an outgoing wave. As the maximum measured energy
is just the single photon in the qubit, the signal to noise ratio is too low. b,c) An
externally supplied voltage is used to raise the signal to noise ratio. The wave acquires
a qubit state dependent phase shift as it scatters from the shunt line containing the
qubit. The blue and red curves indicate the phase response for the qubit in |0〉 and
|1〉, respectively. The gray curve indicates the difference in these phases. The center
frequencies of the qubit in the ground and excited states are indicated by the blue
and red arrows, and the frequency yielding the maximum phase signal is indicated by
the black arrow. d,e) A filter placed between the qubit and external resistance could
raise the limit on qubit lifetime, but this leads to a smaller detectable phase shift.
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resonance frequency depends on the qubit state, we can use the position of the phase

shift to measure the qubit. A circuit diagram suitable for this measurement is shown

in Fig. 2.7 b. The probe signal is injected into the left side of the transmission line.

As it travels past the qubit and drives the qubit resonance, it picks up a phase shift

which depends on the qubit state. The phase responses for the two states are plotted

in Fig. 2.7 c. By probing at a frequency between the two possible qubit resonances,

the phase shift difference is maximized and the qubit state could be determined.

This strategy solves the signal to noise ratio problem because the energy of the

injected wave can be arbitrarily large. However, we have a coherence problem because

the resistance in the external circuitry loads the qubit. In fact, the qubit lifetime

imposed by this external circuitry is equal to the time it takes for the qubit to respond

to the probe pulse and react with a phase shift. This means that the qubit life time

during the measurement cannot significantly exceed the measurement time.

We could try to isolate the qubit from the damping of the external circuit with

a filter, as illustrated in Fig. 2.7 d. The filter decouples the qubit circuit from the

external circuit over a frequency range including the qubit resonance, so the qubit is

not damped. However, the filter also decouples our probe signal from the qubit in

that frequency band, so we would have to probe outside the band blocked by the filter.

Far from the qubit resonance, the phase acquired by the probe signal is insensitive to

the qubit state, as shown in Fig. 2.7 e, so the states are not well discriminated.

To isolate the qubit from damping while still allowing the probe signal to acquire
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Figure 2.8: Schematic for measurement with an auxiliary resonator. a) The qubit is
protected from resistance in the external circuitry by a detuned resonator which acts
as a short at the qubit frequency. b) The qubit states cause the resonator frequency
to shift, leading to large measureable phase shift at the resonator frequency.

a state dependent phase shift, we replace the filter in Fig 2.7 d with an auxiliary

harmonic resonator, as shown in Fig. 2.8 a. The resonator frequency ωr is detuned

from the qubit by a frequency ∆. Therefore, at the qubit frequency the resonator is

a short to ground and prevents the qubit from feeling the dissipation of the external

circuitry. This blocks radiation from the qubit, and solves the coherence problem.

As the qubit has different impedance in its two states, the loading it imparts on

the resonator is state dependent, so the resonator frequency depends on the qubit

state. We characterize the resonator frequency shift by a parameter χ, defined by

2χ = ωr,|0〉 − ωr,|1〉, as shown in Fig. 2.8 b. We infer the qubit state by probing the

system in between the two resonator frequencies and measuring the phase.

The physics of the qubit state-dependent resonator frequency shift was first demon-
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strated in 2004 and 2005 at Yale with charge qubits [42, 49, 48], and the shift was first

used to measure qubit states in those experiments. This strategy has been named

“dispersive measurement” or “dispersive readout” because it depends on the qubit

state dependent dispersion of the probe signal. Using bifurcation amplifiers, disper-

sive measurement was shown in 2009 to yield measurement with accuracy up to 94%

[24], and later experiments with transmon qubits using linear Josephson parametric

amplifiers achieved accuracy up to about 94% [19].

The dispersive measurement strategy does have an important limitation. We

said above that the resonator blocks the qubit from feeling the dissipation of the

external circuitry, but this is true only up to a point. Even far off resonance, the

resonator is not a perfect short, so the qubit is still damped to some degree. This

effect is quantified by a relation between four parameters. First, we have the limit on

qubit lifetime T1 imposed by the measurement circuit. Second, we have the resonator-

transmission line coupling strength characterized by the inverse ring-up time κr. This

is set by Cκ, as shown in Fig. 2.8. Next is the the resonator-qubit coupling strength g,

which is set by Cg, as shown in Fig. 2.8. Finally, we have the qubit-resonator detuning

∆. These parameters are related by [7]

κrT1 .

(
∆

g

)2

. (2.2)

This formula expresses a tension between fast response time of the resonator κr

and long coherence time of the qubit T1. For a given ∆ and g, speeding up the

measurement with faster κr leads to lower T1 of the qubit. As shown in Chapter 3,
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to get a large measurable phase shift, there is an additional constraint

κr ≈ χ =
g2

∆
(2.3)

which comes from the fact that, because the resonator is attached in parallel with

the transmission line, the phase response measured in the circuit shown in Fig. 2.8 a

is not actually the pure arc tangent shown in Fig. 2.8 b. Combining equations (2.2)

and (2.3) yields

κ2
rT1 . ∆. (2.4)

Suppose we have a qubit with an intrinsic energy decay time of T1. For 99% accurate

measurement we need the entire measurement procedure to be shorter than T1/100.

Taking the entire measurement sequence to require a time of 10κ−1
r , this means we

need κ−1
r ≥ T1/1000. With currently available transmons at T1 ≈ 20 − 40µs, this

gives κ−1
r ∼ 30 ns and therefore requires ∆ > κ2

rT1 = 30 GHz. This large of a qubit-

resonator detuning is completely impractical. With the qubit at ∼ 6 GHz, such a

large ∆ would put the resonator at such a high frequency that practical microwave

engineering becomes much more difficult. For example, parasitic resonances on the

micro-fabricated qubit chips become a serious problem when the signal wavelength

becomes smaller than the size of the chip. A frequency of 30 GHz corresponds to a

wavelength of 1 cm in vacuum (substantially less in a dielectric substrate) which is

on the order of practical chip sizes. Another strategy is needed.
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Figure 2.9: A filter used to increase the κrT1 product. a) The filter is placed on the
output of the resonator to prevent radiation at the qubit frequency from leaving the
system. b) The filter was implemented as a symmetric pair of λ/4 stubs to ground. c)
Micrograph of the Yale device. The filter is seen on the right side as two meandering
co-planar wave guide resonators. d) Transmission through the system. Note the
notch just above 6 GHz, which protects the qubit. The large increase in transmission
at 8 GHz is the resonance frequency of the resonator.
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2.3.4 Filters

In 2010, researchers at Yale introduced the idea of on-chip filters to further protect the

qubit from damping induced by environment [40]. The circuit is shown in Fig. 2.9 a.

In this system the resonator is constructed from a λ/2 piece of co-planar wave guide

inserted in series with the drive line. The qubit is connected in parallel with the

resonator, and the filter is placed on the output of the resonator. This filter forms a

notch at which energy cannot leave the resonator. By placing this notch at the qubit

frequency, the qubit is protected from emitting energy. In Ref. [40], it was shown

that for a given ∆, κr, and g, the filter increased the qubit T1 above the limit from

Eq. (2.2). However, that work did not discuss the all important speed and accuracy

of the measurement.

Introduction of on-chip filters was a big step forward for measurement of super-

conducting qubits, because it opened the door for high speed and high accuracy

measurement in transmons. However, the system used in Ref. [40] is not really suit-

able for experiments with multiple qubits. Because the resonator is in series with the

drive line, there is no obvious way to include more than one resonator. This means

that all qubits must be connected to the same resonator. In fact, experiments at

Yale did use multiple qubits connected to a single resonator (although with no filter),

and actually relied on this as the means by which they coupled the qubits together.

However, this complicates measurement in a larger system. With N qubits connected

to one resonator, unique identification of all of the possible qubit states would require
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us to distinguish 2N different dispersed phases. This is a really hard problem and has

never been demonstrated to work. Furthermore, the notch filter itself is not easily

adapted to a multi-qubit system. The notch protects only one qubit, and is incom-

patible with dynamic frequency tuning of the qubits which is an essential ingredient

for high accuracy logic gates [4].

This leaves us with two obvious next steps. First, we must find a filter architecture

which is compatible with a multi qubit system. Second, we must study the speed and

accuracy of dispersive measurement in the filtered system. Those tasks were the main

objectives of the work in this thesis.
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Chapter 3

Dispersive Measurement

3.1 Introduction

In the previous chapter we found, through historical survey and qualitative discussion,

that dispersive measurement allows multiplexed qubit measurement while partially

preserving the qubit coherence. In this chapter, we analyze dispersive measurement

in full quantitative detail.

In dispersive measurement, where a qubit is coupled off resonance to a linear res-

onator, the resonator’s frequency depends on the qubit’s quantum state. Photons

populating the resonator acquire a phase shift which depends on the resonator’s fre-

quency and therefore on the qubit state. In other words, the photons are “dispersed”

in a way which depends on the qubit state. Therefore, the qubit state is measured by

probing the resonator and measuring the phase of the outgoing photons. The analysis

comes naturally in two steps. First, we develop the Hamiltonian for a qubit coupled
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to a resonator with large qubit-resonator detuning. From the Hamiltonian we find an

equation expressing the resonator frequency shift in terms of other parameters in the

system, such as the qubit-resonator coupling strength and detuning. Second, we an-

alyze the classical problem of measuring the resonator’s resonance frequency through

microwave scattering. Combined, these analyses show how the scattered microwave

signal carries the information of the qubit state. We then describe the process by

which the qubit state collapses as information is carried away by the dispersed pho-

tons. At the end, we present additional details of the dispersive measurement circuit

which come into play in a practical lab setting where amplifier saturation is an im-

portant limitation.

3.2 Dispersive Hamiltonian

In this section we analyze the Hamiltonian of a qubit coupled to a linear resonator.

We work in the limit where the difference ∆ ≡ ωq−ωr between the qubit and resonator

frequencies is large compared to the strength of the qubit-resonator coupling g, as

this is the limit in which the resonator protects the qubit T1.

A detailed derivation of the Hamiltonian for a resonant circuit, starting from first

principles, is given in Appendix D. There we derive the Hamiltonian Hr for a harmonic

oscillator, and Hq for a qubit, finding

Hr/~ = ωra
†a (3.1)

Hq/~ = −ωq(σz/2). (3.2)

62



In these equations, ωr is the resonance frequency of the resonator and ωq is the

|0〉 → |1〉 transition frequency of the qubit. The operators a† and a are the normal

raising and lowering operators for the harmonic oscillator, and σz is the Pauli matrix

represented as

σz =

(
1 0
0 −1

)
(3.3)

where the qubit basis states are ordered {|0〉, |1〉}. In Appendix D we also derive

the interaction Hamiltonian HI which comes from the coupling between two circuits,

finding

HI/~ = gσy(−i)(a− a†). (3.4)

where g is the coupling strength in dimensions of frequency. We expand σy in terms

of spin raising and lowering operators,

σ+ =

(
0 0
1 0

)
σ− =

(
0 1
0 0

)
(3.5)

finding

σy = i (σ+ − σ−) . (3.6)

Using this form, we find

HI/~ = g
(
σ+a+ σ−a

† − σ+a
† − σ−a

)
. (3.7)

The second and third terms in parentheses do not conserve excitation number and

are discarded.1 We are left with

HI/~ = g
(
σ+a+ σ−a

†) . (3.8)

1Discarding these terms is rigorously justified in the rotating frame where they acquire time
evolution which is fast compared to the other terms.
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Combining the three parts of the Hamiltonian, we find the Hamiltonian of the com-

plete system

H/~ = (Hr +Hq +HI) /~ = ωr a
†a− ωq

2
σz + g

(
σ+a+ σ−a

†) . (3.9)

The interaction can be simplified with a change of basis which eliminates the

interaction to first order in g/∆. We rotate the Hamiltonian by the unitary operator

U = exp [λT ] (3.10)

where λ ≡ −g/∆ and T ≡ σ+a − σ−a
†. In the dispersive measurement system,

|∆| � g, so λ is a small dimensionless parameter. As such, we use it as an expan-

sion parameter. Using the transformation operator U and a series expansion from

Appendix A we can write

U †HU = e−λTHeλT (3.11)

= H − λ [T,H] +
λ2

2
[T, [T,H]] + · · · , (3.12)

which is a power series in λ. We compute the relevant commutators in Eq. (3.12)

with standard methods (see Appendix A for useful tricks). Some useful intermediate

steps are

[T, n] = σ+a+ σ−a
† (3.13)

[T, σz] = 2
(
σ+a+ σ−a

†) (3.14)[
T, σ−a

† + σ+a
]

= 2 (σ+σ− − σzn) . (3.15)
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Evaluating Eq. (3.12) to the second order in λ gives

U †HU

~
=
Hq

~
+
Hr

~
− g2

∆
σzn (3.16)

which can be interpreted as

HI/~ −→ −
g2

∆
σzn = χσzn (3.17)

where χ ≡ −g2/∆ is the so-called “dispersive shift”. Note that if ωr > ωq, we have

∆ < 0, and therefore χ > 0. If we denote the resonator’s frequency when the qubit

is in |0〉(|1〉) as ωr,|0〉(ωr,|1〉), then, in this case, we have ωr,|1〉 < ωr,|0〉.

We interpret the dispersive shift χ in two different ways. Writing the system

Hamiltonian as

H/~ = (ωr + χσz)n−
ωq
2
σz, (3.18)

the dispersive shift appears as a qubit state dependent shift of the resonator fre-

quency. The difference in resonator frequency for the two qubit states is 2χ. However,

regrouping the terms as

H/~ = ωrn−
ωq − 2χn

2
σz (3.19)

the dispersive shift appears as a resonator photon number dependent shift of the

qubit frequency. In the latter case we refer to the shift as the “ac Stark effect”

[49, 42]. Note that increasing n lowers the qubit frequency when χ > 0.

In the preceding analysis we assumed that the qubit had only two levels. In

practice, superconducting qubits have additional levels. Reference [21] finds that
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taking the third level of the qubit into account modifies the expression for χ, yielding

χ = −g
2

∆

1

1 + ∆/η
(3.20)

where η ≡ ω21 − ω10 is the anharmonicity of the qubit (η < 0 for a transmon). In

the practical limit of |∆| � |η|, we find

χ = − g
2

∆2
η. (3.21)

Note that χ→ 0 as η → 0, as expected for coupling of two harmonic oscillators.

3.3 Scattering

Now that we have shown that the qubit state induces a frequency shift on the res-

onator, it remains to show how we measure that frequency shift. In this part of the

calculation we omit the qubit, taking its effect on the system into account through the

resonator frequency shift. Therefore, this calculation is classical, with the quantum

effect of the qubit encapsulated in the parameter χ calculated in the previous section.

We consider a resonator connected in parallel to a transmission line, as shown in

Fig. 3.1. A resonator with impedance Zr and frequency ωr is connected in parallel

through a capacitor Cκ to a transmission line. We model the resonator as a parallel

LC circuit with resonance frequency ωLC = 1/
√
LC, internal quality factor Qi and

characteristic impedance ZLC =
√
L/C. The shunt impedance is Zin = Zκ+Zr where

Zκ = 1/iωCκ is the impedance of the coupling capacitor, and Zr = ZLCQi/(1+iQi(x−

1/x)) with x ≡ ω/ωLC is the impedance of the resonator. The shunt circuit interrupts
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Resonator

Figure 3.1: A transmission line shunted by a resonant circuit. In incoming voltage
wave is partially reflected and partially transmitted by the impedance mismatch at
the point where the resonator is coupled to the transmission line.

the transmission line, creating a scattering site for traveling microwave signals in the

line. A voltage wave injected into the input port with amplitude Vin scatters from the

shunt circuit. Part of the wave reflects with amplitude VinS11 and part is transmitted

with amplitude Vout = VinS21. In the following analysis, we show how, by measuring

the amplitude and phase of the scattered signal, we can infer the frequency of the

resonator, and thus the state of the qubit.

The scattering parameters Sij for a transmission line interrupted by a shunt circuit

with admittance Y = 1/Zin, as shown in Fig. 3.1, are [37]

S11 =
−Ȳ

2 + Ȳ
(3.22)

S21 =
2

2 + Ȳ
, (3.23)

where Ȳ ≡ Z0Y and Z0 is the characteristic impedance of the transmission line.

From these equations we can solve for S11 in terms of S21,

S11 = S21 − 1 . (3.24)
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The qubit state measurement is based on the fact that the output voltage wave

amplitude depends on the properties, namely Q and ωr, of the resonator. To describe

this we must compute S21 in terms of probe frequency and the resonator parameters.

Using Eq. (3.23) it can be shown that

S21 =
Smin + 2iQlδy

1 + 2iQlδy
(3.25)

ReS21 =
Smin + (2Qlδy)2

1 + (2Qlδy)2
(3.26)

ImS21 =
2Qlδy(1− Smin)

1 + (2Qlδy)2
, (3.27)

where Q−1
l = Q−1

i +Q−1
c , Qc is the coupled Q of the resonator, Smin = Qc/(Qc +Qi),

and δy ≡ (ω − ωr)/ωr where ωr is the resonance frequency [26].2 A result that will

be useful later is that the imaginary part of S21 is extremal for δy = ±1/2Ql.

The inverse transmission amplitude is a very useful quantity

S−1
21 = 1 + eiφ

Qi

Qc

1

1 + 2iQiδy
(3.28)

This equation comes from inverting the usual expression for S21 and adding a phase

factor in the second term to account for possible impedance mismatches between the

input and output [27]. The diameter of the circle is

D = 1− Smin. (3.29)

Another useful relation is the detuning as a function of the measure transmission

2The frequency ωr is near to the resonator bare resonance but slightly detuned due to the coupling
capacitor and line impedance.
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Figure 3.2: Scattering diagram for shunt resonator

amplitude

δx =
1

2iQi

[
eiφ

Qi

Qc

(
S−1

21 − 1
)−1 − 1

]
. (3.30)

3.4 Qubit measurement

In this section, we explain the link between the quantum mechanical effect in which

the qubit state shifts the resonator frequency, and the classical scattering physics

through which we infer the resonator’s frequency. The crucial observation is that,

in the dispersive limit, the interaction between the qubit and resonator commutes

with σz. This guarantees that the interaction does not change the qubit’s projection

along the z-axis of the Bloch sphere.3 Therefore, we can assume that, for a given

3See the section on measurement induced dephasing for a discussion of how the measurement
does affect the qubit state.
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qubit state, we can ignore the qubit and consider just the resonator at the frequency

corresponding to that state. Because the resonator is linear, the problem becomes

classical and we are left to study how best to distinguish the two possible resonator

frequencies.

Let the two resonator frequencies corresponding to the qubit |0〉 and |1〉 states

be denoted ωr,|0〉 and ωr,|1〉. We calculated previously that these frequencies differ by

ωr,|0〉−ωr,|1〉 = 2χ. If we probe the system at ωprobe = (ωr,|0〉+ωr,|1〉)/2, ie. between the

two possible frequencies, the two possible values of S21 are given by Eq. (3.25) with

δy = ±χ. In order to get the maximum visibility in the dispersed probe signal, we

must choose parameters so that S21(±χ) are at diametrically opposed points on the

circle in Fig. 3.2. The top and bottom points (ie. those for which the imaginary part

are extremized) are the diametrically opposed points requiring the smallest frequency

separation. As noted previously, these points occur for δy = ±1/2Ql so the criterion

for maximum visibility is

χ =
ωr
2Ql

=
κr
2
. (3.31)

3.5 Fresnel lollipops - separation error

The phase and amplitude of the scattered signal are extracted using traditional signal

processing techniques. The end result is a single value in the two dimensional IQ

plane. In the absence of noise, the two possible qubit states would correspond to
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two individual IQ points as indicated by the black dots in Fig. 3.3. In this case,

any nonzero separation between the points would allow distinction between the qubit

states. However, in the real system, both technical and quantum noise add statistical

fluctuations to the extracted IQ points. The “quantum noise” is just the intrinsic

width of the wave functions of the coherent microwave pulse, which carries a noise

power of ~ω/2 per unit bandwidth. A minimum additional ~ω/2 of quantum noise is

added by a phase preserving parametric amplifier [11]. Technical noise may be added

by following amplifiers, such as a HEMT. Signal loss prior to the dominant amplifier

stages also appears as effective added noise.

The time domain noise leads to noise in the demodulated IQ points. Instead of

single points corresponding to the two qubit states, we get two-dimensional Gaussian

statistical distributions, as shown by the blue and red clouds in Fig. 3.3 (see Ref.

