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I: Introduction Concepts of paper

Objects of Interest†

Strongest candidates for first gravitational wave detections are from
compact binary coalescences (CBCs)

Mean estimates of future CBC detections are O(10) per year

Binary neutron star (BNS) mergers out to ∼ 450 Mpc (z ≈ 0.1)
Neutron star-black hole systems

CBCs are also likely sources of short gamma ray burst (sGRB)

Inferred rates of sGRB CBC events: 8× 10−9—1.1× 10−6 Mpc−3 yr−1

For reference BNS merger rates: 10−8—10−5 Mpc−3 yr−1

NSBH merger rates: 6× 10−10—10−6 Mpc−3 yr−1

CBCs are natural “standard sirens,” moreover directly observing a
sGRB can also tell us the distance—two independent measures for
calibration

†All estimates here taken from paper
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II. Gravitational wave detector calibration Detection methods

Detection methods for gravitational waves (GW)

“Popular” methods of detection

Laser interferometers
Resonant mass detectors
Pulsar timing
Spacecraft tracking
Cosmic microwave background temperature perturbations

These methods are not exactly redundant as different methods are
better at probing different frequencies of gravitational waves —think
EM spectrum
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II. Gravitational wave detector calibration Detection methods

Interferometers

aLIGO, [a]VIRGO, GEO600, [KAGRA], [LIGO-India], [eLISA]

LIGO & VIRGO: Michelson interferometers with Fabry-Perot cavities

(a) Schematic of LIGO/VIRGO
(b) eLISA
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II. Gravitational wave detector calibration Calibration

Existing GW detector calibration

GW strain is measured through ∆L, i.e., h(f , t) = ∆L(f , t)/L

Need to caliber measured signal e(f , t) to actual ∆L, via
∆L(f , t) = R(f )e(f , t), for some response function R(f )

You measure R(f ) through measurements in feedback loop, but
feedback is off by some C , which you wish to calibrate.

Chtrue(f ) = hm(f ) =
R(f )e(f )

L
. (1)

C > 1 implies overestimating signal, source appears closer, and
opposite for C < 1

Current methods get the error in C to within ∼ 10%
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Gravitational wave crash course General Relativity Background

Propagation of gravitational waves

Weak field Einstein equation in vacuum reduces to 3D wave equation

(−∂2
t +∇2)h̄ab = 0→ h̄ab = Aab exp[ikcx

c ]. (2)

In transverse-tracless gauge: h̄TTab = hTTab (traceless condition)

h̄ab,b = 0; Aa
a = 0; AabU

b = 0. (3)

Moreover, only two independent constants, ATT
xx and ATT

xy . Traceless

implies ATT
xx = −ATT

yy and ATT
xy = ATT

yx from symmetric metric, rest
zero by gauge choice.
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Gravitational wave crash course General Relativity Background

Geodesic deviation

In frame of test particle geodesic deviation equation to first order in
perturbing metric (R vanishes in flat space) becomes

∂2
t ξ

a = −Ra
0b0ξ

b. (4)

Since we only consider first order perturbations Riemann components
are

Rx
0x0 = −1

2
∂2
t h

TT
xx ; Ry

0x0 = −1

2
∂2
t h

TT
xy ; Ry

0y0 = −1

2
∂2
t h

TT
yy . (5)

Consider particle distance ε from test particle in x direction

∂2
t ξ

x =
1

2
ε∂2

t h
TT
xx ; ∂2

t ξ
y =

1

2
ε∂2

t h
TT
xy . (6)

Now ε in y direction

∂2
t ξ

x =
1

2
ε∂2

t h
TT
xy ; ∂2

t ξ
y =

1

2
ε∂2

t h
TT
yy = −1

2
ε∂2

t h
TT
xx . (7)
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Gravitational wave crash course General Relativity Background

Gravitational wave polarizations

From our geodesic deviation we see there are two polarizations:
hxx 6= 0, hxy = 0 denoted ‘+’ and hxy 6= 0, hxx = 0 denoted ‘×’

(c) Plus GW polarization (d) Cross GW polarization

For binary systems: h+ ∝ (1 + cos2(θ)) and h× ∝ cos(θ)
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Gravitational wave crash course General Relativity Background

Generating gravitational waves†

Weak field Einstein equation in region of source

(−∂2
t +∇2)h̄ab = −16πTab. (8)

Assumptions: Tab = Sab(x i )e iΩt and source region << 2π
Ω

Then a possible solution is of the form

h̄ab = Bab(x i )e iΩt . (9)

Consider (∇2 + Ω2)Bab = −16πSab outside the source (Sab = 0)

Bab =
Aab

r
e iΩr +

Zab

r
e−iΩr . (10)

Only using outgoing waves, Zab = 0.