[41] and Appendix E). These clouds have been called “Fresnel lollipops”. Projecting

the lollipops onto a line separating their centers produces a pair of one dimensional

Gaussian curves. Choosing the center of the curves as the discrimination between |0〉

and |1〉, we can see that, because of the finite width σ of the curves, there will always

be a nonzero probability of misidentifying the qubit state. We call this error, due to

the finite separation of the curves, the “separation error”, denoted εsep. The separation

error is computed by integrating the weight of one of the Gaussian distributions which

is on the “wrong” side of the discrimination point,
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Figure 3.3: IQ clouds for the qubit states measured in the presence of noise. The
clouds for |0〉 (blue) and |1〉 (red) are centered on the diametrically opposite points
of the S21 circle. The black dots represent the points which would be found in the
absence of all noise sources. The Gaussian curves show projections of the clouds onto
the line connecting their centers.
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εsep =
1√

2πσ2

∫ ∞
x=(x0+x1)/2

e
−(x−x1)

2

2σ2 dx

=
1

2
erfc

[
|x0 − x1|
2
√

2σ2

]
, (3.32)

where the erfc function is defined as

erfc(z) ≡ 1− 2√
π

∫ z

0

e−x
2

dx. (3.33)

Defining the signal to noise ratio (SNR) of the measurement as

SNR ≡ (x0 − x1)2

2σ2
, (3.34)

we relate εsep to the SNR,

εsep =
1

2
erfc

[√
SNR

2

]
. (3.35)

3.6 Measurement induced dephasing

As photons enter the resonator and acquire a qubit state dependent phase shift, they

carry some information on the qubit state. By transferring quantum information from

the qubit to the photons, the measurement process partially collapses the qubit state

[30]. In dispersive measurement, the photon’s phase shift carries information about

the qubit’s projection along the z-axis of the Bloch sphere. Therefore, the partial

collapse induced by the scattered photons can be understood as qubit dephasing,
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similar in principle to the example of the phonon-induced decoherence of the transistor

in Chapter 1. The dephasing is only partial because the state of the qubit cannot

be unambiguously determined from a single scattered photon, as will become clear

shortly.

In the following discussion, we derive a relation between the measurement visibil-

ity and the qubit dephasing induced by the measurement process. We do this in two

ways. First, we use a general “information theory” approach. We work from math-

ematical constraints on the form of the quantum density matrix with no reference

to a particular qubit system or measurement strategy. This approach is the most

general, making no connection to the actual mechanism by which the qubit dephases.

Second, we work from explicit form of the dispersive interaction. We compute the

entangled qubit-photon state and understand the qubit dephasing as a consequence

of the entanglement. This approach offers a simple interpretation in which the qubit

dephasing comes from the random ac Stark shift imposed by the uncertainty in the

the number of photons in the resonator.

3.6.1 Information theoretic approach

The phase coherence of a state of a 2-level system is described by the off-diagonal

terms in the density matrix, ρ10 and ρ01. The diagonal terms ρ00 and ρ11 are just

the probabilities P (0) and P (1) that the qubit is in |0〉 or |1〉, respectively. From the

requirement that the density matrix must be positive-semidefinite,4 it can be shown

4This guarantees positive eigenvalues
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that

|ρ10| ≤
√
ρ00ρ11 =

√
P (0)P (1). (3.36)

Suppose we measure the qubit along the z-axis with a meter which yields a single

real number with value x. Equation (3.36) yields a new inequality conditional on the

measured value x,

|ρ10| (x) ≤
√
P (0|x)P (1|x) ≡ I(x). (3.37)

To quantify the amount of information about the qubit state we have learned from

the measurement, we consider the probability, given the result x, that the qubit is in

|0〉. Using Bayes’s theorem, we can write

P (0|x) =
P (x|0)P (0)

P (x)
. (3.38)

In English, Eq. (3.38) reads “The probability that the qubit is in |0〉 given that we

measured x, is equal to the probability that we would measure x if the qubit were in

|0〉, times the probability that the qubit is in |0〉, divided by the probability that we

would measure x.” We write a similar equation for P (1|x),

P (1|x) =
P (x|1)P (1)

P (x)
. (3.39)

Suppose we are given a qubit in the state (|0〉+ |1〉) /
√

2. Then P (0) = P (1) = 1/2.

Combining these results we can rewrite right right hand side of Eq. 3.37 as

I(x) ≡

√
P (x|0)P (x|1)P (0)P (1)

P (x)2
=

√
P (x|0)P (x|1)

2P (x)
. (3.40)

The coherence of the qubit is limited by the total information contained in the

scattered photon. To recover this information, we must average over all possible
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detector values x,

|ρ10| ≤
∫ ∞
x=−∞

I(x)P (x) dx =

∫ ∞
x=−∞

1

2

√
P (x|0)P (x|1) dx. (3.41)

Suppose he measured voltages are Gaussian distributed, with the |0〉 and |1〉

having different means,

P (x|0) =
1√

2πσ2
exp

[
−(x− x0)2

2σ2

]
P (x|1) =

1√
2πσ2

exp

[
−(x− x1)2

2σ2

]
. (3.42)

Plugging these expressions into Eq. (3.41) yields

|ρ10| ≤
∫ ∞
x=−∞

1

2

1√
2πσ2

exp

[
−(x− x0)2 − (x− x1)2

4σ2

]
dx

≤ 1

2
exp

[
−(x0 − x1)2

8σ2

]
(3.43)

≤ 1

2
exp

[
−SNR

4

]
. (3.44)

In the last line we used Eq. (3.34) for the definition of SNR. Equation (3.44) provides

the quantitative link between the measurement SNR and qubit phase decoherence.

As scattered photons are collected, the separation x0 − x1 increases and the upper

bound on ρ10 decreases.5 In other words, increased visibility between the qubit states

decreases phase coherence.

5Or, if the data is normalized to a constant value of x0−x1, the widths σ of the Gaussian curves
decreases.
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3.6.2 Physical mechanism approach

In this section, we calculate the photon dephasing by explicitly accounting for the

physical interaction between the qubit and measurement photons. We start from the

qubit-resonator interaction Hamiltonian

HI/~ = −χnσz. (3.45)

Consider an initial quantum state

|Ψi〉 = |α〉(1/
√

2) (|g〉+ |e〉) . (3.46)

While the resonator is in the ground state |0〉, the interaction Hamiltonian is identi-

cally zero. When we turn on the probe signal, the resonator photon number increases

and the resonator emits travelling waves with a phase φ determined by Eq. (3.25) and

the the qubit state. Assuming we probe at a frequency in between the two possible

resonator frequencies, the phases for the two qubit states have the same magnitude

and opposite sign. Therefore, the output state is

|Ψf〉 =
1√
2

(
|αeiφ〉|g〉+ |αe−iφ〉|e〉

)
. (3.47)
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The distance between the two dispersed photon states is

δx = 〈x〉α exp(iφ) − 〈x〉α exp(−iφ) (3.48)

=
1

2
〈a+ a†〉α exp(iφ) −

1

2
〈a+ a†〉α exp(−iφ) (3.49)

= 2|α| sin (φ) . (3.50)

From Appendix B, the variance along any axis through the center of a coherent state

is

σ2 = 1/4. (3.51)

Therefore, the signal to noise ratio for the two dispersed photon states is

SNR ≡ δx2

2σ2
(3.52)

=
(2|α| sin (φ))2

1/2
(3.53)

= 8 |α|2 sin (φ)2 . (3.54)

Qubit dephasing - full calculation

Now we would like to look at the phase coherence of the qubit. To do this, we start

with the density matrix for the entangled state |Ψf〉, and then find the reduced density

matrix of the qubit with the resonator removed. The part of the density describing
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the qubit phase coherence is

ρ01 =
1

2

(
|αeiφ〉〈αe−iφ| ⊗ |g〉〈e|

)
(3.55)

=
1

2
exp

[
− |α|2

]∑
n,m

(
αeiφ

)n
√
n!

(
α∗eiφ

)m
√
m!

|n〉〈m| ⊗ |g〉〈e|. (3.56)

To find the reduced density matrix of the qubit, we trace over the resonator states

Trresρ10 =
1

2
exp

[
− |α|2

] ∑
n,m,k

(
αeiφ

)n
√
n!

(
α∗eiφ

)m
√
m!

〈k|n〉〈m|k〉 ⊗ |g〉〈e| (3.57)

=
1

2
exp

[
− |α|2

]
exp

[
|α|2 e2iφ

]
|g〉〈e| (3.58)

=
1

2
exp

[
− |α|2

]
exp

[
|α|2 (cos (2φ) + i sin (2φ))

]
|g〉〈e|. (3.59)

Note that the effect of the trace is to select only those terms for which the resonator

“has a definite photon number”. To find the qubit phase coherence, we look for the

magnitude of the off diagonal element

|Trresρ10| =
1

2
exp

[
− |α|2

]
exp

[
|α|2 cos (2φ)

]
(3.60)

=
1

2
exp

[
− |α|2 (1− cos (2φ))

]
(3.61)

=
1

2
exp

[
−SNR

4

]
(3.62)

which is exactly the same expression we found in Eq. (3.44) using the information

theory approach. Therefore, we have shown that the qubit dephasing incurred by

dispersive measurement is equivalently understood as either an effect of the informa-
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tion extracted from the system, or as an effect of the entanglement between the qubit

and the photon.

Note that we have demonstrated that decoherence is really just an a result of

considering a sub-part of an entangled quantum system.

Qubit dephasing - simple calculation

The trace over resonator states in the full calculation is just a mathematically rigorous

way to select components of the state with definite photon number. This suggests a

simpler approach to the problem: we could just do a weighted average of the qubit

density matrix over the resonator photon number states. From this point of view,

the qubit dephasing comes simply from the random ac Stark shift imposed by the

“uncertainty” in the resonator photon number. Here is the calculation:

ρ01 =
∑
n

ρ01(n)P (n) (3.63)

=
∑
n

1

2
ei2nφe−n̄

n̄n

n!
(3.64)

=
1

2
e−n̄

∑
n

(
ei2φn̄

)n
n!

(3.65)

=
1

2
e−n̄ exp

[
n̄ei2φ

]
(3.66)

=
1

2
e−|α|

2

exp
[
|α|2ei2φ

]
(3.67)

=
1

2
exp

[
−|α|2

(
1− ei2φ

)]
. (3.68)

80



Taking the aboslute value leaves

|ρ01| =
1

2
exp

[
−|α|2 (1− cos (2φ))

]
(3.69)

=
1

2
exp

[
−SNR

4

]
(3.70)

which matches the full calculation.

3.6.3 Amplifier

In this section we study the effect of amplifying the dispersed photons. Before inves-

tigating the effect of the amplifier on the photon signal to noise ratio, we explicitly

show that the amplifier does not affect the qubit state. Consider an arbitrary state

|Ψ〉 for the qubit-resonator system

|Ψ〉 =
∑
αβ

cαβ|α〉 ⊗ |β〉. (3.71)

The density matrix for this state is

ρ =
∑
αβγδ

cαβc
∗
γδ|α〉〈γ| ⊗ |β〉〈δ|. (3.72)

Applying an arbitrary transformation U to the resonator changes the density matrix

to

ρ =
∑
αβγδ

cαβc
∗
γδU |α〉〈γ|U † ⊗ |β〉〈δ|. (3.73)
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Now we compute the reduced density matrix of the qubit by tracing over the resonator

states

ρqubit = Trresρ (3.74)

=
∑
n,αβγδ

cαβc
∗
γδ〈n|U |α〉〈γ|U †|n〉 ⊗ |β〉〈δ| (3.75)

=
∑
n,αβγδ

cαβc
∗
γδ〈γ|U †|n〉〈n|U |α〉 ⊗ |β〉〈δ| (3.76)

=
∑
αβγδ

cαβc
∗
γδ〈γ|U †U |α〉 ⊗ |β〉〈δ| (3.77)

=
∑
αβγδ

cαβc
∗
γδ〈γ|α〉 ⊗ |β〉〈δ| (3.78)

=
∑
αβδ

cαβc
∗
αδ|β〉〈δ|. (3.79)

The effect of U has disappeared, indicating that the reduced density matrix for the

qubit is unaffected by U . Therefore, the qubit state is unchanged by any subsequent

actions on the photon, such as the action of an amplifier.

Phase sensitive amplifier

In this subsection, we calculate the signal to noise ratio of dispersed coherent states

once they have been amplified by an ideal phase sensitive amplifier. A phase sensitive

amplifier amplifies only one of the sin and cos quadratures of a signal. Representing

the action of the amplifier by an operator S, the output for a single coherent state

input is S|α〉. For the phase sensitive amplifier, the operator S is the squeezing
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operator

S(z) = exp

[
1

2

(
z∗a2 − za†2

)]
z = reiθ. (3.80)

In the case θ = 0, S transforms the annihilation operator in a simple way:

S(r)aS(r)† = µa+ νa†, µ = cosh(r) ν = sinh(r). (3.81)

Note that S(r)† = S(−r), so

S(r)†aS(r) = S(−r)aS(−r)† = µa− νa†. (3.82)

For simplicity, we assume in the following computations that φ = ±π/2, so the two

dispersed photon states are |α〉 and | − α〉. We compute the expectation value of x

for S|α〉:

〈Sα|x|Sα〉 =
1

2
〈α|S†

(
a+ a†

)
S|α〉 (3.83)

=
1

2
〈α|µa− νa† + µa† − νa|α〉 (3.84)

= α(µ− ν). (3.85)

Note that for r � 0, µ − ν is a large number, indicating that the amplifier provides

gain. The signal is the distance between the two dispersed states,

δx = 2〈x〉 = 2α(µ− ν). (3.86)
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Next, we compute the expectation value of x2:

〈Sα|x2|Sα〉 =
1

4
〈α|S†

[(
a+ a†

)2
]
S|α〉 (3.87)

=
1

4
〈α|
(
µa− νa† + µa† − νa

)2 |α〉 (3.88)

=
1

4
(µ− ν)2 + |α|2 (µ− ν)2 . (3.89)

The noise for an amplified state S|α〉 is therefore

σ2 ≡ 〈(x− 〈x〉)2〉 (3.90)

= 〈x2〉 − 〈x〉2 (3.91)

=
1

4
(µ− ν)2. (3.92)

Finally, the signal to noise ratio is

SNR =
δx2

2σ2
(3.93)

=
4α2(µ− ν)2

21
4
(µ− ν)2

(3.94)

= 8α2. (3.95)

This is the same as the SNR we found before the amplification, as given by Eq. (3.54)

in the case φ = π/2. Therefore, the ideal phase sensitive amplifier does not change

the SNR.
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Phase insensitive amplifier

Phase preserving amplifiers (also called phase-insensitive amplifiers) are amplifiers

which, like a traditional electronic amplifiers, amplify both the sin and cos quadratures

of a signal. In other words, they preserve the phase of the input signal. It turns out

that an ideal noiseless linear phase preserving amplifier which independently amplifies

each frequency cannot exist [11]. To preserve the commutation relations of the two

quadratures of the photon state, the amplifier must mix at least two frequencies.

Thus, the action of the phase preserving amplifier is represented by the two-mode

squeezing operator S2

S2(z) = exp
[
z∗ab− za†b†

]
(3.96)

where the a and a† operators correspond to the main mode called the “signal”, and b

and b† operators correspond to an auxiliary mode called the “idler”. The S2 operator

transforms the creation an annihilation operators as follows:

S†2(z)aS2(z) = µa− eiθνb† (3.97)

S†2(z)bS2(z) = µb− eiθνa† (3.98)

S†2(z)a†S2(z) = µa† − e−iθνb (3.99)

S†2(z)b†S2(z) = µb† − e−iθνa (3.100)

where z ≡ reiθ, µ = cosh(r), and ν = sinh(r). For simplicity, we assume that z is

real so that θ = 0.
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Now we calculate the gain and uncertainty in x for the amplified state. First, let

us calculate the expectation value of x for an amplified state S2|α〉 on the real axis,

〈S2α|x|S2α〉 =
1

2
〈α|S†2(a+ a†)S2|α〉

=
1

2
〈α|µa− νb† + µa† − νb|α〉

=µα. (3.101)

Thus, the gain of the phase preserving amplifier is µ. Next, we calculate 〈x2〉,

〈S2α|x2|S2α〉 =〈α|S†2xS2S
†
2xS2|α〉

=
1

4
〈α|(µa− νb† + µa† − νb)2|α〉

=
1

4
〈α|µ2a2 − 2µνab†

+ µ2(2a†a+ 1)− 2µνab

+ ν2b†b† − 2µνb†a† + ν2(2b†b+ 1)

+ µ2a†a† − µνa†b

+ ν2b|α〉

=
1

4

(
µ2α2 + µ2(2α2 + 1) + µ2α2 + ν2

)
≈µ2

(
α2 +

1

2

)
. (3.102)

The approximation in the last line is for large gain where µ ≈ ν. We now compute
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the variance,

σ2 ≡ 〈x2〉 − 〈x〉2 =
1

2
µ2. (3.103)

Finally we calculate the SNR,

SNR =
δx2

2σ2
(3.104)

=
(2µα)2

µ2
(3.105)

=4α2. (3.106)

For the phase preserving amplifier, the SNR is half that of the phase sensitive am-

plifier. In particular, when using a phase preserving amplifier, the upper limit on

the ratio of SNR to qubit dephasing is one half of the limit allowed by quantum

mechanics.

3.7 Resonator energy to output power ratio

In this section we derive an equation relating the energy in the measurement resonator

to the power leaving the system. This is an important quantity as output power is a

limited resource due to the finite saturation power of quantum limited amplifiers.

87



3.7.1 Resonator internal energy

Now that we have a formula for S21 in terms of the resonator properties we would

like to relate it to the resonator’s internal energy. To do this we must compute the

voltage Vd (see Fig. 3.1 at the resonator’s driving node. This voltage can be found

by voltage division; Vd is just V divided by the coupling capacitor and the resonator

impedances,

Vd = V
Zr

Zκ + Zr
= V

Zin − Zκ
Zin

. (3.107)

The voltage V at the shunt node is given by the sum of the incoming, reflected, and

outgoing voltage amplitudes

V = Vin (1 + S11 + S21) . (3.108)

Using Eq. (3.24) this simplifies to

V = 2VinS21 , (3.109)

which finally yields

Vd = 2VinS21
Zin − Zκ
Zin

. (3.110)

The energy in the resonator is

Eres =
1

2
C|Vd|2 = 2C |VinS21|2

∣∣∣∣Zin − Zκ
Zin

∣∣∣∣2 (3.111)
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3.7.2 Output power

The voltage wave amplitude travelling to the readout amplifier is by definition VinS21.

The power going into the amplifier is therefore

Pout =
1

2
|VinS21|2 /Z0 . (3.112)

3.7.3 Ratio

The ratio of resonator energy to output power is

Eres

Pout

= 4Z0C

∣∣∣∣1− Zκ
Zin

∣∣∣∣2 . (3.113)

From Eq. (3.25) we can write Z0/Zin = 2(S−1
21 − 1). Substituting this and using

C = 1/ωrZLC we get

Eres

Pout

=
4

ωr

Z0

ZLC

∣∣∣∣1− 2Zκ
Z0

(
S−1

21 − 1
)∣∣∣∣2 . (3.114)

Equation (3.114) relates the resonator energy to the output power. However, as

written it is not directly useful as it involves the impedance of the coupling capacitor

Zκ which is not an experimentally measurable parameter. We replace it with the

coupling quality factor Qc of the resonator via (see Appendix F)

1

Cκ
= ωr

√
QcReZLC , (3.115)

where Re is the resistance external to Cκ (in this case Z0/2 because the input and

output lines form parallel resistances). Substituting Eq. (3.115) into Eq. (3.114) we
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arrive at

Eres

Pout

=
4

rLCωr

∣∣∣1 + i2
ωr
ω

√
QcrerLC

(
S−1

21 − 1
)∣∣∣2 , (3.116)

where we have defined rLC and re by the equations ZLC ≡ rLCZ0 and Re ≡ reZ0.

In the optimal visibility where S21 ≈ 1
2

(1± i) we find

Eres

Pout

=
4

rLCωr

∣∣∣1 + i2
ωr
ω

√
QcrerLC(±i)

∣∣∣2
≈ 16

Qcre
ωr

≈ 16
re
κr

(3.117)

where we’ve assumed ω ≈ ωr and Qc � 1. For comparison, a resonator in free

ring-down has Eres/Pout = 1/κ. In the driven circuit studied here, for a given output

power, the resonator internal energy is 16 re times larger than in the free ring-down

case.
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Chapter 4

Bandpass Filter

In this chapter, we introduce and analyze a bandpass filter for dispersive qubit mea-

surement. First, we explain the rationale for the bandpass filter and compare it

qualitatively to existing systems. Next, we quantitatively analyze the bandpass filter,

arriving at a relation between the response time of the filtered measurement system

and the coherence of the qubit. The analysis is corroborated with numerics. We

then use the results of the analysis to choose circuit parameters. We then determine

the physical geometry of the hardware elements needed to achieve the desired circuit

parameters. Finally, we describe the fabrication steps used to build the device.

4.1 Rationale

As described in Chapter 2, research at Yale demonstrated that adding a filter to the

dispersive measurement system improves the qubit T1 [40]. A block diagram of the
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circuit used in that and similar experiments is shown in Fig. 4.1 a. The experiment

in Ref. [40] used a single qubit, but other experiments with similar technology used

multiple qubits all attached to a common resonator [15, 23, 39]. We have accordingly

added a second qubit and filter to the diagram to guide the discussion of how the

filter system might be extended for use in a multi-qubit system.

The filter, placed in series with the shared resonator, protected the qubit by

introducing a notch at the qubit’s frequency, as shown in Fig. 4.1 b. This prevented

spontaneous emission of energy from the qubit into the environment, but the design

has some important limitations. First, the notch filter protects the qubit over a narrow

band of frequency. This precludes use of high fidelity logic gates based on dynamic

tuning of the qubit frequency [4], as changing a qubits’ frequency would bring it out

of the protected notch and lower its coherence time. It may be possible in principle to

use multiple notch filters arranged in series to create a protected “bucket” as shown by

the dotted line in Fig. 4.1 b, but this would require many filters, each of which requires

large on-chip area. Second, the measurement resonator itself was connected in series

with the microwave feed line. This precludes use of multiple resonators, because two

detuned resonators in series act as an open circuit. Therefore each qubit in a multi-

qubit system is connected to a single resonator. The requires that the states of the

multi-qubit system be uniquely mapped into the phase space of a single resonator

mode, as shown in Fig. 4.1 c. The number of states to distinguish grows exponentially

with the number of qubits. Therefore, in a large system, phase space and frequency
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Figure 4.1: Notch filter circuit topology. a) A single resonator (blue) interrupts the
microwave feed line in series. Several qubits are coupled in parallel to the single
resonator mode. Notch filters (green and brown) on the resonator output protect the
qubits against from emission. b) The resonator mode produces a strong transmission
peak, while the notch filters produce dips. The qubit frequencies are matched to the
filters. c) The qubit states are distinguished in the amplitude-phase plane for the
resonator mode.

crowding would lead to measurement cross-talk and/or reduced visibility.1

We addressed these issues by inverting the role of the filter. Rather than use filter

notches to suppress emission only at the qubit frequencies, we use a bandpass filter

to suppress emission everywhere except at the measurement frequency. The starting

point for our design is a set of measurement resonators connected in parallel with the

1This crowding effect has actually been used to directly measure two qubit parity with a single
resonator mode [13].
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microwave line, as shown in Fig. 4.2. This circuit topology is standard in microwave

kinetic inductance detector (MKID) systems used for astrophysical observation, and

was demonstrated for qubit systems in previous experiments [12, 3]. This topology

addresses the issue of measurement cross-talk and phase space crowding by using a

separate measurement resonator for each qubit. We then essentially replace a sec-

tion of the drive line with a λ/4 resonator, which acts as a filter. The resonators

are connected in parallel to the filter. The filter is of the bandpass type, with high

transmission over a band encompassing all of the measurement resonators, and low

transmission elsewhere, as shown in Fig. 4.2 b. The qubits, sitting outside the pass

band of the filter are protected from the emission into the environment. Note that,

because the filter’s stop band extends indefinitely at low frequencies, multiple qubits

are protected simultaneously, and dynamic frequency tuning of the qubits is possible

while keeping the qubits protected. Frequency crowding of the measurement res-

onators within the filter pass band will be an issue in larger systems, but this can

be addressed by connecting several filter circuits in parallel to a common microwave

line.

In the bandpass filter circuit, there is really no intrinsic difference between the

role of the filter and the role of the measurement resonator. Comparing Fig. 4.2 a to

Fig. 2.8, we see that filter is in a sense just another pole in the measurement resonator.

This idea is brought forth in Fig. 4.3, which will be analyzed in depth in the following

analysis.
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Figure 4.2: Bandpass filter circuit topology. a) Several measurement resonators (blue)
connect in parallel to the microwave feed line, each one connected to a single qubit.
The filter (green) is embedded directly into the feed line. b) The measurement res-
onators, which produce dips in the transmission spectrum, are all placed within the
filter pass band. The qubits sit out of the pass band and are protected from emission.
c) Each resonator’s amplitude and phase contains the information of only one qubit
state.

95



rFr

Figure 4.3: Lumped element model of the qubit and measurement circuit. a) The cir-
cuit is a ladder of alternating coupling capacitors and shunt resonators to ground. The
only path by which energy can leave the system is through the finite internal quality
factor QF of the filter, as indicated by the red arrow. At the qubit frequency, the
impedance of the coupling capacitors is greater than the impedance of the resonators.
This means that most of the current flowing through eg. Cg goes to ground through
resonator r. b) To understand the quality factor of the resonator Qr, we neglect the
qubit which is assumed to be lossless. The damping of the resonator therefore comes
entirely from the loss of the filter. Near resonance the filter impedance is a pure
resistance.

4.2 Analysis

4.2.1 Analytic treatment

In this section we derive an analytic expression for the κrT1 product in the filtered

measurement system. We start from the definition of the quality factor for the qubit

and, through standard circuit analysis, relate it to the quality factor of the filter. We

will find that the relation involves the ratio of the qubit and filter voltages, which we

compute using voltage division. An alternative method is to compute the complex

admittance Ye presented to the qubit by the measurement circuit, and find the qubit

T1 using T1 = Cq/ReY (ωq) [16]. The approach used here should give the reader a
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more intuitive understanding of how the filter works.

An equivalent lumped model for the circuit is shown in Fig. 4.3 a. We begin by

writing down the definition of the quality factor of the qubit:

Qq ≡
energy stored in qubit

energy lost per radian of qubit oscillation
. (4.1)

The energy lost per radian of oscillation can be re-expressed in terms of the qubit

frequency and the power loss

energy loss per radian =
dE

drad
=
dE

dt

dt

drad
=
P

ωq
(4.2)

where P is the power loss and ωq is the qubit oscillation frequency. Substituting

Eq. (4.2) into Eq. (4.1) gives

Qq =
Eqωq
P

(4.3)

where here Eq denotes the energy stored in the qubit.

If we assume that the circuit elements are lossless, then the only channel by

which energy can leave the system is through the filter’s coupling to the external

measurement circuitry. The energy lost this way is characterized by the quality factor

of the filter QF

QF ≡
energy stored in filter

energy lost per radian of filter oscillation
=
EFωF
P

(4.4)

where here the second equality follows from the same reasoning that lead to Eq. (4.3).

Setting the power loss in Eq. (4.3) equal to the power loss in Eq. (4.4) gives

Qq = QF
Eqωq
EFωF

= QF
ωq
ωF

Cq
CF

∣∣∣∣ VqVF
∣∣∣∣2 (4.5)

where we have taken Eq = 1
2
Cq |Vq|2 and EF = 1

2
CF |VF |2, and Vq and VF are the

97



voltage amplitudes at the qubit and filter as shown in Fig. 4.3 a.

To compute the ratio Vq/VF we use voltage division. The analysis is based on the

crucial observation that to compute the damping of the qubit we must analyse the

circuit at the qubit frequency. Because the qubit is off resonance from the measurement

resonator and the coupling between the qubit and resonator is weak, the measurement

resonator’s impedance Zr is lower than the impedance of the coupling capacitor, ie.

Zr � Zg. By similar reasoning Zr � Zκ. Therefore, with voltage Vq across the

qubit, we have a current Ig = Vq/Zg flowing through Cg (see Fig. 4.3 a) and most of

that current goes to ground through the resonator. This gives Vr = IgZr = VqZr/Zg.

Using similar arguments to work through the next stage of the circuit we arrive at

Vq
VF

=
ZgZκ
ZrZF

. (4.6)

Note the shunt impedances in the denominator and the coupling impedances in the

numerator.

Next we compute Zr and ZF in terms of their characteristic resonance impedances.

The impedance of a lossless, parallel, single pole resonance is

1

Z
= iωC +

1

iωL
=

i

Z0

2δx+ δx2

1 + δx
≈ i2δx

Z0
(4.7)

where δx ≡ (ω − ωr)/ωr, ωr is the resonance frequency, and Z0 is the characteristic

impedance of the resonance (Z0 =
√
L/C for a parallel LC resonance). Inserting

Eq. (4.7) into Eq. (4.6) we get

∣∣∣∣ VqVF
∣∣∣∣ =
|Zg| |Zκ|
Z0
rZ

0
F

(
2δx+ δx2

1 + δx

)2

(4.8)
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where here δx ≡ (ωq − ωr)/ωr, ωr is the measurement resonator frequency, and we

assume the measurement resonator is on resonance with the filter. Inserting Eq. (4.8)

into Eq. (4.5) yields

Qq = QF
ωq
ωr

Cq
CF

(
|Zg| |Zκ|
Z0
rZ

0
F

)2(
2δx+ δx2

1 + δx

)4

. (4.9)

Equation (4.9) expresses Qq in terms of the impedances of the couplers. While

this can in principle be used as a design formula, it would be more convenient to

replace the information contained in Zκ with an expression involving Qr. To do this

we consider the circuit at measurement frequency. With the measurement resonator

and filter assumed to be on resonance, the filter impedance is nearly a pure resistance

RF = QFZ
0
F , as indicated in Fig. 4.3 b. As we assume the qubit is lossless, RF sets

Qr. Following reasoning similar to what lead to Eq. (4.9) we find

Qr =
|Zκ|2

RFZ0
r

=
|Zκ|2

QFZ0
FZ

0
r

. (4.10)

Substituting Eq. (4.10) into Eq. (4.9) yields

Qq = QrQ
2
F

(
Cq
Cg

)2(Z0
q

Z0
r

)(
2δx+ δx2

1 + δx

)4

(4.11)

and using Qr = ωrκr and Qq = ωqT1 we find

κrT1 = Q2
F

(
ωr
ωq

)(
Cq
Cg

)2(Z0
q

Z0
r

)(
2δx+ δx2

1 + δx

)4

. (4.12)

Equation (4.12) is our basic result giving the κrT1 product for a filtered measurement

system. As it expresses the product in terms of hardware parameters it is most

useful when choosing values for the actual hardware and for constructing numerical
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simulations in circuit modelling programs.

In practice the resonant circuits are implemented as distributed transmission line

resonators. In this case it is convenient to eliminate the characteristic resonance

impedances in favor of the characteristic impedance of the line. For a λ/4 transmission

line resonator, the resonance Z0 impedance is related to the line impedance Z0 by

[37]

Z0 = (4/π)Z0 (4.13)

which turns Eq. (4.12) into

κrT1 =
π

4
Q2
F

(
ωr
ωq

)(
Cq
Cg

)2(Z0
q

Z0

)(
2δx+ δx2

1 + δx

)4

. (4.14)

We used Eq. (4.14) as our design formula.

Equation (4.12) expresses κrT1 in terms of circuit hardware parameters. For an

equation expressed in terms of implementation-independent parameters, we need to

eliminate Cg in favor of a coupling strength. As derived in Appendix D, the equation

which does this is

ge =
1

2

Cg√
CqCr

~√ωqωr. (4.15)

The subscript e reminds us that this coupling strength has dimensions of energy.

It is convenient to work with a coupling strength which has dimensions of (angular)

frequency

g ≡ ge
~

=
1

2

Cg√
CqCr

√
ωqωr. (4.16)
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Using Eq. (4.16) and keeping the leading order in δx we can re-express Eq. (4.12) as

κrT1 =

(
∆

g

)2(
ωr
ωq

)(
∆

ωr/2QF

)2

(4.17)

where ∆ ≡ ωq−ωr. The first factor, (∆/g)2 is the κrT1 product for a single pole (i.e.

no filter) system. The second factor is of order one. The final factor is understood as

as the isolation provided by the filter: ωr/2QF is the half width at half max of the filter

(recall that we assume ωr = ωF ), so ∆/ (ωr/2QF ) is the qubit-filter detuning in units

of half-widths. This factor substantially raises the κrT1 product. For ωq = 6 GHz,

ωr = 7 GHz, and QF = 30 we find(
ωr
ωq

)(
∆

ωr/2Qf

)2

= 85, (4.18)

almost two orders of magnitude improvement over the unfiltered case.

4.2.2 Numeric treatment

To verify the analysis we compared Eq. (4.14) against numerical simulation of the

measurement circuit using the LTSPICE 2 circuit simulation package. Figure 4.4

shows a diagram of the model. We determine the quality factor of the qubit Qq

in two steps. First we replace the qubit with a voltage source Vs at frequency ω

and probe the resulting current Is. The ratio Is/Vs is the admittance Ye(ω) of the

external measurement circuitry as seen by the qubit. We then use the fact that, for

the transmon qubit, the matrix elements are nearly those of a harmonic oscillator. For

a harmonic system, the coherent states are eigenvectors of the annihilation operator

2www.linear.com/designtools/software
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a, so loss processes are always in the correspondence limit. We can therefore compute

the damping of the qubit using the classical equation [16]

Qq = ωCq/ReYe(ω). (4.19)

The LTSPICE package easily simulates a given circuit over a range of frequencies,

but has somewhat limited capabilities for iterating over circuit element values. In

order to facilitate the design process we have written a driver for LTSPICE in python.

This driver allows the user to programmatically import an existing net list (e.g.

one produced by a graphical front-end), override parameter values, and produce a

new updated net list which is then analyzed by SPICE. Combined with a python

module for parsing the resulting simulation data, this driver allowed us to easily iterate

over several design parameters and analyze the results in a powerful programming

environment.

4.2.3 Discussion

The results of the numerical simulation are compared with the analytic theory in

Fig. 4.5. The expected T1 of the qubit is plotted against the qubit-resonator detuning

∆ for a few values of κr and QF = 30. Good agreement between the theory and

numerics appears for |∆| ≈ 1 GHz to 0.5 GHz. For detunings below -1.5 GHz the

analytic formula exceeds the numerics by approximately a factor of 2. This is probably

due to our imperfect assumption that the coupling impedances greatly exceed the
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Qubit

V_q V_r

resonator

filter

output
C_g C_kappa

C_in
V_in

Figure 4.4: Screen capture of the SPICE model. The qubit is replaced by a voltage
source which is activated with an ac signal of amplitude Vs at variable frequency ω.
The current Is through the source is probed and the admittance of the external circuit
computed as Ye(ω) = Is/Vs. Note that the filter λ/4 transmission line resonator is
not drawn to scale; the end which connects to ground is physically shorter than the
other section.

resonator impedances. When |∆| is on the order of g the qubit and resonator modes

hybridize. In this regime the analytic and numerical treatments are both expected

to fail because Eq. (4.1) and Eq. (4.19) both implicitly assume that the qubit mode is

well defined apart from the rest of the measurement circuit. This failure is manifest

in the plots near ∆ = 0 where the predicted qubit T1 becomes smaller than κr. This

is not physical, as the system cannot lose energy faster than the bare leakage rate of

the resonator κr.

The predictions shown in Fig 4.5 indicate that we should be able to preserve

the qubit coherence with very aggressive resonator ring-up times. The curve for

κ−1
r = 11 ns has a T1 limit of 100µs at |∆| = 1 GHz and 1000µ s at |∆| = 1.5 GHz.
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These are modest detuning values typical of real experiments. Current best T1 values

for planar transmon qubits are near 60µs with typical values around 20–40µs. With

the measurement circuit bringing in a decoherence channel at 1000µs a qubit with

internal T1 of 60µs would be degraded by only 5%.

Because the T1 imposed by the measurement circuit varies by several orders of

magnitude with varying ∆, it should be possible to use the measurement circuit as a

reset. By dynamically tuning the qubit close to the measurement resonator and filter,

the T1 of the would be lowered, forcing the qubit to go to |0〉 with high probability

after several decay time constants. This could be particularly useful in removing

“leakage” processes in which the qubit has erroneously gone to state |2〉.

4.3 Circuit parameters

From our analysis of the qubit damping imposed by the readout circuit in the previous

section, and from our analysis of the scattering parameters in Ch. 3 we can now choose

parameters for the device. From Fig. 4.5 we find that resonators quality factors of

Qr ∈ [500, 1000, 1500, 3000] should give well preserved qubit T1 for |∆| & 1 GHz.

Each Qr corresponds to κr = ωr/Qr. For each Qr the value of χ required for a large

IQ plane separation between |0〉 and |1〉 is determined according to

χ = ωr/2Qr (4.20)
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Figure 4.5: Qubit T1 imposed by the measurement circuit versus qubit-resonator
detuning for several values of the resonator decay time. The filter quality factor is
QF = 30.
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(see Eq. (3.31)). The qubit-resonator coupling strength g is then determined from

Eq. (3.20)

g =
√
−χ∆ (1 + (∆/η)) (4.21)

where η/2π ≡ (ω21 − ω10) /2π ≈ −200 MHz is the anharmonicity of the qubit. In

order to actually build a device with the specified χ, g, and κr, we need to know the

values of Cg and Cκ. From Appendix D we have

Cg = 2g

√
CrCq
ωrωq

(4.22)

where Cq = 85 fF is the qubit capacitance and Cr = π/4ωrZ0 is the effective capac-

itance of the measurement resonator. The value of Cκ is determined by rearranging

Eq. (4.10) as

Cκ =

√
Cr

ωrQFQrZ0
F

(4.23)

where ZF = 4Z0/π is the effective capacitance of the filter resonator.

Using these design equations we found four sets of parameters as shown in Ta-

ble 4.1. The value of κr was varied to test the relation between measurement speed

and the measurement circuit imposed limit on qubit T1.
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4.4 Device

In this section we describe the physical implementation of the bandpass filter including

details of how the chosen circuit parameters were realized on the physical chip.

4.4.1 Layout

A micrograph of the device is shown in Fig. 4.6. The device has four qubit-resonator

pairs all coupled in parallel to a common filter. The filter is implemented as a λ/4

coplanar waveguide resonator embedded into the feed line. The feed line is interrupted

on one side with a capacitor forming a voltage antinode, and is shorted to ground on

the other side forming a voltage node. The resulting standing wave mode is used as

the filter resonance. The measurement resonators are coupled capacitively in parallel

to a single common filter, and each measurement resonator is capacitively coupled to

a qubit.

4.4.2 Filter

The filter is implemented as a λ/4 coplanar waveguide resonator. The voltage node

is formed by connecting the waveguide to ground. The voltage antinode is formed

at signal input point (port 1 in Fig. 4.6) where the filter connects to the feed line

through a capacitor.
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Fr

Figure 4.6: Micrograph of the device. The false color corresponds to the colors
used in the lumped element model, shown in the top right inset. Signals enter the
system through a feed line at port 1. The filter F is formed by a standing wave
resonator embedded into the feed line. The feed line is interrupted by a capacitance
(left inset) at one end and shorted to ground on the other, forming a λ/4 resonance.
Signals injected at port 1 are mostly reflected by the weak input capacitance. The
transmitted energy rings up the filter resonance. Energy leaves the filter through a
tap near the shorted end at port 2. The red arrow indicates the path by which energy
leaves the filter through a wire bond (not shown) and enters the external detection
hardware, including a parametric and HEMT amplifier. The measurement resonators
r are connected to the filter via capacitance Cκ formed by the proximity of the filter
and resonator traces. The resonator couples to the qubit q through an inter-digitated
capacitor Cg. Note that the design allows for an independent resonator for each qubit
while allowing several resonators to share a single filter. Note also the filter requires
near zero additional on-chip area.
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Length

The length of the filter is related to the desired frequency by

l =
λ

4
=

πv

2ωF
=

πc

2ωF
√
εeff

(4.24)

where c is the speed of light in vacuum and εeff is the relative relative dielectric

constant of the waveguide. For a coplanar waveguide with trace and gap widths

much smaller than the thickness of the substrate, we have εeff = (1 + εs)/2 where εs is

the relative dielectric constant of the substrate. In our experiment we used sapphire

substrate with εs = 10.4 giving εeff = 5.7. For a filter frequency of ωF/2π = 6.75 GHz

this gives l = 4, 654µm.

Input capacitance

The value of the input capacitance Cin is determined by the amount by which we

allow the input line to load the filter. The loaded quality factor Ql of a resonant

mode of frequency ω0 and self capacitance C connected to a resistor environment Re

through a coupling capacitor Cc is

Ql =
C

ω0ReC2
c

. (4.25)

For the filter we rename the parameters ω0 → ωF , Cc → Cin, and Ql → Qin. Using

the effective capacitance of our λ/4 filter resonator C = π/4ωFZ0, assuming that

Re = Z0, and solving for Cin gives

Cin =

√
π

4ω2
FZ

2
0Qin

. (4.26)
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In our device we used ωF/2π = 6.75 GHz, Qin = 40 × QF = 1200, and Z0 = 50Ω,

which gives Cin = 12 fF.

This capacitance was implemented as a parallel plate SiO2 dielectric capacitor,

as shown in Fig. 4.7 a. The dielectric thickness was t = 200 nm. With the relative

permittivity of SiO2 of 3.9, this required a plate area of A = Ct/3.9ε0 = 70µm2, which

is a modest and readily achievable size. Most importantly, this small size avoids the

problem of large ground plane cuts which would be needed if we were to implement

Cin as an interdigitated capacitor.

The SiO2 has a relatively large loss tangent, making it unsuitable for use in the

qubit or measurement resonator. With tan δ ≈ 3× 10−4, and corresponding QSiO2 ≈

3, 000 [36], a resonance using SiO2 dielectric capacitors would have T1 ≈ 80 ns at

6 GHz. However, this is not an issue for the filter. The output circuitry strongly

loads the filter, in our case giving QF ∼ 30. With QF � QSiO2 the dissipation from

the dielectric is much smaller than the photon loss rate through the output circuit.

Therefore, the SiO2 in the filter’s input capacitor contributes a negligible fraction of

the total loss presented to the qubit, and absorbs a negligible fraction of the dispersed

measurement photons.

Input capacitor electrical length

Because of the finite impedance of the input capacitor, the voltage antinode point is

not actually a true λ/4 distance from the voltage node. In other words, the capacitor

adds electrical length to the waveguide. This effect must be counterbalanced by
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modifying the waveguide’s geometric length. To compute the necessary adjustment

we treat the capacitor as an effective length of transmission line by writing

φc = 2ωFdc/v (4.27)

where dc is the effective length of the capacitor, v is the propagation speed in the

waveguide, and φc is the phase shift incurred by reflection from the capacitor. See

Fig. 4.7 b for an illustration. The phase shift is computed as [37]

φc = ∠

(
ZL − Z0

ZL + Z0

)
(4.28)

where ZL = 1/iωCin + Z0 is the series impedance of the capacitor and feed line

loading the filter resonance, and Z0 is the characteristic impedance of the line (we

assume the filter and feed line characteristic impedances are equal). Combining these

results yields

dc =
c

2ωF
√
εeff

∠

(
ZL − Z0

ZL + Z0

)
(4.29)

which is the length by which the geometric length of the line must be reduced to

maintain a resonance frequency of ωF .

Using this and the previously chosen value Cin = 12 fF we compute the effective

length of the capacitor to be dc = 75µm. This length must be subtracted from the

geometric length of the filter coplanar waveguide.

Output tap point - QF

The dispersed signals exits the filter through a tap off wire connected to the filter near

its voltage node. The position of the tap determines the rate at which energy leaves
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20 um

filterfeed line

crossover

parallel plate

Figure 4.7: Input capacitor for the filter. a) Micrograph of the device. The feed line
comes in from the left and the filter coplanar waveguide resonator is on the right.
A thin film of SiO2 separates the connecting aluminum strip on the feed line side.
A hole in the feed line renders the overlap area insensitive to optical lithography
misalignment. The connecting strip contacts the filter resonator directly. b) Circuit
model. A wave reflecting from the input capacitor acquires a phase shift which
effectively increases the length of the filter.
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the filter, thus setting QF , as we now explain. The voltage profile of the resonant

mode in the distributed resonator has a cosine shape V ∝ sin (πx/2l) where x = 0 is

the voltage node at the shorted end and x = l is the voltage antinode at the open end.

If the tap were placed at x = 0 where the voltage is zero it would carry no energy

away from the filter and the coupling Q induced by the tap would be infinity. If the

tap were placed at the voltage antinode at x = l it would feel the maximum of the

filter voltage and would be accurately modeled as a shunt resistor in a lumped element

equivalent circuit of the filter. Placing the tap at a distance x from the voltage node

reduces the power dissipated by Re by a factor of the square of the relative voltage,

sin (πx/2l)2, yielding

QF = QF |x=l / sin (πx/2l)2 . (4.30)

where QF |x=l is the quality factor we would compute from a lumped element model.

In the lumped element model the loaded Q is given simply by QF |x=l = Re/Z
0
F

where Re is the resistance of the circuit external to the tap, Z0
F = 4Z0/π is the

characteristic impedance of the filter mode, and Z0 is the filter transmission line

characteristic impedance. Combining this with Eq. (4.30) in the case Re = Z0 gives

QF =
π/4

sin (πx/2l)2 ≈
(l/x)2

π
. (4.31)

We designed for QF = 30 to get a filter bandwidth of ∼ 200 MHz, giving x = 0.1× l.
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Bond pad inductance

Proper flow of return currents is essential to the design of the filter resonator. In

Figure 4.8 we show the shorted end of the filter with the tap off through which the

signal leaves the filter and enters an amplification chain. Part of the current return

path is interrupted by the wire bond pad as shown in the figure. The large perimeter of

the bond pad would introduce inductance into the return path and shift the frequency

of the filter resonance. To correct this we used SiO2 dielectric crossovers to tie the

ground planes on either side of the tap off path together, thus shorting the inductance

presented by the bond pad.

Summary

Here we summarize the steps in the design of the filter:

1. From the desired frequency ωF compute the geometric length according to

l = πc/(2ωF
√
εeff).

2. Choose a loaded quality factor QF to get the desired filter bandwidth ∆ωF ,

according to QF = ωF/∆ωF .

3. Choose an input capacitance Cin by requiring that the loading from the input

Qin is much (100×) larger than QF . The capacitance is determined by

Cin =

√
π

4ω2
FZ

2
0Qin

4. Compute the electrical length of the input capacitor according to
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Figure 4.8: Micrograph of the filter tap off point and bond pad. Without crossovers,
part of the current return path would flow around the wire bond pad, as shown by
the dotted line. The large perimeter of the bond pad would introduce inductance
into the return path of filter current and shift the frequency of the filter. Dielectric
crossovers connect the ground planes on either side of the tap off path, thus shorting
the inductance of the bond pad.

dc =
c

2ωF
√
εeff

∠

(
ZL − Z0

ZL + Z0

)
and adjust the geometric length by this amount.

5. Choose the output tap point x according to

QF =
π/4

cos (πx/2l)2

and ensure that crossovers are used to connect the ground planes on either side

of the tap.
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4.4.3 Measurement resonators

The measurement resonators, like the filter, were implemented as λ/4 coplanar waveg-

uide resonators. In this section we explain how we designed the coupling between the

measurement resonators and qubits, and between the measurement resonators and

the filter.

Qubit-resonator coupling: claw coupler

The resonators were capacitively coupled to the qubits. Dielectric parallel plate ca-

pacitors like the one used for the filter input capacitor could not be used, as the loss

tangent of SiO2 of ∼ 3× 10−4 [36], would limit the qubit T1. Instead, we used inter-

digitated capacitors as shown in Fig. 4.9, which we have nicknamed the “claw”. The

claw not only couples the resonator to the qubit, but also forms a large capacitance to

ground. This capacitance to ground changes the resonator’s effective length similarly

to the filter input capacitor, although the effect is somewhat more complex as the

claw also adds significant geometric length.

With no reliable means to analytically compute the effect, we instead used the

Sonnet3 numerical electromagnetic simulation package to find the phase shift incurred

by reflection from the claw. The coupling capacitance Cg between the qubit and

resonator, and the phase incurred by reflection from the claw was found as a function

of frequency and claw length L. The results of the simulation were fit with second

order polynomial curves as given in Tables 4.2 and 4.3.

3www.sonnetsoftware.com
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Here we summarize the design of the claw couplers:

1. From the desired coupling strength g the value of Cg is chosen from Eq. (4.22).

2. Use the data from Table 4.2 to find the appropriate length L of the claw.

3. Use the data from Table 4.3 to find the phase shift imposed by the claw. This

phase is then converted to an effective length in the same way as was done for

the filter.

4. Adjust the resonator length to account for the phase shift.

Resonator-filter coupling: parallel line coupler

The capacitive coupling between the measurement resonators and filter was imple-

mented by allowing their center traces to run parallel over a length w to allow in-plane,

as shown in Fig. 4.10. The measurement resonator and filter traces are separated by

a strip of ground plane of width x to keep the ground plane equipotential. The pa-

rameters x and w were adjusted to get the desired coupling capacitance Cκ. This

capacitance was computed numerically using Sonnet in a procedure entirely similar

to that described above for the resonator-qubit coupling. The results of the Sonnet

simulation are summarized in Table 4.4.

The coupling capacitance Cκ was determined by the desired ring-up rate of the

resonator κr. From Eq. (4.10) we find

κr =

(
4

π

)2

ω3
rQFZ

2
0C

2
κ −→ Cκ =

π

4

√
κr

QFZ2
0ω

3
r

(4.32)
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Frequency [GHz] p0 p1 p2

4.8 -0.7610256 23.42786129 -30.03751643
5.0 -0.75985036 23.40431259 -30.03256152

6.705 -0.74027938 23.11730508 -29.92148358
6.735 -0.73999725 23.11213134 -29.91986705
6.765 -0.73971394 23.10693518 -29.91824295
6.805 -0.73933434 23.09997203 -29.91606597

Table 4.2: Claw length L as a function of qubit-resonator coupling capacitance Cg.
For each frequency, the claw length and capacitance are related according to L/µm =∑2

n=0 pn(Cg/fF)n.

Frequency [GHz] p0 p1 p2

4.8 1.52E-007 -1.24E-003 -8.51E-002
5.0 1.61E-007 -1.29E-003 -8.87E-002

6.705 2.47E-007 -1.74E-003 -1.19E-001
6.735 2.49E-007 -1.74E-003 -1.19E-001
6.765 2.50E-007 -1.75E-003 -1.20E-001
6.805 2.53E-007 -1.76E-003 -1.21E-001

Table 4.3: Phase shift φ as a function of claw length L. For each frequency the phase
shift and claw length are related by φ/rad =

∑2
n=0 pn(L/µm)n.

where we’ve used Qr = ωr/κr. For κ−1
r = 50 ns and QF = 30 we find Cκ = 1.47 fF.

4.4.4 Mode shape coupling factor

Because the voltage profile in a distributed resonator is not constant, the capacitances

coupling the measurement resonators required a position dependent adjustment. Each

capacitance was multiplied by

[cos (πxr/2lr) cos (πxF/2lF )]−1

where xr is the distance of the coupler from the measurement resonator voltage antin-

ode, and xF is the distance of the coupler from the filter voltage antinode.
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x [µm] p0 p1 p2

2 0.00367265 64.6536 -53.9095
5 0.0169587 101.302 -61.7247
8 0.0382334 143.915 -68.7105

Table 4.4: Coupling arm length w as a function of capacitance Cκ for several values
of the width x of the ground plane strip. For each value of x, w is related to Cκ
according to w/µm =

∑2
n=0 pn(Cκ/fF)n.

Figure 4.9: The interdigitated capacitor connecting the measurement resonator and
qubit. Note the thin wire connecting the ground plane on either side of the topmost
qubit finger. This wire is an “in-plane crossover” connecting together the ground
plane on either side of the qubit finger.

Figure 4.10: Coupling between a measurement resonator and the filter.
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4.4.5 Parameters

Using the results contained in Tables 4.2, 4.3, and 4.4 we converted the values of Cg

and Cκ from Table 4.1 to physical dimensions for use in the fabricated device.

4.5 Fabrication

The device was made of thin film aluminum film deposited on a sapphire substrate.

Silicon dioxide was used as a dielectric layer for the filter input capacitor and for wiring

crossovers used to connect the ground planes. The Josephson junctions were made

of an Al/AlOx/Al tri-layer. The fabrication process is summarized in the following

steps:

1. Defined control lines and resonators.

(a) Approximately 100 nm of aluminum is deposited on a 3 inch sapphire wafer

via electron beam evaporation in a Plassys evaporator.

(b) A pattern defining the measurement resonators, filter, input/output lines,

and qubit control lines is etched into the film using using optical lithogra-

phy and chemical etching in an inductively coupled plasma (ICP) etcher

with BCl3/Cl2.

2. Dielectric crossovers are formed to bridge the ground planes on either side of

the measurement input and output lines, and the qubit control lines.
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(a) A 200 nm thick layer of silicon dioxide is deposited through an optically

defined photoresist mask to form the insulating layer of the crossovers in

a lift-off procedure.

(b) A photoresist mask defining the crossover wires is defined through optical

lithography. The sample is placed in the Plassys chamber and the under-

lying aluminum film is ion milled in situ to remove the native oxide layer.

A new aluminum layer is deposited through a photoresist mask to form

the crossover wires via lift-off.

3. The cross shape of the transmon qubit is etched into the base aluminum layer

via the same method used to define the control lines and resonators. This step

is done apart from the control lines and resonators so that the qubit features are

subjected to a lower number of subsequent processing steps. This separation of

etch steps for the control lines and resonators from the etch step for the qubit

has not definitely been shown to improve qubit coherence. It was done as a

cautionary measure.

4. An alignment mark pattern, to be used in the next step, is formed with electron

beam evaporated gold via lift-off.

5. The Josephson junctions are formed using double angle shadow mask evapo-

ration in the Plassys chamber. The shadow mask is formed via electron beam

lithography. This step uses the previously defined gold alignment marks to align
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the electron beam pattern with the optical patterns from previous steps. The

base layer is ion milled in situ prior to the junction deposition to remove the

native oxide.
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Chapter 5

Experimental Setup and Methods

In this chapter, we present the experimental apparatus used to test dispersive mea-

surement with the bandpass filter. In the first section, we show a complete schematic

of the apparatus and describe how the measurement signal is brought into and out of

the qubit chip. In the next section, we discuss the details of generation of the measure-

ment signals. In the final section, we discuss details of detection of the measurement

signals.

5.1 Wiring

A custom microwave processing system was used to generate and detect the mea-

surement pulses. A simplified diagram of the experimental setup, shown in Fig. 5.1,

serves as the main reference for our discussion.
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5.1.1 General view

The microwave probe signals were generated with a custom designed 1 Gs/s arbitrary

waveform generator (AWG) and IQ mixer at room temperature. The generated signal

contains one frequency component for each measurement resonator being probed. The

signal travels through several stages of attenuation at 4 K and 40 mK which dissipate

thermal and technical noise. When the measurement pulse arrives at the chip, most

of it is reflected from the input capacitor, and a small portion is transmitted into the

bandpass filter. Once inside the filter, each frequency component of the transmitted

signal scatters from its corresponding measurement resonator, acquiring a qubit state

dependent phase and amplitude shift. The dispersed signal leaves the chip through

the filter tap-off path (red arrow in Fig. 4.6) and enters a series of filters and switches

at 40 mK before it is amplified by a parametric amplifier (paramp). The signal is

then further amplified by a high electron mobility transistor (HEMT) amplifier at

4 K before it is brought up to room temperature, further amplified, and detected by

a custom designed GHz analog to digital converter (ADC).

5.1.2 Noise attenuation and filtering

The microwave control lines are designed with 50Ω characteristic impedance, as this

value is well supported by off-the-shelf commercial microwave hardware, such as ca-

bles, connectors, and attenuators. Therefore, the quantum circuitry is designed under

the assumption that the control lines can be modeled as 50Ω resistors. Resistors
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Figure 5.1: Schematic of the measurement system.
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generate temperature and resistance dependent voltage and current noise [35], so the

qubits and resonators are subjected to noise coming from their control lines at the

base temperature of the cryostat, approximately 40 mK. We designed the coupling

strengths between the control lines and the quantum circuits (qubits and resoan-

tors) such that this 40 mK noise would not introduce significant decoherence. How-

ever, warmer stages of the cryostat generate thermal noise which exceeds the noise

from 40 mK. This hotter noise propagates through the lines and could interact with

the quantum circuits, violating our design assumption and introducing decoherence.

Therefore, we use filters and attenuators to reduce the noise incoming from hotter

stages of the cryostat down to the level of noise generated at 40 mK.

Review of thermal noise

The thermal noise of a resistor R, at temperature T follows the Plank distribution 1

SpV (f, T ) =
2Rhf

ehf/kbT − 1
. (5.1)

The superscript p in Sp reminds us that this is a “physicist’s” spectral density defined

for both positive and negative frequencies. For kbT � hf we expand in powers of

hf/kbT , finding SpV (f, T ) ≈ 2R (kbT − hf/2). Multiplying by a factor of 2 to convert

to a single sided “engineer’s” spectral density, and dropping the small constant −hf/2

we find SeV ≈ 4RkbT , which is the usual Johnson noise formula [18, 35].

In the Johnson limit, the thermal noise power scales linearly with T . Therefore,

1Note that here spectral densities are written in terms of the root mean square (RMS) of the
voltage fluctuations.
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in order to reduce noise coming from a high temperature stage at Thigh to the level of

a lower temperature stage at Tlow, we attenuate the line by a factor of Thigh/Tlow.

When kbT . hf , the Johnson formula no longer applies. In this so-called “quan-

tum limit”, the thermal noise power scales as exp [−hf/kbT ], which is stronger than

the linear scaling in the Johnson limit. Consequently, in going from Thigh to Tlow, we

must attenuate by a factor larger than Thigh/Tlow. Consider the ratio of thermal noise

power from sources at two temperatures for a fixed frequency f = 6 GHz. Defining a

reduced temperature as x ≡ kbT/hf , we write the Planck power distribution as

SV (T ) ∝ 1

e1/x − 1
. (5.2)

The ratio of the noise power for a source at temperature αT to the noise power from

a source at temperature T is

SV (αT )

SV (T )
=

e1/x − 1

e1/αx − 1
. (5.3)

This function is plotted for the case T = 4 K (x = 13.8) and f = 6 GHz in Fig. 5.2.

Input line

The qubit, measurement resonator, and filter resonances are all in the 5 GHz to 7 GHz

range. For this frequency range, Teff ≡ hf/kb is in the range 240 mK to 335 mK.

Therefore, the parts of the apparatus at 295 K (room temperature) and 4 K are deep

in the kbT � hf limit, and we can model their noise properties using the Johnson

formula. Accordingly, we attenuate by a factor of 20 dB (×100) in between the room

temperature and 4 K stages, as shown in Fig. 5.1.
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Figure 5.2: Ratio of voltage noise spectral density SV (αT )/SV (T ) for T = 4 K and
f = 6 GHz.
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The 40 mK stage is in the quantum limit where hf & kbT . Consequently, the

factor of 100 reduction in temperature going from 4 K to 40 mK requires more than

20 dB of attenuation in the line. In going from 4 K (α = 1) to 40 mK (α = 10−2), the

thermal noise drops by 5 orders of magnitude, as opposed to 2 orders predicted by the

Johnson formula. We accounted for this by using 30 dB line attenuation, plus another

20 dB of isolation from the filter’s input capacitor. In order to remove noise at higher

frequencies, we added a 9.6 GHz low pass reflective filter. Additionally, an infra-red

(IR) filter was used to absorb high frequency radiation propagating down the coaxial

transmission line to prevent generation of quasiparticles in the superconductor [5].

Ground loops

An inner DC block placed just after the AWG was crucial to the setup. Without this

block, a ground loop introduced kHz frequency signals into the paramp, modulating

its gain. The block broke this ground loop and stabilized the paramp gain. We also

found that care was needed in breaking the grounds between the computer controlling

the six port switch and the rest of the apparatus. In the initial setup, the digital

communication line between the computer and the switch control box had the inner

and outer conductors broken a different points, almost two meters apart. This created

a large capacitance which allowed transmission of noise from the computer to the

control box. This was fixed by adding a low pass filter where the control box lines

entered the cryostat.
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5.1.3 Output line

Immediately upon exiting the chip, the measurement signal passes through another

reflective low pass filter and IR filter. No attenuator was used here because loss

of measurement photons degrades the quality of the measurement.2 The IR filter

introduces ∼ 2 dB of loss.

The output signal next went through a Radiall R573423600 six port microwave

switch. This allowed us to switch in-situ the input to the parametric amplifier.

Switching to calibrated noise sources allowed us to check the noise properties of the

paramp. The signal next passed through a Radiall R572433000 two port switch

which allowed us to select between two paramps. This was done because one of

the amplifiers used a new design which was not fully tested and we wanted to have

the second amplifier as a fall-back. The new design turned out to work extremely

well and was critical to the success of the experiment. The signal next entered a

circulator which directed it to the paramp where it was amplified and reflected. The

circulator directs the reflected signal toward the second two port switch. Because the

directivity of the circulator is imperfect, some of the reflected amplified signal and

noise goes backwards toward the chip. To eliminate this backward signal, another

circulator configured as an isolator was included between the six port switch and the

first two port switch. After leaving the paramp the signal goes through a second

two port switch, another circulator configured as an isolator, and then entered a Low

2This point is discussed quantitatively in section 3.6.
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Noise Factory HEMT. The purpose of the paramp was to amplify the measurement

signal above the input referred noise of the HEMT, which in this experiment was

approximately 2.5 K. The unusually low noise of the HEMT was a major advantage

as it lowered the requirement on the paramp gain. After amplification by the HEMT

the signal travelled out of the cryostat to room temperature amplifiers which increased

the signal level enough to drive an IQ mixer. The I and Q components generated by

the IQ mixer were buffered by custom designed GHz op-amp buffer amplifiers which

drove two inputs of a custom Gs/s ADC.

5.2 Parametric amplifier

In this section, we discuss the requirements on amplifier noise and gain needed to reach

good signal to noise ratio. The signal to noise ratio is constrained by two factors.

First, for reasons which will become clear in the next chapter, we cannot operate the

resonator with above 10 to 100 photons without inducing deleterious transitions of

the qubit state. Second, we want to measure the state as quickly as possible, so we

cannot integrate signal for too long. From Eq. (3.117), we find that the output power

of the dispersive measurement is

Pout = Eres
κr

16re
= ~ωrn̄

κr
16re

. (5.4)

With re ≈ 1, κr = 1/37 ns and n̄ between 10 and 100, the output power is in

the range -131 dBm to -121 dBm. Supposing we want to measure the qubit state in

∼ 100 ns, we need a detection bandwidth of B ≈ 100 MHz. The quietest commercially
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available RF amplifiers are high electron mobility transistor (HEMT) amplifiers, with

input referred noise temperature as low as T ≈ 3K. The noise power generated by

that amplifier for our parameters is PHEMT = kbTB = −122 dBm. This amplifier

noise is just about the same as the upper bound on the scattered signal power,

meaning that the HEMT would degrade the SNR by a factor of two. Therefore,

we would like to use a low noise pre-amplifier with large enough gain to overcome the

input referred noise of the HEMT. We used a type of Josephson parametric amplifier

(paramp) [51, 29, 52, 10, 32] specially designed for large bandwidth and saturation

power [31]. The paramp gives roughly 16 dB gain, 700 MHz bandwidth, -120 to -

100 dBm saturation power, and an effective noise temperature of about 330 mK [31].

This noise temperature and large gain is enough to put the output noise of the paramp

about five times larger than the input referred noise of the HEMT, which means that

the HEMT should degrade the SNR by only about 20%.

5.3 Signal generation

The measurement signals were produced by a custom FPGA controlled 1 Gs/s arbi-

trary waveform generator (AWG). The two channels of the AWG drove the I and Q

ports of a Marki IQ mixer. With a cosine signal cos (δωt+ φ) on the I channel, and

sin (δωt+ φ) on the Q channel, the radio frequency (RF) signal leaving the RF port

of the mixer is

cos ([ωc + δω] t+ φ) (5.5)
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where ωc is the carrier frequency at several GHz (see Appendix C). We probe multiple

measurement resonators simultaneously by superimposing IQ sinusoids to generate a

signal with multiple frequency components. The 1 Gs/s AWG has a usable bandwidth

of 500 MHz due to the Nyquist criterion. Combined with the IQ mixer, this allows

for a usable RF bandwidth of ∆ω/2π = 1 GHz centered around ωc. In practice, the

AWG outputs are filtered by absorptive Gaussian low pass filters to remove harmonic

created by the shape of the AWG digital samples. This limits the usable bandwidth

to ∆ω/2π ≈ 600 MHz.

5.4 Signal detection

The dispersed frequency components coming from the chip and subsequent amplifiers

are, like the drive signal, of the form

s(t) = cos [(ωc + δω) t+ φ] , (5.6)

where ωc is the frequency of the carrier, δω is detuning of the measurement signal

from the carrier, and φ is the phase of the signal which includes the phase shift

caused by dispersion from the measurement resonator. As shown in Appendix C,

after demodulation, the I and Q signals are

I(t) = cos (δωt+ φ) , Q(t) = sin (δωt+ φ) . (5.7)

These low frequency signals were digitized by the ADC to

In = cos (δωtn + φ) , Qn = sin (δωtn + φ) . (5.8)
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where tn = n/fs and fs = 1/500 ns is the sampling frequency of the ADC.3 The

sampled signals In and Qn are treated as the real and imaginary parts of a complex

number

zn ≡ In + iQn = exp (i [δωtn + φ]) . (5.9)

The complex signal zn is multiplied by exp (−iδωtn) to produce

z′n ≡ zn exp (−iδωtn) = exp (iφ) . (5.10)

Finally, z′n is integrated over the duration of the pulse. The integration acts as a low

pass filter, which increases the signal to noise ratio. The end result is a single point in

the two-dimensional plane, whose phase is the same (up to constant rotations coming

from digital and analog time delays) as the phase of the original analog signal. In

this way, the phase of the dispersed signal is measured and the corresponding qubit

state inferred.

5.5 Parametric amplifier

In this section, we discuss the requirements on amplifier noise and gain needed to reach

good signal to noise ratio. The signal to noise ratio is constrained by two factors.

First, for reasons which will become clear in the next chapter, we cannot operate the

resonator with above 10 to 100 photons without inducing deleterious transitions of

the qubit state. Second, we want to measure the state as quickly as possible, so we

3The sampling frequency is 1 GHz, but time-adjacent samples are summed together in the FPGA
to use less resources in the following processing stages.
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cannot integrate signal for too long. From Eq. (3.117), we find that the output power

of the dispersive measurement is

Pout = Eres
κr

16re
= ~ωrn̄

κr
16re

. (5.11)

With re ≈ 1, κr = 1/37 ns and n̄ between 10 and 100, the output power is in

the range -131 dBm to -121 dBm. Supposing we want to measure the qubit state in

∼ 100 ns, we need a detection bandwidth of B ≈ 100 MHz. The quietest commercially

available RF amplifiers are high electron mobility transistor (HEMT) amplifiers, with

input referred noise temperature as low as T ≈ 3K. The noise power generated by

that amplifier for our parameters is PHEMT = kbTB = −122 dBm. This amplifier

noise is just about the same as the upper bound on the scattered signal power,

meaning that the HEMT would degrade the SNR by a factor of two. Therefore,

we would like to use a low noise pre-amplifier with large enough gain to overcome the

input referred noise of the HEMT. We used a type of Josephson parametric amplifier

(paramp) [51, 29, 52, 10, 32] specially designed for large bandwidth and saturation

power [31]. The paramp gives roughly 16 dB gain, 700 MHz bandwidth, -120 to -

100 dBm saturation power, and an effective noise temperature of about 330 mK [31].

This noise temperature and large gain is enough to put the output noise of the paramp

about five times larger than the input referred noise of the HEMT, which means that

the HEMT should degrade the SNR by only about 20%.
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Chapter 6

Results

In this chapter we present the results of the experiment. We focus first on detailed

characterization of a single qubit measurement channel, and then present data in

which several qubits were measured simultaneously.

6.1 Characterization

6.1.1 Resonator frequencies

We first measured the frequencies of the four resonators on the chip. Using a vector

network analyzer we probed the system with a variable frequency microwave tone and

measured the transmitted amplitude and phase S21. Results are shown in Fig. 6.1.

The four dips in transmission correspond to the four resonators, and the broad peaked

structure comes from the bandpass filter. In an initial run with a test chip we found
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Figure 6.1: Transmission through the measurement circuit. Transmitted power is
plotted with an arbitrary vertical offset associated with all of the various attenuation
and amplification factors in the system which were not calibrated. Four transmission
dips appear at the measurement resonators. Q3 was significantly far away from its
target frequency. The broadly peaked background comes from the bandpass filter.

the filter bandwidth to be ∼ 200 MHz at 6.5 GHz, giving QF ≈ 32, very close to the

target value of 30. In the final iteration, the addition of crossovers near the output

bond pad placed the filter frequency at 6.8 GHz, much closer to the target value

6.75 GHz.

The resonator parameters are summarized in Table 6.1. Three of the resonator

frequencies were within 32 MHz of the target values, and the spacings were within

6 MHz of the target values. The resonator for Q3 however was 113 MHz too high. We

do not know the reason for this error but it was likely a mistake in the computer file

defining the geometry of the photo-lithography mask for the chip, or a physical defect

in the resonator causing a short to ground, which reduced the resonator’s electrical

length and raised its frequency.
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6.1.2 Coupling strength - g

Further characterization required use of the qubit, so we had to roughly tune up the

measurement system. We placed the measurement probe frequency at ωprobe = ωr,|0〉,

ie. the frequency of the measurement resonator with the qubit in the ground state.

While this choice of probe frequency is not optimal, but it yields enough separation

in the IQ plane to calibrate control pulses on the qubit.

We next measured the qubit-resonator coupling strengths g. Because of the large

detuning between the qubit and resonator we could not directly measure g through a

time resolved rate of photon swap between the qubit and resonator. Instead, we used

the dispersive physics discussed in Chapter 3, specifically Eq. (3.20), which connects

g with the dispersive shift χ,

g =
√
−χ∆(1 + ∆/η) . (6.1)

Here ∆ ≡ ω10 − ωr is the qubit-resonator detuning, and η ≡ ω21 − ω10 is the

anharmonicity of the qubit. We measure the qubit frequencies ω10 and ω21 and the

qubit anharmonicity via spectroscopy and then compute ∆ and η. We then measured

χ by performing spectroscopy of the resonator after the qubit was prepared in |0〉

or |1〉. In either case we observe a dip in transmission at the resonance frequency

ωr,|0〉 or ωr,|1〉, as shown in Fig. 6.2. This provides a measure of χ through the relation

2χ = ωr,|1〉 − ωr,|0〉, from which we compute g via Eq. (6.1). The coupling strengths

measured in this way are given in Table 6.1.
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Figure 6.2: Transmission through the measurement circuit for three qubit states.
Asymmetry in the resonance dips comes from impedance mismatch in the input and
output of the measurement circuit.

ωr/2π [GHz] g/2π [MHz] 1/κr [ns]
Q1 6.835 (6.805) 100 (146) 19 (12)
Q2 6.789 (6.765) 86 (102) 37 (23)
Q3 6.848 (6.735) 76 (84) 50 (35)
Q4 6.737 (6.705) 50 (59) 147 (71)

Table 6.1: Parameters for the four qubits. Each was designed with a different target
κr in order to test the tradeoff between damping and measurement speed. Target
design values are given in parentheses. Disparity between target and measured values
probably comes from errors in predicting in-plane capacitances between structures.
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6.1.3 Resonator transient response rate - κr

We next measured the strength of the resonator-environment coupling, characterized

by the leakage rates κr. From the qubit-resonator coupling term in the dispersive

Hamiltonian (Eq. (3.19)) we find that the resonator photons shift the qubit frequency

by

δω10 = −2χn (6.2)

where n is the number of photons in the resonator. Because the qubit frequency

shift is proportional to the photon number, a measurement of the decay time of δω10

yields a measurement of the time decay constant for n, which is κr by definition.

We measured the time decay constant κr with a ring-down technique. The pulse

sequence is shown in Fig. 6.3 a. With the qubit in |0〉 we drive photons into the

resonator with a stimulation pulse at the measurement frequency. During this pulse,

photons accumulate in the resonator, raising n and shifting ω10 according to Eq. (6.2).

The resonator drive pulse is turned off and the resonator is allowed to freely ring down.

As the resonator photon number n(t) changes dynamically during the sequence, the

ac Stark shifted qubit frequency also changes as δω10(t) = −2χn(t). To measure

ω10(t) at each point in time, we apply a π-pulse to the qubit at variable time τ

and with variable frequency ωprobe. At each value of τ , the π-pulse only excites the

qubit if ωprobe ≈ ω10(t). At the end of the sequence, we measure the qubit state

by again probing the resonator, thus measuring the probability that the qubit was

excited by the π-pulse. This yields a measurement of ω10(t), as shown in Fig. 6.3 b.
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Through Eq. (6.2) and using the previously measured value of χ, we convert the

measured ω10 to n(t), generating a plot of resonator photon occupation versus time

during the measurement pulse, as shown in Fig. 6.3 c. The value of κr is extracted

by fitting the free decay part of the data. Note that conversion from δω10(t) → n(t)

is not necessary for the extraction of κr, as the relevant decay time can be extracted

directly from ω10(t). We present the n(t) as an accompaniment to the δω10(t) data

shown in Fig. 6.3 b, and because it will be useful later in our discussion of qubit state

transitions induced by the measurement photons.

Values of κr for each resonator are given in Table 6.1. The measured values of κr

were approximately 50% lower than the target values. This discrepancy has not been

understood for our chip. A subsequent chip using a λ/2 bandpass filter based on the

work described here had a similar error in which the values of κr were lower than the

design values. It will be important to understand this divergence in the future.

6.2 Photon number calibration

In the previous section, we showed how to measure the resonator photon number

using the ac Stark shift. We used Eq. 6.2 to convert a time resolved measurement

of δω10 to a time resolved measurement of n. We also need a calibration between

resonator drive amplitude and the steady state value of n. This can be thought

of as measuring the t = 100 ns point of Fig. 6.3 c as we vary the amplitude of the

measurement resonator drive pulse. Therefore, the pulse sequence is essentially the
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Figure 6.3: Resonator photon occupation during the measurement pulse. a) The
control sequence applied to the I port of the IQ mixer used to control the resonator
and qubit. We apply two measurement pulses (green) to the resonator. Note the
emphasis at the beginning of the pulse which acts to ring up the resonator faster
than the ring-up time 1/κr. During the first pulse, we apply a π-pulse (blue) to
the qubit at a variable time τ and frequency. Only when ωprobe matches the qubit
frequency is the qubit excited. The second measurement pulse checks whether or not
the qubit was excited by the π-pulse. b) Probability (color scale) of qubit excitation
versus time and frequency of π-pulse. The curve of high qubit probability provides a
measure of the qubit frequency as a function of time during the measurement pulse.
c) Qubit frequency converted to resonator photon occupation via Eq. (6.2). The red
curve is an exponential fit to the decay.
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same as shown in Fig. 6.3 a, with two differences.

1. The π-pulse placed at a fixed τ , in the steady state part of the resonator ring

up.

2. We vary the resonator drive pulse amplitude.

This yields a measurement of the qubit frequency as a function of resonator drive

amplitude, as shown in Fig. 6.4. Assuming that the resonator internal energy is

proportional to the square of the amplitude of the drive signal, we have

δω10

2χ
= n = mA2. (6.3)

With the value of χ previously, we measure the dependence of δω10 on the drive

amplitude and extract m. In subsequent experiments we mapped drive amplitude to

resonator photon number via n = mA2.

6.3 Stimulated qubit transitions

The visibility of the qubit state measurement increases as we collect more scattered

photons. Therefore, probing the measurement circuit with a higher power pulse

should lead to better measurement visibility. However, at large numbers the resonator

photons induce qubit transitions between the |0〉 and |1〉 states [19, 44]. To determine

how hard we could drive the measurement system without disrupting the qubit, we

measured the qubit state transitions as a function of resonator drive power . We

prepared the qubit in either |0〉 or |1〉 and then applied a measurement pulse with
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Figure 6.4: AC Stark shift measured via qubit detuning during measurement.
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variable power. We then allowed the resonator to ring down, and finally probed the

resonator with a measurement pulse to determine the state of the qubit. The pulse

sequence is illustrated in Fig. 6.5 a. In this way we measured the probability of a

qubit transition from initial states {|0〉, |1〉} to final states {|0〉, |1〉, |2〉} as a function

of the driving DAC amplitude. We then converted the DAC amplitude to resonator

photon number using the ac Stark shift calibration.

We observe a sharp onset of stimulated qubit state transitions at sufficiently high

photon numbers, as shown in Fig. 6.5 b. As shown in Fig 6.5 b, |1〉 → |0〉 transitions

set in abruptly at n & 100. The complementary transition, |0〉 → |1〉 sets in at

n & 175. Note also that we observed transitions to |2〉 from both initial states.

At low photon numbers, the probabilities for no transition, such as |0〉 → |0〉,

are not 1. The main contributing factor to this is that when idle, the qubits are not

perfectly in the ground state. We observe between 4% and 8% idle |1〉 population,

which means that the |0〉 → |0〉 probability will be no greater than 0.92-0.96. This

same effect raises the |1〉 → |0〉 at low photon numbers: if the qubit is erroneously

prepared in |1〉, then a π-pulse intended to prepare |1〉 instead puts the qubit in |0〉.

This process manifests as a nonzero probability for |1〉 → |0〉 at low photon number.

We used these data to choose the maximum usable photon number. As a rule

of thumb, we kept the photon number at 1/2 the value of the sharp onset of qubit

state transitions. The exact value depended on the values of g for each qubit, and

the operating value of ∆. Later, in our analysis of the time dependent measurement
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fidelity, we will see that the fidelity numbers themselves place a strong bound on

the probability of stimulated qubit transitions, providing further indication that our

experiments were done at values of n which preserved the qubit state.

6.3.1 Comparison with theory

In the dispersive Hamiltonian given in Eq. (3.17), the photon number operator n

couples only to the qubit σz. Therefore, resonator photons should not induce upward

or downward transitions of the qubit state. Our treatment of the dispersive limit

assumes g/∆ � 1, but ignores the additional dimensionless factor of n itself. This

suggests that at large values of n, our lowest order expansion becomes insufficient

and other terms involving qubit transitions via σx or σy may appear. We do not give

a full account of this physics, but comment on how the critical n found in our data

relates to rough theoretical predictions. The dispersive Hamiltonian is an expansion

to first order in (g/∆)2. Therefore, we might expect qubit transitions for n > (∆/g)2.

In the literature, the critical photon number is defined as ncrit ≡ (∆/g)2/4. In the

present experiment we have ncrit ≈ 30. Interestingly, we do not observe stimulated

transitions until n ≈ 3ncrit.

To our knowledge, neither the precise photon number at which qubit transitions

are induced, nor even the sharp onset with increasing n has been understood in the

theoretical literature. Characterization and theoretical understanding of this effect

would be a natural continuation of the present work.
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Figure 6.5: Qubit transitions stimulated by the measurement pulse. a) Pulse se-
quence. The qubit is prepared into the |0〉 (|1〉) state with an idle (π-pulse) as shown
in blue. We then drive the measurement resonator with a variable power pulse, as
shown in green. This pulse can induce qubit state transitions. After a ring-down
period, we probe the measurement resonator with a low power pulse to measure the
state of the qubit. b) Probabilities for the final state of the qubit for initial states |0〉
or |1〉. Each curve labelled |i〉 → |f〉 gives the probability that the qubit prepared in
state |i〉 is measured at the end of the sequence to be in state |f〉.
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6.4 Coherence

The bandpass filter was designed to increase the κrT1 product. In Section 6.1.3 we

saw κr values as fast as 1/19 ns. It remains to see that the qubit T1 was preserved. We

measured each qubit’s T1 over a range of frequencies, finding typical values between

10µs and 12µs over a range of qubit frequencies giving ∆ > 800 MHz. A full data

set for qubit 2 is shown in Fig. 6.6. Without the filter, we expect a T1 limit of

(∆/g)2/κr = 3.2µs at ∆ = 800 MHz. As the measured T1 values exceed that limit,

we know that the filter successfully protected the qubit. Of course, the qubit T1 does

not reach the upper limit allowed by the filter. This was intentional, as we do not

want the measurement circuit imposing additional decoherence of the qubit. In other

words, the qubit T1 was dominated by loss channels other than the measurement

circuit.

6.5 Time dependence and accuracy

In this section we present the measurement accuracy and its dependence on integra-

tion time. The results presented here are the main results of the thesis.

6.5.1 State preparation - heralding

We found that the qubits had 5%-8% probability to be in the excited state when

idling. To remove this initialization error from characterization of the measurement
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Figure 6.6: Energy decay time T1 versus frequency for qubit Q2. With the measure-
ment resonator frequency above the qubit, the lack of downward trend in T1 with
increasing qubit frequency indicates that the measurement circuit does not dominate
the qubit damping. The T1 values are distributed around 10µs, which is several times
larger than the Purcell limit predicted in the absence of the filter. The dip and wild
variation in T1 5.2 GHz come from coupling to a resonator bus which was not used in
this experiment.
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process, we use heralding [19]. Each pulse sequence begins with a measurement pulse,

and only those experimental repetitions in which this first measurement pulse yields

|0〉 are kept. In this way, we effectively force the qubit into |0〉 at the start of each

pulse sequence. This heralding process brought the |0〉 preparation probability to

> 99.3%, as we will see below.

6.5.2 Fidelity at fixed measurement time

Preparing the qubit into either |0〉 or |1〉, we inject a measurement pulse and digitize

the scattered wave. We kept trials for which demodulation of the heralding pulse

yielded |0〉. We then demodulated the measurement signal for 140 ns, beginning

at the start of the measurement pulse when there were nearly zero photons in the

resonator. This yielded two sets of IQ points, one for |0〉 and one for |1〉 as shown

in Fig. 6.7. As predicted in Ch. 3, the demodulated IQ points form two dimensional

Gaussian distributions. The finite separation and width of the distributions means

that, with a single IQ measurement, we have a probability of erroneously identifying

the qubit state. We characterize the error in two ways: first using just the intrinsic

signal to noise ratio of the dispersed photons, and second including non-ideal behavior

of the qubit.

Separation error

We first characterize errors from the intrinsic signal to noise ratio of the dispersed

photons. This is captured by the separation error εsep defined in Ch. 3. Projecting
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the two dimensional IQ distributions onto the line connecting their centers produces

a pair of one dimensional Gaussian distributions, as shown in the inset of Fig. 6.7.

We find that the distributions are well fit by parabolas on the log scale, indicating

good Gaussian shape. From the fits, we compute εsep using Eq. (3.32). Here, we found

εsep = 0.2%.

State errors

In the histogram shown in the inset of Fig. 6.7, we can see bins with counts greatly

exceeding the parabolic fit. For example, there are far more red counts at x = −1

than predicted by the red fit line. These counts come from repetitions in which the

qubit undergoes a state transition event before or during the measurement pulse. A

simple example is a qubit which undergoes a T1 decay event near the beginning of

the measurement pulse. After the T1 decay, the qubit is in |0〉, so the measured IQ

point may be deep within the |0〉 cloud, but because that qubit was prepared as |1〉,

we mark it as red. Other sources of this type of error are |0〉 → |1〉 qubit transitions,

improperly prepared states due to the finite accuracy of the heralding measurement

pulse, and transitions induced by the measurement pulse itself. We define the “state

errors” ε|0〉 (ε|1〉) as the probability that a qubit nominally prepared in |0〉 (|1〉) is

incorrectly identified. We find ε|0〉 = 0.7% and ε|1〉 = 1.3%. These state errors are just

at the ∼ 1% threshold needed for the surface code. Larger qubit T1 values, accessible

through use of MBE grown aluminum films [27] would improve ε|1〉.
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Figure 6.7: Measurement events for one qubit after 140 ns pulse integration. Points
in the wrong cluster are due to unwanted qubit state transitions. The appearance
of more red points in the blue cluster than blue points in the red cluster is partially
an artefact of the plot, and partially due to the fact that the qubit undergoes more
downward transitions than upward transitions. The inset shows histograms of the IQ
points projected onto the line connecting the centers of the |0〉 and |1〉 clouds. Heavy
lines are Gaussian fits to the histograms are used for computing the separation error.
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6.5.3 Time dependence

While separation fidelity is improved by collecting more scattered photons, this re-

quires longer measurement and thus incurs more qubit errors. To fully characterize

this trade-off, we varied the upper limit of the time integration used in extracting the

IQ points, thus building a time series of |0〉 and |1〉 IQ clouds. We plot the data in

three dimensions, with time on the z-axis and with each x-y plane representing an

IQ plane at a single time. An example with the qubit prepared in |0〉, |1〉, and |2〉 is

shown in Fig. 6.8. Each thread in the plot corresponds to a single repetition of the

experiment, ie. a single measurement event. At the beginning of the measurement

pulse t = 0, the branches for the three prepared states are indistinguishable. At the

beginning of the pulse, photons begin to be collected, but the resonator has not yet

rung up, so the photons are not phase shifted. During this time, the branches all move

away from their starting position but remain clustered. Once the resonator has rung

up, the scattered photons carry information about the qubit state, and the branches

begin to separate. Integrating more signal and noise increases the separation and the

widths of the branches.

Next, we find the time dependent separation and state errors. For each time slice

during the measurement we construct IQ clouds as in Fig. 6.7. Once we recorded the

time domain traces I(t) and Q(t), we extracted the time dependent separation error

εsep(t) at each t in the same way as described above. We then used the separation

δ(t) ≡ |〈I(t)〉 − 〈Q(t)〉| as an optimal weighting window to re-integrate the data. In
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Figure 6.8: IQ trajectories during integration of the measurement pulse, showing
approximately 150 separate measurements. The three branches correspond to the
qubit prepared in the |0〉 (blue), |1〉 (red), or |2〉 (green) states. Note the green
threads which jump to the red branch part way through the measurement, which
represent |2〉 → |1〉 qubit transitions.
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Figure 6.9: Time dependence of measurement errors for qubits Q2 (circles) and qubit
Q4 (squares) measured simultaneously. Green points indicate the separation error
εsep, while the blue and red points represent ε|0〉 and ε|1〉 respectively. The data in
Fig. 6.7 came from the t = 140 ns point for Q2.

other words, once we knew δ(t) we multiplied I(t) and Q(t) by δ(t) and re-integrated.

This emphasized the data where the IQ clouds for each state are better separated.

From the re-integrated data we extract εsep, ε|0〉, and ε|1〉. We wish to build a multi-

plexed system capable of measuring several qubits simultaneously, so we performed

the experiment on two qubits, Q2 and Q4 at the same time, as shown in Fig. 6.9.

We focus first on the data for qubit Q2. The separation error changes slowly

with time for the first 50 ns while the resonator rings up. As shown in Fig. 6.3, the

resonator photon occupation reaches the maximum value after approximately 50 ns.

As the resonator photon number increases, the slope of εsep(t) increases until attaining

a constant value at about 125 ns of approximately one decade per 25 ns. The constant
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slope on the semi-log scale is consistent with Eq. (3.35).

The state errors decrease along with the separation error for the first 100 ns, and

then begin to saturate. The saturation is explained by two deleterious qubit state

transition processes. We have measured that, in equilibrium, the qubits experience

upward |0〉 → |1〉 transitions with a rate of Γ↑ ≈ 1/100µs, which result in excited

state populations of 5% to 8%. These transitions lead to state preparation errors; with

500 ns between the heralding and final measurements, we expect 0.5% re-population

of the excited state before the start of the final measurement. This nearly explains

the saturation of ε|0〉 at 99.3%. The second error process is the usual qubit energy

relaxation; a qubit transition before the halfway point of the measurement leads to

an error. With a measurement time of 140 ns and T1 = 10µs we expect an extra 0.7%

loss in excited state population, yielding an expected limit of 98.8%. This agrees well

with the measured ε|1〉 saturation at 98.7%.

The separation fidelity for Q4 is qualitatively similar to the data for Q2, but with

slower approach to the constant slope region. Qubit Q4 is slower because it has

κ−1
r = 147 ns, which is slower for Q2 where κ−1

r = 37 ns.

These data demonstrate the viability of multiplexed, dispersive state measure-

ment. In particular, the qubit with fast κr approaches 99% accuracy for the state

errors in this multiplexed measurement.

As the more aggressive κr used in qubit Q2 did not produce a measurable sup-

pression in T1, future designs should use even faster values of κr. The qubit with the
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most aggressive κr in the present experiment, Q1, could not be carefully characterized

because of the error which placed Q3’s measurement resonator too close in frequency

to Q1’s measurement resonator.

6.5.4 Multiplexed measurement

We measured all four qubits simultaneously, as shown in Fig. 6.10. Three of the four

qubits, Q1, Q2, and Q3, reached εsep < 1% within 200 ns. The fourth device, Q4,

which had the most conservative κrT1 product, reached εsep = 1% in 266 ns. In order

to prevent saturation of the parametric amplifier while simultaneously measuring all

four devices, we reduced the drive powers relative to the two qubit case discussed

previously. This lead to lower SNR and accordingly required longer integration time,

which is why the time for eg. Q2 to reach εsep = 1% is longer here than in Fig.6.9.

For qubits Q2 and Q4 the performance is nearly as good as for the two qubit case.

The small degradation of performance comes from increased qubit transitions during

the longer measurement time. Qubits Q1 and Q3 show higher ε|1〉. As shown in the

inset of Fig. 6.1 the measurement resonators for qubits Q1 and Q3 are closely spaced in

frequency (13 MHz). This close spacing adversely affects the frequency discrimination

step of the measurement via spectral leakage, leading to increased measurement error.

This is seen in Fig. 6.10 where the εsep(t) for Q3 does not follow a line on the semi-log

plot. More importantly, the measurement photons induce large qubit frequency shifts

(200 MHz to 300 MHz) via the ac Stark effect, as shown in Fig. 6.3. This causes the
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Figure 6.10: Simultaneous measurement of four qubits. Separation (green) and state
(blue and red) fidelities are shown similarly to Fig. 6.9. Ripples on qubits Q1 and Q3

were caused by spectral leakage.

qubits to cross through resonance with material defects and lose |1〉 population. This

was the main cause of the poor ε|1〉 on Q1. We were able to mostly work around this

problem with careful choice of operating frequency in qubits Q2, Q3, and Q4, but

limited total available frequency space led to degraded performance in Q1 which was

tuned up last. This problem would be substantially mitigated in devices constructed

with epitaxial Al films grown on plasma cleaned substrates as, this was shown to

significantly reduce the number and coupling strengths of the defects [27].
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6.6 Measurement efficiency

If scattered photons are lost through absorption, or if the parametric or HEMT am-

plifiers add noise to the scattered signal, the measurement performance degrades.

We characterized these imperfections by comparing the effect of the measurement

photons on the qubit against the resulting measurement visibility.

In Chapter 3 we found a relation between the measurement SNR, and the asso-

ciated qubit dephasing. For a given measurement pulse power, if the measurement

visibility is less than that predicted by Eq. (3.44), we would conclude that some of the

scattered photons must have been lost, or additional noise must have been injected

into the processing chain. In one experiment, we measured the photon induced qubit

dephasing via Ramsey fringes, where we added a variable power measurement pulse

between the usual two π-pulses in the standard Ramsey sequence. This measurement

pulse dephases the qubit and lowers the visibility of the Ramsey fringes. We record

the resulting fringe visibility as a function of measurement pulse power. In a second

experiment, we prepare the qubit in either |0〉 or |1〉 and then apply a measurement

pulse, recording the SNR as a function of pulse power. We then convert SNR to an

upper bound on phase coherence via Eq. (3.44).

We extract the system efficiency by comparing the directly measured Ramsey

visibility against the quantum limit implied from the second experiment, as shown

in Fig. 6.11. We found that the Ramsey visibility curve is shifted 9 dB to the left

of the quantum limit curve, indicating that our measurement system has a quantum
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efficiency of η = −9 dB ≈ 12%.

Quantum efficiency less than 1 comes from photon loss and/or added noise, so

we attempt to budget this -9 dB efficiency in terms of lossy hardware elements and

known noise sources in the experiment. At least 3 dB efficiency loss comes from

the parametric amplifier, as a phase insensitive parametric amplifier adds an input

referred noise of ~ωr/2 noise power per unit bandwidth [11]. The photon states

themselves carry ~ωr/2 quantum noise power per unit bandwidth, so the parametric

amplifier degrades the signal to noise ratio by at least a factor of 2 = 3 dB.

The remaining 6 dB must come from a combination of other noise sources and

photon loss. Referring back to the diagram of the experimental apparatus shown in

Fig. 5.1, we find a large number of microwave elements, each of which contributes some

loss. The IR filter itself is known to have approximately 2 dB loss at our measurement

frequencies near 7 GHz. The three circulators are expected to contribute a total of

∼1 dB loss. The dispersed signal makes roughly 20 trips through SMA connectors.

With 0.03 dB specified insertion loss per SMA connector, assuming the insertion loss

really is a loss, the connectors contribute at least another 0.5 dB loss. The HEMT

amplifier adds noise. We operated with parametric amplifier gain near 16 dB, which

results in an effective output noise temperature of T = 1016/10hν/kb ≈ 13 Kelvin. This

is about 5 times higher than the HEMT noise temperature of ∼2.5 Kelvin, resulting

in another 1 dB of noise added by the HEMT.

With these considerations we have approximately 1.5 dB loss or added noise un-
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accounted for, which corresponds to 70% efficiency. This extra efficiency loss could

be carefully studied in further experiments.

Without precise measurements of the loss of each hardware element, it is difficult

to estimate the uncertainty of the numbers discussed above. However, the SMA

connectors deserve special attention. The insertion loss of an SMA connector does

not necessarily come from a dissipative processes; non-zero reflections from the input

contribute to insertion loss. Therefore, our assumption that the collective insertion

losses of the 20 SMA connectors add together is not necessarily well founded. Ignoring

the SMA connector insertion loss, we compute 2.0 dB loss or added noise unaccounted

for.
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Figure 6.11: Quantum efficiency of the measurement system. Performing a standard
Ramsey fringe sequence, but with a measure pulse in between the π/2-pulses, we mea-
sure the relative fringe visibility as a function of measure pulse power (blue squares).
The fringe visibility data becomes noisy at visibilities < 3%. We also measure the
distinguishability between the qubit states versus measure pulse power, and convert
to a quantum limit on Ramsey fringe visibility via Eq. (3.44) (green circles). The
comparison between these curves is clarified by re-plotting the quantum limit shifted
by 9 dB (red line), which goes through the Ramsey visibility points.
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Appendix A

Quantum Mechanics Reference

A.1 Commutators

A.1.1 Products

[A,BC] = ABC −BCA (A.1)

= ABC −BAC +BAC −BCA (A.2)

= [A,B]C +B[A,C]. (A.3)

This can be remembered by noting that [A, ·] is like a derivative with respect to A.

A.1.2 Translation by an operator

A very common expression involves the translation of an operator A by another

operator B. The translation can be expressed as a sum

eABe−A =
∞∑
n=0

1

n!
[A, [A, [A, . . . [A,B]]]]︸ ︷︷ ︸

n times

. (A.4)
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We can also derive a differential equation that helps in evaluating this sort of ex-

pression. Define

O(λ) = eλABe−λA. (A.5)

Differentiating both sides with respect to λ gives

dO
dλ

= [A,O(λ)]. (A.6)

It is sometimes useful to solve equation (A.6) and then set λ = 1 instead of evaluating

(A.4) directly.

A.1.3 Baker-Campbell-Hausdorff

The BCH formula provides a summation representation of the product of two expo-

nentiated operators,

eAeB = eA+B+ 1
2

[A,B]+ 1
12

([A,[A,B]]−[B,[A,B]])+···. (A.7)

A.1.4 Conjugate Variables

Two operators α and β are “conjugate” if they have the commutator

[α, β] = η (A.8)

where η is a complex number. If an operator A is normal ordered (all α’s to the left

of all β’s) then we have the following extremely useful formulae,

[α,A] = η
∂A

∂β
and [β,A] = −η∂A

∂α
(A.9)
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Conjugate variables also have a very simple translation property

eiα̂β̂e−iα̂ = β̂ + iη. (A.10)

A.2 Pauli operators

A.2.1 Representation

The Pauli operators can be represented as

σx =

(
0 1
1 0

)
(A.11)

σy =

(
0 −i
i 0

)
(A.12)

σz =

(
1 0
0 −1

)
(A.13)

A.2.2 Products and commutators

The Pauli operators anticommute

σiσj = −σjσi (i 6= j) (A.14)

and have a convenient product property

σiσj = iεijkσk. (A.15)
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From the product and anticommutation follows the commutation relation

[σi, σj] = 2iεijkσk. (A.16)

A.2.3 Translation

The problem of translating one Pauli operator by another arises frequently when

analyzing qubit systems. We wish to evaluate

S(Q) = e−iQσiσje
iQσi . (A.17)

We use the differential equation (A.6) with A = −iQσi to get

dS

dQ
= i[S(Q), σi]. (A.18)

We postulate the solution

S(Q) = α(Q)σj + β(Q)σk. (A.19)

First work out the commutator i[S(Q), σi]

i[S(Q), σi] = i[ασj + βσk, σi]

= i (−2iασk + 2iβσj)

= 2ασk − 2βσj.

Equating the right hand side with the explicit derivative of S yields

α̇(Q) = −2β(Q) β̇(Q) = 2α(Q)

with solution

α(Q) = cos (2Q) β(Q) = sin (2Q) .
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Therefore

e−iQσiσje
iQσi = cos (2Q)σj + sin (2Q)σk. (A.20)

A.3 Rotating Frame

The basic qubit Hamiltonian is

Hq/~ = −ωq
2
σz (A.21)

A quantum state under this Hamiltonian precesses around the Z axis. In the lab we

are used to thinking about a rotating frame in which this precession is absent. We

now show how do we do this mathematically.

In the Schrodinger picture the time evolution operator for a Hamiltonian H0 is

T = exp

[
− i
~
H0t

]
. (A.22)

Intuitively, we should just apply the inverse of this evolution to the Schrodinger state

vector in order to remove the precession. We can then define a state in the rotating

frame as

|Ψ′(t)〉 = R|Ψ(t)〉 (A.23)

where R = T †. Computing the time evolution of this new state we get

i~∂t|Ψ′(t)〉 = i~Ṙ|Ψ(t)〉+Ri~∂t|Ψ(t)〉 (A.24)

= i~ṘR†|Ψ′(t)〉+RH0R
†|Ψ′(t)〉 (A.25)

=
(
i~ṘR† +RH0R

†
)
|Ψ′(t)〉. (A.26)
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This can be interpreted as a Schrodinger equation for a system with Hamiltonian

H ′0 = i~ṘR† +RH0R
†. (A.27)

Note that this result is correct for any R, not necessarily inverse of the Schrodinger

evolution operator.

In the case that R = T † the resulting Hamiltonian is particularly simple, as

expected

H ′0 = i~(iH0/~)RR† +H0 (A.28)

= 0. (A.29)

Here we used the fact that R, like T is unitary, and that ∂tT = −i(H0/~)T . The

point is that if we rotate the frame at the same rate as the Hamiltonian was rotating

the states, the effective Hamiltonian becomes zero.

An extremely important fact to note is that if we take the rotation operator R to

be the inverse of the time translation operator induced by the original Hamiltonian,

then the effect on any other perturbation or coupling terms V is V → RV R† = T †V T ,

which is identical to the transformation found in the interaction picture.
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Appendix B

Quantum Oscillator Reference

In this appendix we list basic results of the quantum harmonic oscillator. Although

this problem is treated in many textbooks, some useful formulae, such as the zero

point fluctuations, and useful derivatives with respect to the raising and lowering

operators, are frequently neglected.

B.1 General Form

The general form of the Hamiltonian for a harmonic oscillator is

H =
1

2
αu2 +

1

2
βv2 [u, v] = iγ. (B.1)
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Using dimensionless operators

X ≡ 1√
2γ

(
α

β

)1/4

u and Y ≡ 1√
2γ

(
β

α

)1/4

v (B.2)

[X, Y ] = i/2 (B.3)

we get a new form of the Hamiltonian

H = γ
√
αβ
[
X2 + Y 2

]
. (B.4)

We also introduce raising and lowering operators a and a† defined by the following

equations

a = X + iY a† = X − iY

X =
1

2

(
a+ a†

)
Y =

−i
2

(
a− a†

)
(B.5)

[a, a†] = 1. (B.6)
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Writing down the expression for a†a and expanding it in terms of the X and Y

operators, we find

γ
√
αβ(a†a) = γ

√
αβ(X − iY )(X + iY )

= γ
√
αβ
(
X2 + iXY − iY X + Y 2

)
= γ

√
αβ
(
X2 + Y 2 + i [X, Y ]

)
= γ

√
αβ
(
X2 + Y 2 − 1/2

)
= H − 1

2
γ
√
αβ

so H =

(
a†a+

1

2

)
γ
√
αβ.

It will be shown below from Heisenberg’s equations of motion that

~ω = γ
√
αβ (B.7)

which means that the Hamiltonian can be written as

H = ~ω
(
a†a+

1

2

)
. (B.8)

B.1.1 Zero point fluctuation

The zero point fluctuation of X is

〈0|X2|0〉 =
1

4
〈0|a2 + aa† + a†a+ a†

2 |0〉 = 1/4 (B.9)
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which we write compactly as

〈X2〉0 = 〈Y 2〉0 = 1/4. (B.10)

From this, we compute the zero point fluctuations of u and v,

〈u2〉0 =
1

2
γ
√
β/α 〈v2〉0 =

1

2
γ
√
α/β. (B.11)

Defining u2
zpf ≡ 〈u2〉0 we have

X =
1

2

u

uzpf

Y =
1

2

v

vzpf

(B.12)

B.2 Algebra

From the commutator [a, a†] = 1 and the conjugate variables formulae in Appendix

A it follows that

[a, T ] =
∂T

∂a†
[a†, T ] = −∂T

∂a
(B.13)

as long as T is written in normal order form (all a† operators to the left of all a

operators). This is extremely useful when computing dynamics in the Heisenberg or

interaction picture, as will be shown in the next section.

B.3 Equations of Motion

The Heisenberg equation of motion for the a operator is

176



i~dta = [a,H]

= γ
√
αβ[a, a†a+

1

2
]

= γ
√
αβ

∂(aa†)

∂a†

= γ
√
αβ a

giving

ȧ = −iγ
√
αβ

~
a. (B.14)

Solving this simple differential equation yields

a(t) = a(0) exp [−iωt] and a†(t) = a†(0) exp [iωt] . (B.15)

where ω ≡ γ
√
αβ/~ as claimed above. Note that the evolution of a in the phase plane

is clockwise, ie. the phasor convention we inherit from Schrodinger’s (Heisenberg’s)

equation has a−i. This is important interpreting the meaning of positive and negative

energy in a quantum calculation.

177



178



Appendix C

IQ Mixer

C.1 Modulation

When an IQ mixer is used for modulation (up-conversion) a carrier tone is put into

the LO port, and modulating signals are put into the I and Q ports. The input tone

cos(Ωt) is multiplied by the I channel, a quarter cycle phase shifted copy of the tone

− sin(Ωt) is multiplied by the Q channel, and then both results are summed and put

out the RF port.

Consider a case where I = cos(ωt + φ) and Q = sin(ωt + φ). The output of the

device is then

s(t) = cos(Ωt) cos(ωt+ φ)− sin(Ωt) sin(ωt+ φ)

=
1

2
[cos([Ω + ω]t+ φ) + cos([Ω− ω]t− φ) · · ·

+ cos([Ω + ω]t+ φ)− cos([Ω− ω]t− φ)]

= cos([Ω + ω]t+ φ) (C.1)
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Think of the incoming I and Q channels as coordinates in an IQ plane. In this

picture the inputs we chose form a counter-clockwise rotating circle with frequency

ω and phase φ. As we’ve computed, this counter-clockwise rotating circle produces

a positively detuned sideband at the output of the mixer. The rotation rate of the

input IQ signal translates directly to the detuning of the output signal away from the

carrier, and the phase of the input circle translates directly to the phase of the output

signal. In fact this observation leads us to a really convenient way to remember this

result. If we treat the IQ plane as a complex number plane, then the trajectory of

our counter-clockwise moving point can be written simply as

zIQ(t) = exp[i(ωt+ φ)] (C.2)

Then, to recover the output signal, we just multiply by exp[iΩt] and take the real

part,

z(t) exp[iΩt] = exp[i(ωt+ φ)] exp[iΩt] (C.3)

z(t) exp[iΩt] = exp[i(Ω + ω)t+ iφ] (C.4)

Re (z(t) exp[iΩt]) = cos[(Ω + ω)t+ φ] (C.5)

From equation (C.1) you can see that if we reverse the orientation of our rotating

signal by setting Q = − sin(ωt+ φ), the output would have been negatively detuned,

and would have had a negative phase shift. This is consistent with our complex

representation: the clockwise rotating signal cos[ωt + φ] − sin[ωt + φ] has complex

representation z(t) = exp[−i(ωt + φ)]. Multiplying by exp[iΩt] and taking the real
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part gives cos[(ω − ω)t− φ], which is the correct real signal.

In summary, if we view the inputs to the I and Q ports of an IQ mixer as real

and imaginary coordinates, then the map between the input and the output signals

is

exp[i(ωt+ φ)]→ cos[(Ω + ω)t+ φ] (C.6)

C.2 Demodulation to baseband

Consider a high frequency signal s(t) = cos[(Ω + ω)t + φ] coming into the RF port

of an IQ mixer. Into the LO port we put cos(Ωt + δ). If we filter away the high

frequency part of the outputs, the output of the I port is

I(t) = cos[(Ω + ω)t+ φ] cos[Ωt+ δ]

=
1

2
(cos[(2Ω + ω)t+ φ+ δ] + cos[ωt+ φ− δ])

=
1

2
cos[ωt+ φ− δ] (C.7)

Similarly the Q port output is

Q(t) = cos[(Ω + ω)t+ φ](−1) sin[Ωt+ δ]

=
1

2
(sin[(2Ω + ω)t+ φ+ δ] + sin[ωt+ φ− δ])

=
1

2
sin[ωt+ φ− δ] (C.8)

These signals can be though of as the real and imaginary parts of a complex signal
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z(t) = exp [i (ωt+ φ− δ)] (C.9)

I(t) =
1

2
Rez(t) Q(t) =

1

2
Imz(t) (C.10)

Note that the phase of the complex signal is the difference between the phase of the

high frequency signal and the phase of the local oscillator. Conveniently, we we think

of the incoming high frequency signal as the real part of a complex signal

zhf = Re exp [i (Ω + ω) t+ φ] (C.11)

and the action of the demodulating IQ mixer, plus the low pass filtering, can then

be written as multiplication by exp [−i(Ωt+ δ)].

In summary, when a high frequency signal at frequency Ω + ω and phase φ is

demodulated by an IQ mixer with an LO signal of frequency Ω and phase δ, the I

and Q outputs are given by the real and imaginary parts of

z(t)demod = exp [−i (Ωt+ δ)]︸ ︷︷ ︸
effect of mixer

exp [i (Ω + ω) t+ iφ]︸ ︷︷ ︸
incoming signal

= exp [i (ωt+ φ− δ)]

C.3 Demodulation to DC

Now that we have baseband I and Q signals we want to extract the phase and ampli-

tude of the original high frequency signal. Symbolically what we would like to do is

multiply our complex baseband signal by exp [−iωt] and integrate. The result would
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be a complex number A exp [i (φ− δ)] with amplitude proportional amplitude of the

original signal. Of course, we can’t produce complex numbers in real life, but if we

work out the real and imaginary parts we can figure out how to emulate the complex

algebra by effecting two separate real signal processes.

First express the complex representation of the IF signal in terms of I(t) and Q(t)

z(t) = I(t) + iQ(t). (C.12)

Multiplying by the desired exponential gives

z(t) exp (−iωt) =

I(t) cos(ωt) +Q(t) sin(ωt)

+i[−I(t) sin(ωt) +Q(t) cos(ωt)] (C.13)

From this expression we can see that the final I and Q coordinates are given by

I =
∑

I(t) cos(ωt) +Q(t) sin(ωt) (C.14)

Q =
∑

Q(t) cos(ωt)− I(t) sin(ωt) (C.15)

There are thus four integrals that have to be done in the FPGA board to compute

the IQ result. Note that since each signal is multiplied and summed with either sine

or cosine the data flow can be greatly simplified in the software. In other words, there

are four integrals to do, but only two digital functions to generate 1.

1In fact we can use the same lookup table to generate the sine and cosine by offsetting one quarter
cycle in the table
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C.4 Demodulation Mixer Imbalance

What happens if the demodulating mixer has imbalance in the power coming from

the I and Q ports? In that case we would get something like

I(t) = C cos(ωt) Q(t) = S sin(ωt) (C.16)

with C 6= S. These cannot be represented as the real and imaginary parts of a single

exponential. They can be written as the real and imaginary parts of

A1 exp [ωt] + A2 exp [−ωt] (C.17)

as long as

A1 + A2 = C A1 − A2 = S (C.18)

This means that in a system with imbalanced I and Q ports we will measure false

peaks at frequencies mirrored about the carrier from the real signal.

184



Appendix D

Formal Theory of Superconducting

Qubits

D.1 Introduction - Parallel LC

Before studying true qubits, we consider a parallel LC circuit as shown in Fig. D.1.

Although this circuit is harmonic and therefore not usable as a qubit, we use it as

a solvable proxy for the true qubit circuit. We make contact to weakly anharmonic

qubits with the substitutions

a+ a† → σx and a− a† → iσy . (D.1)

For highly anharmonic qubits like the flux qubit the results found here are still useful

as they produce the correct dependence of important parameters such as coupling

strength on qubit properties such as impedance and frequency.
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From Kirchoff’s laws the equation of motion for the harmonic circuit is found to

be

Φ̈ + ω2
LCΦ = 0 (D.2)

where ωLC = 1/
√
LC. This equation of motion is reproduced by the Lagrangian 1

L =
1

2
CΦ̇2 − 1

2L
Φ2 (D.3)

where Φ is the flux through the inductor. The momentum conjugate to the flux Φ is

p =
∂L
∂Φ̇

= CΦ̇. (D.4)

As Φ̇ is the voltage across the LC circuit, the canonical momentum p is just the

charge Q on the capacitor. Therefore, Φ and Q are so-called canonically conjugate

variables.

The Hamiltonian of the system is

H = pΦ̇− L =
Q2

2C
+

Φ2

2L
. (D.5)

If the circuit is sufficiently decoupled from noisy environmental degrees of freedom, it

behaves quantum mechanically and we should think of Φ and Q as operators. As they

are canonically conjugate we have [Φ, Q] = i~. Equation (D.5) and the commutation

relation provide the complete starting point for the study of the LC oscillator in

quantum mechanics and the system is studied in generality and detail in Appendix

B. There we find that the Hamiltonian can be re-expressed as

H = ~ωLC
(

1

2
+ a†a

)
(D.6)

1Lagrange’s equation of motion is d
dt

(
∂L
∂Φ̇

)
− ∂L

∂Φ = 0.
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Figure D.1: A parallel LC circuit. The main circuit is shown in solid line, while the
driving circuit is shown in dotted line.

where

a ≡ 1√
2~

(
1√
ZLC

Φ + i
√
ZLCQ

)
. (D.7)

This is the conventional form for a quantum harmonic oscillator.

D.2 Driving

We next consider driving signals applied to the circuit. We attach a driving voltage

source to our parallel LC through a capacitor Cd, as shown by the dotted elements in

Fig. D.1. The capacitor Cd is required to prevent the driving circuit from completely

ruining the coherence of the main circuit. Without the capacitor, the loaded quality

factor Ql of the main circuit would be F

Ql = Rd/ZLC . (D.8)

With typical circuit impedances in the range 10’s to 100’s of Ohms, and RF source

resistances of 50 Ω 2, we have Ql ≈ 1 which is far too low to be useful in a quantum

2Commercial RF devices essentially all use 50Ω output impedance. This is simply due to the
fact that a coaxial transmission line of reasonable size has near 50 Ω impedance. The impedance
depends logarithmically on geometric parameters and so cannot be significantly varied. 50Ω has
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device 3.

The coupling capacitor Cd helps preserve the circuit coherence. If Cd is sufficiently

small, it’s impedance ZCd = 1/iωCd is large and so the current flowing through Rd is

reduced. Therefore, Cd prevents the process by which energy from the oscillator gets

into Rd and is lost. To be specific, in the limit ZCd � Rd the loaded quality factor of

the oscillator is F

Ql =

(
C

Cd

)2
ZLC
Rd

. (D.9)

Therefore, a small Cd preserves the circuit’s coherence. However, decoupling the

drive line from the driving voltage source with a small Cd also limits the speed with

which we can control the circuit, so a balance must be struck. This issue is discussed

in detail below.

We now turn back to formal analysis of the driven circuit. Before doing the

calculation we make some qualitative predictions. The main capacitor C is shunted

by the series combination of the coupling capacitor Cd, and the resistor Rd. Because

ZCd � Rd the impedance of the driving circuit is dominated by Cd which simply adds

in parallel with C. Therefore, we expect the effective capacitance of the mode to be

C + Cd.

Denoting the time dependent driving voltage by Vd(t) and ignoring for now the

resistance of the source, we work out Kirchoff’s equation of motion for the driven

been chosen as a common standard
3The energy relaxation time of the circuit is T1 = Ql/ω, so for a 1 GHz device Ql = 1 corresponds

to T1 = 0.16 ns.
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system, resulting in

1

1 + C/Cd
V̇d = Φ̈ +

ω2
0

1 + Cd/C
Φ. (D.10)

This is totally sensible: the drive strength increases as Cd increases, and the resonance

frequency of the LC mode has shifted due to the new capacitance. This equation of

motion is produced by the following Lagrangian

L =
1

2
CΦ̇2 − 1

2L
Φ2 +

1

2
Cd

(
Φ̇− Vd

)2

. (D.11)

For the sake of identifying canonical coordinates consider the case Vd = 0. Doing

this gives canonical variables

Φ and p =
∂L

∂Φ̇
= (C + Cd) Φ̇ ≡ Q (D.12)

just as before, except that now the capacitance associated to the momentum Q is

C + Cd instead of just C. The Hamiltonian is

H =
Q2

2(C + Cd)
+

Φ2

2L
. (D.13)

Now we consider what happens when the drive turns on. The term added to the

Lagrangian by the drive is

Ld =
1

2
CdVd(t)

2 − CdΦ̇Vd(t) . (D.14)

The first term is of no consequence as it does not involve the dynamical variables.

The second term couples the drive to the momentum Q. This is clear if we express

the driving Lagrangian in terms of a Hamiltonian
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Hd = CdΦ̇Vd(t) (D.15)

=
1

1 + C/Cd
QVd(t). (D.16)

From Appendix B, we find that we can re-express Q as

Q = −iQzpf(a− a†) (D.17)

where Qzpf ≡
√

~/2ZLC and ZLC ≡
√
L/CΣ. Inserting this into the driving Hamil-

tonian, and taking Vd(t) = V0f(t) gives

Hd =
−iQzpf

1 + C/Cd
V0f(t)(a− a†). (D.18)

In a two level approximation for a qubit, (a−a†)→ iσy and the driving Hamiltonian

becomes

Hd =
Qzpf

1 + C/Cd
V0f(t)σy . (D.19)

This form of the driving Hamiltonian is not particularly useful as it does not commute

with the circuit’s intrinsic Hamiltonian. This problem will be addressed below where

we study the driving Hamiltonian in the rotating frame. Still, we can already see

one important point: the coupling of the drive signal to the circuit scales with the

zero point fluctuations in the circuit’s charge, and therefore inversely with
√
ZLC. In

other words, low impedance would appear to give stronger coupling. However, one

must be careful about what is being held constant. Assuming fixed ωLC and C � Cd,

we find that the drive Hamiltonian is proportional to

ωLC
√
ZLC (D.20)
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Figure D.2: Two circuits coupled through a capacitor Cg.

which increases for increasing impedance. These same arguments apply to qubit-

qubit coupling, as will be described below.

D.2.1 Summary - Simple derivation

The energy stored in the drive capacitor is Ed = 1
2
Cd (Vd − Vq)2. Keeping only the

terms involving both the qubit and drive voltages yields

Ed = −CdVdVq = −CdVd
Q

C
(D.21)

where Q is the qubit charge. This matches Eq. (D.16), up to the sign, in the practical

limit C � Cd.
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D.3 Coupling

D.3.1 Capacitive coupling

The circuit shown in Fig. D.2 has the following Lagrangian

L =
1

2
C1Φ̇2

1 +
1

2
C2Φ̇2

2

+
1

2
Cg

(
Φ̇1 − Φ̇2

)2

− 1

2L1

Φ2
1 −

1

2L2

Φ2
2 . (D.22)

The kinetic term can be rewritten as

T =
1

2

(
Φ̇1 Φ̇2

)( C ′1 −Cg
−Cg C ′2

)(
Φ̇1

Φ̇2

)
(D.23)

where C ′1 ≡ C1 + Cg and similarly for C ′2. The canonical momenta are

p1 =
dL

dΦ̇1

= C ′1Φ̇1 − CgΦ̇2

p2 =
dL

dΦ̇2

= C ′2Φ̇2 − CgΦ̇1 (D.24)

which can be written as

(
p1

p2

)
=

(
C ′1 −Cg
−Cg C ′2

)(
Φ̇1

Φ̇2

)
(D.25)

Note the recurrence of the matrix from equation (D.23). Naming this matrix M we

can write
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T =
1

2

(
Φ̇1 Φ̇2

)
M

(
Φ̇1

Φ̇2

)
(D.26)(

Φ̇1

Φ̇2

)
= M−1

(
p1

p2

)
(D.27)

Substituting equation (D.27) into (D.26) and using the facts that matrix transposi-

tion commutes with matrix inversion and that M is symmetric we get

T =
1

2

(
p1 p2

)
M−1

(
p1

p2

)
. (D.28)

The inverse of the 2x2 matrix M is

M−1 =
1

C1C2 + Cg(C1 + C2)

 C ′2 Cg

Cg C ′1



≡

 1/C ′′1 1/C ′′g

1/C ′′g 1/C ′′2

 . (D.29)

Finally, the kinetic term of the Langrangian is

T =
p2

1

2C ′′1
+

p2
2

2C ′′2
+
p1p2

C ′′g
. (D.30)

Let us now understand the quantities C ′′1 and C ′′2 in a simple way. The capacitance

to ground from the signal node of circuit 1 is
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C1,total = C1||(Cg in series with C2)

= C1 +
CgC2

Cg + C2

=
C1C2 + Cg(C1 + C2)

Cg + C2

which is exactly equal to our expression for C ′′1 . Therefore we’ve found that the

effective capacitance associated with the the canonical charge is just the

capacitance to ground of the conjugate flux’s signal node.

The quantities p1 and p2 have dimensions of charge so we will rename them Q̃1

and Q̃2. The tildes remind us that they are not the usual single qubit charges.

The coupling term in the Hamiltonian, eq. (D.30), is

Hg =
Q̃1Q̃2

C ′′g
. (D.31)

We would like to re-express it in terms of Pauli operators. If we use the (very

good) approximation that the normal modes are harmonic we can rewrite the charge

operators as

Q̃ = −iQzpf(a− a†) . (D.32)

The parameter Qzpf is the rms zero point fluctuations in charge and is given by (see

Appendix B)

Qzpf =

√
~

2Z
=

√
~ωC

2
. (D.33)

Substitution of this expression for the Q̃ coordinates turns the coupling Hamiltonian

194



into

Hg =
Q1,zpfQ2,zpf

C ′′g
(−i)(a1 − a†1)(−i)(a2 − a†2)

=
~
2

√
ω1ω2C ′′1C

′′
2

Cg
C1C2 + Cg(C1 + C2)

(σy ⊗ σy)

=
1

2

Cg√
C ′1C

′
2

~
√
ω1ω2(σy ⊗ σy)

where we have again used a two level approximation a− a† → σy. We combine the

prefactors into a parameter g and write the Hamiltonian as

Hg = g (σy ⊗ σy) (D.34)

where g, called the “coupling strength”, is defined as

g ≡ 1

2

Cg√
C ′1C

′
2

~
√
ω1ω2 . (D.35)

Taking C1 ≈ C2 and ω1 ≈ ω2, then using C = 1ωZLC we find

g ∝ ZLC . (D.36)

D.3.2 Summary - Simple derivation

The energy in the coupling capacitor is

Eg =
1

2
Cg (V1 − V2)2 .

Keeping only the term which couples the qubits, we find

Eg = −CgV1V2 = −Cg
Q1

C1

Q2

C2

. (D.37)
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This matches Eq. (D.31), up to the sign, in the practical limit C1, C2 � Cg.

D.4 Rotating Frame

The driving and coupling Hamiltonians we have written down are not well suited

for calculations because they do not commute with the intrinsic qubit Hamiltonian,

which is typically proportional to either σx or σz. This non-commutativity is the

mathematical manifestation of the physical fact that, in the lab frame, the qubit

state processes about an axis in the Block sphere. For this reason, it is much easier

to reason in a frame that rotates about that axis at a frequency near or equal to the

resonance frequency of the device, i.e. in a rotating frame. In this section we show

how to re-express the driving and coupling Hamiltonians in a rotating frame.

The single qubit Hamiltonian for single nearly harmonic qubits like the transmon

is

Hq/~ = −ωq
2
σz (D.38)

where ωq = ω0 + δω. Think of ω0 as an idle point frequency and δω as a dynamic

detuning. The Schrodinger picture time evolution operator is T = exp [−iH/~]. In

order to remove the idle point precession of the qubit state, we take as the rotation

operator

R = T † = exp
[
−iω0

2
tσz

]
, (D.39)

eg. we rotate the frame by the idle frequency of the qubit. We compute the remaining
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effective Hamiltonian H ′ according to A

H ′/~ = iṘR† +R
Hq

~
R (D.40)

= i
(
−iω0

2

)
σzRR

† +R
Hq

~
R† (D.41)

= −δω
2
σz. (D.42)

This is precisely the Hamiltonian of a qubit with frequency δω. In other words, if

we go into a frame rotating at the idle frequency of the qubit, what remains is just

the qubit precession at the detuning frequency. In particular if the frame rotates at

the same frequency as the qubit the Hamiltonian becomes zero.

D.4.1 Operators

Since we are going to want to work in a frame in which the qubit intrinsic Hamiltonian

is zero it will be useful to find the form of various operators in that frame. We list here

the transformation of the Pauli operators under a frame rotating about the z-axis at

frequency ωr. The rotation operator is R = exp
[
−i1

2
ωrtσz

]
A and the transformed
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Pauli operators are

RσxR
† = cos(ωrt)σx + sin(ωrt)σy

RσyR
† = cos(ωrt)σy − sin(ωrt)σx

RσzR
† = σz

Rσ+R
† = eiωrtσ+

Rσ−R
† = e−iωrtσ− .

D.4.2 Driving

We now consider the driving Hamiltonian in the rotating frame. From Eq. (D.19) we

have the driving Hamiltonian in the lab frame

Hd = hdf(t)σy (D.43)

where hd ≡ QzpfV0/(1 + C/Cd). We use the rotation operator

R = exp
[
−iωr

2
tσz

]
(D.44)

to find the transformed driving Hamiltonian

RHdR
†/hd = e−i

ωr
2
tσzf(t)σye

iωr
2
tσz

= f(t) [cos (ωrt)σy − sin (ωrt)σx] . (D.45)

Now suppose f(t) is a sinusoid with an envelope e(t),
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f(t) = e(t) sin (ωdt+ φd) (D.46)

= e(t) [cos (φd) sin (ωdt) + sin (φd) cos (ωdt)] (D.47)

= e(t) [I sin (ωdt)−Q cos (ωdt)] . (D.48)

Multiplying everything in eq (D.45) together and throwing out the high frequency

terms we get

RHdR
†/hd =

e(t)

2
[sin(δωt+ φd)σy

− cos(δωt+ φd)σx] (D.49)

= −e(t)
2

[
e−i(δωt+φd)σ+

+ei(δωt+φd)σ−
]

(D.50)

where δω ≡ ωd − ωr. In matrix form this reads

RHdH
†/hd = −e(t)

2

(
0 ei(δωt+φd)

e−i(δωt+φd) 0

)
. (D.51)

If the drive is on resonance with the frame, and therefore on resonance with the

qubit, then we are left with

RHdR
†/hd = −e(t)

2

(
0 eiφd

e−iφd 0

)
(D.52)

= −e(t)
2

[Iσx +Qσy] . (D.53)

This is a rotation about a time independent axis in the xy plane of the Bloch sphere.

If the rotating frame frequency is the same as the qubit frequency, then the qubit

Hamiltonian is zero and our on-resonance drive leads to a purely latitudinal rotation

on the Bloch sphere with the angle of the rotation axis in the xy plane given by φ. If
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the qubit frequency does not match the rotating frame then the qubit Hamiltonian

has a residual σz component and the the rotation axis will be out of the xy plane.

pi pulse

For a resonant drive with φd = 0 we have

RHdR
† = −e(t)

2

V0Qzpf

1 + Cd/C
σx. (D.54)

The evolution of the qubit under this drive is given by the unitary operator

U(t) = exp

[
i

(
1

~
1

2

V0Qzpf

1 + Cd/C

∫
dt e(t)

)
σx

]
. (D.55)

This results in a pi pulse when U(t) = σx. Since

exp [iασx] = cos(α)I + i sin(α)σx (D.56)

we see that the pi pulse occurs when

1

2~
V0Qzpf

1 + Cd/C

∫
e(t)dt =

π

2
(D.57)

This relation is used to determine the appropriate drive capacitance Cd when de-

signing a device. The accessible values of V0 are determined by the dynamic range of

available pulse generators, the level of attenuation needed to remove noise from the

drive lines. The value of Cd, is then chosen to be large enough that a π-pulse can be

done in an acceptably short time while preserving the qubit coherence as discussed

above. The value of Qzpf is determined by the type of qubit.
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Programming for experiment

Now that we know what the driving Hamiltonian looks like in the rotating frame we

can investigate how to program our IF inputs to the IQ mixer to acheive a rotation on

the Bloch sphere. From C we know that an input IQ signal e(t) exp [iωt+ φ] produces

an RF signal e(t) cos [(ωc + ω)t+ φ], where ωc is the carrier frequency. Using trig

identities we can rewrite this RF signal as

e(t) [I cos([ωc + ω] t) +Q sin([ωc + ω] t)]

where I = cos(φ) and Q = − sin(φ). If we add a phase π/2 this becomes

e(t) [I sin([ωc + ω] t)−Q cos([ωc + ω] t)] (D.58)

which exactly matches the form we assumed for f(t) in eq. (D.48) if we take ωc+ω =

ωd. Therefore if we choose ω such that ω + ωc = ωq and work in the rotating frame

of the qubit, the driving Hamiltonian is

Hd/hd = −e(t)
2

[Iσx +Qσy] . (D.59)

In practice we don’t want to have to remember to account for the carrier frequency

when programming a pulse so we define a mix function which multiplies our com-

plex signal by exp [i(ωq − ωc)]. That way if we program a signal exp [iφ] the driving

Hamiltonian in the frame of the qubit is produced in the following steps
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program e(t)eiφ

mix function−→ e(t)ei([ωq−ωc]t+φ)

physical mixer−→ Re
[
e(t)ei(ωqt+φ)

]
= e(t) cos (ωqt+ φ)

π/2 phase shift−→ e(t) sin (ωqt+ φ)

Hamiltonian−→ −e(t)
2

[Iσx +Qσy] .

Thus our choice of angle φ directly maps to the angle of the rotation on the Bloch

Sphere.

D.4.3 coupling

We found that the coupling Hamil-tonian in the Schro-dinger picture is

Hg = g (σy ⊗ σy) (D.60)

which can be expanded as

Hg = −g(σ+ − σ−)⊗ (σ+ − σ−)

= g
(
−σ+σ+ − σ−σ− + σ+σ− + σ−σ+

)
. (D.61)

Rotating the qubits’ frames at ωr1 and ωr2 respectively and throwing away high

frequency terms we get

Hg = g
(
eiδωr12tσ+σ− + e−iδωr12tσ−σ+

)
(D.62)

where δωr12 ≡ ωr1−ωr2. If both frames rotate at the same frequency the interaction

simplifies to

Hg = g
(
σ+σ− + σ−σ+

)
. (D.63)

202



The matrix form, with basis states

[|00〉, |01〉, |10〉, |11〉]

(ie the states defined by Kronecker product) is

Hg = g


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 . (D.64)

This shows that direct on-resonance capacitive coupling produces a swap interaction

in which excitations oscillate between the two coupled qubits. This is an entangling

interaction.
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Appendix E

Discrete Fourier transform of

White Noise

In this note we show how to compute the probability distribution of the discrete

Fourier transform (DFT) of a white noise signal. For an N point sequence of white

noise with Gaussian distribution of width σ, the real and imaginary parts of the dis-

crete Fourier transform are both Gaussian distributed random variables with widths

σ
√
N/2. If the DFT is normalized by the number of points N , the width becomes

σ/
√

2N .

When demodulating a signal with a discrete Fourier transform (DFT) one must

carefully analyze the effect of noise. The incoming signal will in general be given by

Vn = sn + ξn (E.1)

where sn is the desired signal and ξn is the noise.
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E.1 White noise

We consider first the case of white noise. At true white noise process has the unique

property that the correlation between noise values at two different points in time is

identically zero. This property is crucial to the calculation, as will be seen below.

However, in most signal processing applications, such a process does not truly ex-

ist. A noise source with constant spectral density at all frequencies would emit an

infinite power, which is not physically possible. Johnson-Nyquist noise, which is typ-

ically considered to be white, rolls off above a certain cutoff frequency [35]. Even the

“quantum noise” attributed to quantum measurement statistics is usually not white

in practice because the transfer functions of detection hardware shape the noise spec-

tral density. This is particularly true in the context of digital acquisition hardware

where anti-aliasing filters restrict the noise spectral density to frequencies below one

half the sampling rate. In those systems, the assumption that the noise samples are

uncorrelated is clearly incorrect. Nevertheless, we consider white noise here for sev-

eral reasons. First, the calculation of the statistics of the DFT of true white noise can

be done analytically. This will provide formulae against which we compare numerical

results obtained for the realistic case of correlated noise. Second, applications with

true white noise do exist. For example, repeated measurements of a quantum 2 level

system will involve white noise from the randomness of the quantum measurement.

On each repetition of the experiment, a given superposition state α|0〉 + β|1〉 yields

a random result 0 or 1. The values measured on subsequent experiments are uncor-
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related in principle, with correlations arising only through correlated errors in state

preparation and measurement.

Assuming that the noise is Gaussian distributed with a white power spectrum, the

random variables ξn are distributed according to a Gaussian curve and each value of

ξn is independent of all the others. When we say that ξn is Gaussian distributed what

we mean is that if you pick a value of n the value of ξn is random, but is distributed

as

pξn(ξ) =
1√

2πσ2
exp

[
− ξ2

2σ2

]
≡ Gσ(ξ).

The DFT of this signal is

Vk =
N∑
n=1

(sn + ξn) e−i2πkn/N . (E.2)

The DFT is linear, so we may compute each term separately. The noise part is

ξk =
N∑
n=1

ξne
−i2πkn/N . (E.3)

Because each DFT coefficient ξk is given as a sum, its distribution is given as

the convolution of the terms in the sum. This gives us a clear path to work the

calculation: write down the distributions of the terms in the sum, then convert to the

Fourier domain and compute the convolution, and finally Fourier transform back to

the time domain.

Consider first only the distribution of the real part,
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Reξk =
N∑
n=1

ξn cos [2πnk/N ]

Reξk =
N∑
n=1

xn (E.4)

where we’ve defined xn ≡ ξn cos [2πnk/N ]. Note that the summands xn are random

variables. What is the distribution of xn? For any random variable x with distribu-

tion px(x) the distribution of the scaled variable Ax is simply pAx(y) = 1
A
px(y/A).

Therefore the distribution of the summand xn is

pxn(x) =
1

cn,k
pξn(x/cn,k) =

1

cn,k
Gσ(x/cn,k) (E.5)

where we’ve abbreviated cn,k ≡ cos [2πnk/N ]. Because of the form of the Gauss

function this simplifies to

pxn(x) = Gσcn,k(x). (E.6)

We want to compute the distribution of the summed quantity in (E.4). To do

this we use the fact that the probability distribution of a quantity that is a sum of

random variables is the convolution of the distributions of the summands. Using this

fact on (E.4) gives

pReξk = px1 ⊗ px2 ⊗ · · · ⊗ pxN (E.7)

where ⊗ denotes convolution. This multiple convolution is made easy by going to

the Fourier transform, because the Fourier transform of a convolution is the product

208



of the Fourier transforms of the things being convolved. In other words,

F [pReξk ] =
N∏
n=1

F [pxn ] . (E.8)

Inserting the form of pxn from (E.6) gives

F [pReξk ] =
N∏
n=1

F
[
Gσcn,k

]
. (E.9)

This is particularly convenient because the Fourier transform of a Gaussian function

is just another Gaussian with the reciprocal width,

F [Gσ(x)] = G1/σ.

Therefore (E.9) becomes

F [pReξk ] =
N∏
n=1

G1/(σcn,k). (E.10)

Writing this out explicitly we get

F [pReξk ] (q) =
N∏
n=1

√
σ2c2

n,k

2π
exp

[
−q

2

2
σ2c2

n,k

]

=

(
σ2

2π

)N/2( N∏
n=1

cn,k

)
· · ·

· · · exp

[
−q

2

2
σ2

N∑
n=1

cos [2πnk/N ]2
]
.

The factors preceding the exponential are independent of q and are therefore just

a normalization constant. The exponential part is just a gaussian in q with width(
σ2
∑N

n=1 cos [2πnk/N ]2
)−1/2

. The sum can be done explicitly and is equal to N/2.

Therefore

F [pReξk ] ∝ G
(σ2N/2)−1/2 (E.11)
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and performing the inverse Fourier transform gives us

pReξk = G
σ
√
N/2

. (E.12)

We have therefore computed the probability distribution of the real part of the

Fourier transform of a white noise signal. The imaginary part has exactly the same

distribution. Note that the result is independent of the demodulation frequency k

which is a reflection of the fact that we’re considering uncorrelated white noise.

Intuition (and experience) says that more data gives better signal to noise ratio,

but we found that the distribution of the noise Fourier transform becomes wider as

more data points are collected. The reason for this discrepancy is that we didn’t

normalize the Fourier transform. When measuring a single tone signal sn, we have to

normalize the DFT in order to get a measured Fourier amplitude that is independent

of the number of measured points,

sk =
1

N

N∑
n=1

sne
−i2πnk/N . (E.13)

If we use this normalized quantity in the calculation of the noise Fourier amplitude,

ξk =
1

N

N∑
n=1

ξne
−i2πkn/N (E.14)

then the distribution of the real part winds up being

pReξk = Gσ/
√

2N (E.15)

which becomes sharper as N increases, in agreement with the idea that the noise

should go down as more data is collected.

There is a simple way to remember these results. The incoming noise signal had
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a squared width given by σ2. This is proportional to the power per bandwidth of

the incoming signal. If we measure N points of this noise signal the total power

should scale with N . Then, if we only look at one of the two resulting components,

ie. the real part, we should find half the power. Therefore, the squared width of the

distribution of the real part should be σ2N/2 which agrees with (E.12).

E.1.1 Distribution of r2

We have shown that the real and imaginary parts of the Fourier transform are Gaus-

sian distributed random variables with width σ/
√

2N . We now calculate the distri-

bution of the mod square of the Fourier transform. Define the mod square as

r2 = Reξ2
k + Imξ2

k. (E.16)

To compute the distribution of the mod square we first compute the distributions of

the squares of the real and imaginary parts. We will then use the convolution rule to

find the distribution of their sum. For the sake of compact notation let x ≡ Reξk.

To compute the distribution of the square of a random variable we use the general

formula for computing the distribution of a variable defined as an arbitrary function

of another random variable. For a variable Y defined by y = g(x) we have

pY (y) = pX
(
g−1(y)

) ∣∣Dg−1(y)
∣∣ (E.17)

In our case where g(x) = x2, we find dg−1(x)/dx ∝ 1/
√
x. This leads to
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pX2(α) ∝ Gσ/
√

2N(g−1(α))
1√
α

(E.18)

∝ exp

[
− α

σ2/N

]
1√
α

(E.19)

for positive α and zero otherwise. From symmetry considerations it’s clear that the

square of the imaginary part has the same distribution. The distribution of the mod

square is therefore given by the convolution of the function found in Eq. (E.19) with

itself; the result is

pr2(α) =
1

σ2/N
exp

[
− α

σ2/N

]
. (E.20)

Therefore the distribution of the squared modulus of the Fourier component is ex-

ponentially distributed.

From this last result we can compute the mean of the square of the Fourier coef-

ficient,

〈|ξk|2〉 =
σ2

N
. (E.21)

E.2 Correlated noise

We now turn to the case of correlated noise. Because the noise is correlated, the

values ξn are no longer statistically independent. This means that we cannot use the

multiple convolutions trick we used in the white noise case.

We begin by stepping back to the definition of the DFT. The real part of the DFT
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of the noise is

Reξk =
N∑
n=1

ξn cos [2πnk/N ] . (E.22)

The Fourier coefficients Reξk are expressed as a sum of random variables. Therefore,

the central limit theorem guarantees that the distribution of Reξk can be approxi-

mated by a Gaussian distribution as long as N is sufficiently large. In particular, N

must be large enough that the correlations time of ξn is small compared to N . Work-

ing under the assumption that we are in this limit, Reξk are Gaussian distributed and

we need only compute the variance. Note, however, that even if this assumption is

not completely valid, a Gaussian distribution with the calculated variance should at

least approximate the true distribution.

The variance of Reξk is

〈ReξkReξl〉 =
1

N2

N−1∑
n,m=0

〈ξnξm〉 cos (2πnk/N) cos (2πml/N) , (E.23)

where 〈·〉 indicates an ensemble average. Our crucial observation is that 〈ξnξm〉 is, by

definition, the auto-correlation function of the noise. The Wiener-Khinchin theorem

relates the auto-correlation function of a process x to its spectral density

ρx(τ) ≡ 〈x(0)x(τ)〉 (E.24)

=

∫ ∞
0

Sex(ω) cos (ωτ)
dω

2π
. (E.25)

The superscript e on Sex is a reminder that this is an “engineer’s” spectral density,

defined for only positive frequency. In other words, the total power P in the process
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is

P =

∫ ∞
0

Sex(ω)
dω

2π
. (E.26)

Note that ρ(τ) = ρ(−τ). Denoting the digital sampling time interval by δt and

assuming that the autocorrelation is invarient under time shift of both measurements,

we can rewrite the correlation as

〈ξnξm〉 = 〈ξ(nδt)ξ(mδt〉 = ρξ(δt |n−m|). (E.27)

Using this expression we can finally write the variance of Reξk as

〈ReξkReξl〉 =

1

N2

N−1∑
n,m=0

ρξ(δt |n−m|) cos (2πnk/N) cos (2πml/N) . (E.28)

In practice, ρξ is calculated via Eq. (E.25), with Se determined by the transfer

function of analog filters placed before the digitizer inputs. Once ρξ is known, the

double sum in Eq. (E.28) can be done numerically (although see Ref. [41] for examples

where the sum can be done analytically).
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Appendix F

External Loading of a Resonant

Mode

In this appendix we derive a simple formula for the loaded quality factor of a parallel

resonance circuit connected to an external lossy element.

F.1 Parallel-Series Equivalence

We consider two networks: a series resistance RS and reactance XS, and a parallel

resistance RP and reactance XP , as shown in Fig. F.1. The series and parallel circuits

have quality factors QS ≡ XS/RS and QP ≡ RP/XP respectively. The impedance of

the series network is

ZS = RS + iXS, (F.1)
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and the impedance of the parallel network is

ZP = RP
1

1 +Q2
P

+ iXP
Q2
P

1 +Q2
P

. (F.2)

Setting the series and parallel impedances equal yields

RS = RP
1

1 +Q2
P

and XS = XP
Q2
P

1 +Q2
P

. (F.3)

Dividing these equations gives

QS =
XS

RS

=
XP

RP

Q2
P = QP . (F.4)

This is the main result of this section: the quality factors of equivalent parallel and

series circuits are equal.

Since the series and parallel quality factors are equal we can drop the subscript

and write Q for both of them. We then rewrite the relations between the series and

parallel components as

RP = RS(1 +Q2) XP = XS
1 +Q2

Q2
. (F.5)

These equations provide a simple way to convert a series circuit to an equivalent

parallel one, and vice versa. For a given series circuit, one computes Q and then

uses Eq. (F.5) to compute XP and RP . Note that, because the reactances XS and

XP generally depend on frequency, the value of Q and therefore the equivalence

transformation also depend on frequency.
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Figure F.1: Series and parallel circuits. The reactances XS and XP can be capacitive
or inductive.

F.1.1 Large Q limit

In many cases, we have series or parallel circuit fragments for which Q� 1. In these

cases the transformation equations simplify to

RP = Q2RS XP = XS . (F.6)

We explain this intuitively: if the series resistance is low enough that the Q is high,

the parallel resistance must be large to ensure it doesn’t absorb much energy. In this

case the reactance dominates and is therefore unchanged in the transformation.

F.2 Loaded resonant mode

Consider a parallel RLC oscillator coupled to a lossy shunt circuit. We will find it

useful to define the characteristic impedance of the resonance circuit as ZLC ≡
√
L/C.

Using this quantity, we can write the internal quality factorQi of the resonator without
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a)

b)

Figure F.2: Loaded resonant mode. a) The parallel oscillator is connected to an
external resistor Re through a coupling capacitor Cc. b) Using the series/parallel
transformation we can turn the series damping circuit into an equivalent parallel
circuit. In this case the capacitance Cc adds with the internal capacitance of the
mode and the transformed resistor RP adds in parallel with the internal resistance R.
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the shunt circuit as

Qi = R/ZLC . (F.7)

Now consider the circuit shown in Fig. F.2 in which a parallel RLC resonator is

coupled to a resistor Re (e stands for “external”) through a coupling capacitor Cc.

To understand the effect of the lossy shunt circuit on the resonator, we convert the

shunt to an equivalent parallel resistance and capacitance. The quality factor Qe of

the external shunt circuit is

Qe =
1

ωCcRe

(F.8)

and so the equivalent parallel resistance and capacitance are

RP = ReQ
2
e and CP = Cc. (F.9)

With these equivalent parallel values the circuit is redrawn as shown in Fig. F.2 b. The

circuit is now a RLC but with capacitance C ′ = C + Cc and resistance R′ = R||RP .

In most practical applications C � Cc so we take C ′ ≈ C.

The quality factor of a parallel resonant mode near resonance is

Q = R′/ZLC′ . (F.10)

Since the capacitance added by the shunt circuit was small (i.e. C ′ ≈ C), we have
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ZLC′ ≈ ZLC . Substituting our expression for R′ we find

Q =
R||RP

ZLC
(F.11)

1

Q
=
ZLC
R

+
ZLC
RP

(F.12)

=
1

Qi

+
1

Qc

, (F.13)

where in the last step we have defined the “coupling quality factor” Qc ≡ RP/ZLC .

This is the second main result. The total quality factor is the parallel combination

of two factors: the internal quality factor found without the shunt circuit, and an

entirely analogous quality factor coming from the coupling.

The result can be simplified further by substituting RP = Q2
eRe into Qc:

Qc =
RP

ZLC

=
Q2
eRe

ZLC

=
Re

ω2R2
eC

2
c

1

ZLC

=

(
C

Cc

)2
ZLC
Re

. (F.14)

If the coupling capacitor were replaced with a coupling inductor Lc we would get

Qc =

(
Lc
L

)2
ZLC
Re

. (F.15)

In summary, when a resonant mode is connected to an external resistor Re
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through a coupling capacitor Cc or inductor Lc, the loaded quality factor Ql for the

mode is given by

1

Ql

=
1

Qi

+
1

Qc

(F.16)

where Qi is the quality factor in the absence of the coupling, and Qc represents the

extra damping introduced by the coupling. In the case of capacitive coupling, Qc is

given by

Qc =

(
C

Cc

)2
ZLC
Re

(F.17)

while in the case of inductive coupling Qc is given by

Qc =

(
Lc
L

)2
ZLC
Re

. (F.18)
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