†I’ll neglect retarded time effects for simplicity
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Gravitational wave crash course General Relativity Background

To solve for Aab integrate∫
(∇2 + Ω2)Bab d3x =

∫
−16πSab d3x . (11)

Recall source is confined to region ε, so first term∫
Ω2Bab d3x ≤ Ω2|Bab|max4πε3/3. (12)

Second term by Gauss’s theorem and having solution outside source∫
∇ · ∇Bab d3x =

∮
~n · ∇Bab dS = 4πε2

(
d

dr
Bab

)
r=ε

. (13)

Putting it all together†

Ω2|Bab|max4πε3/3− 4πAab[1 + Ω2ε2/2− iΩε3/3) = −16πJab. (14)

Now using the approximation that Ωε << 2π

Aab = 4Jab → h̄ab = 4Jabe
iΩ(r−t)/r . (15)

†∫ Sab d3x = Jab
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Gravitational wave crash course General Relativity Background

By stress-energy conservation and Gauss’s theorem

iΩJµ0e−iΩt =

∫
Tµj

,j d3x =

∮
Tµjnj dS = 0. (16)

Thus h̄µ0 = 0, for spatial components use tensor virial theorem

∂2
t

∫
T 00x ix j d3x = 2

∫
T ijd3x ; I jk ≡

∫
T 00x ix j d3x . (17)

Therefore the spatial components of Jij

Jij =
1

2
∂2
t (Dije

−iΩt)e iΩt = −Ω2

2
Dij . (18)

This is known as the quadrupole approximation for gravitational
radiation

h̄ab = −2Ω2Dabe
iΩ(r−t)/r . (19)
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Gravitational wave crash course General Relativity Background

Quadrupole perturbing metric

Since we have used the slow motion approximation (Ωε << 2π), then
T 00 ≈ ρ, thus Iij looks like the moment of inertia tensor

In TT gauge†

h̄xx
TT = −h̄TTyy = −Ω2(Ixx − Iyy )e iΩr/r . (20)

h̄TTxy = −2Ω2Ixye
iΩr/r . (21)

Recall TT gauge implies gravitational wave is propagating in the
z-direction

†Iab ≡ Iab − 1
2
δabI

c
c
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Gravitational wave crash course General Relativity Background

Gravitational waves from binary systems

Consider an idealized circular binary system with masses m1 and m2

x1(t) =
µ

m1
a cos(ωt); y1(t) =

µ

m1
a sin(ωt). (22)

x2(t) =
−µ
m2

a cos(ωt); y2(t) =
−µ
m2

a sin(ωt). (23)

Wave eq. is linear, and we want −iΩt solutions we get

h̄TTxx = −a2Ω2µe iΩr−2iωt/r → h̄TTxx = −4a2ω2µe iΩ(r−t)/r . (24)

h̄TTxy = −ia2Ω2µe iΩr−2iωt/r → h̄TTxy = −4ia2ω2µe iΩ(r−t)/r . (25)

We note that radiation frequency is twice orbital (Ω = 2ω)
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Gravitational wave crash course General Relativity Background

Gravitational waves from binary systems: II

To look at radiation coming from the x-direction redo calculations
with (x , y , z)→ (y , z , x)

You get no ‘×’ polarization because masses stay in plane, by same
logic ‘+’ polarization is halfed

h̄TTyy = −h̄TTzz = 2a2ω2µe iΩ(r−t)/r . (26)

All perturbations are of order a2ω2µ/r → Gm1m2/(ar). This is why
we can hope to detect these but not the Newtonian tidal forces

Best realistic case: formation of 10M� black hole, in nearby universe
→ O(h) = 10−18

Norm: PSR B1913+16†, m1 = m2 = 1.4M�, a = 8.37× 1012 m,
r = 8 kpc → O(h) = 10−23

†Really O(h) = 10−26; but O(h) = 10−20 systems believed
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III. Binary neutron star standard sirens B.F. Schutz, Nature 323, 310 (1986)

Gravitational waves as a standard siren

From the quadrupole approximation for gravitational radiation†

〈h〉 = 10−23 m
2/3
T µ f

2/3
100 r−1

100. (27)

τ =
f

ḟ
= 7.8m

−2/3
T µ−1 f

−8/3
100 s. (28)

Solving for m
2/3
T µ in both equations, equating and solving for r100 results in

r100 = 7.8 f −2
100 (〈h23〉τ)−1. (29)

The RHS is completely determined by observations, allowing for a
“standard siren” to measure distances free of the cosmic ladder.

†r100 ≡ r/100 Mpc; f100 ≡ f /100 Hz; h23 = h × 1023
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III. Binary neutron star standard sirens B.F. Schutz, Nature 323, 310 (1986)

Backing out variables from observations

Note that 〈h〉 is the r.m.s. value, but observed value will depend on
binary orientation to detector

Given 3 detectors possible to determine orientation of binary

Time delay of incoming GW at θ to connecting line: ∆t = d cos(θ)/c
Generally polarization will be out of phase between detectors
Five unknowns: arrival direction (2), polarization amplitudes (2), phase
lag of polarization (1)
Knowns: time delays (n − 1 independent), measured amplitudes (n)
To determine system: n + (n − 1) ≥ 5, so n ≥ 3—overdetermining
system helps beats down error in r100

Backing out direction determines orientation, thus 〈h〉
f100 and τ can be directly observed, completely determining r100
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IV. GRB counterparts Background

sGRB

GRB are associated with the most powerful known events

GRB cause the region to light-up at various wavelengths—afterglow

Due to relativity beams are highly collimated, thus detections are rare

sGRB are classified as a GRB with a duration less than 2 seconds

(e) ESO followup Swift’s 1000 GRB (f) kilonova afterglow
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IV. GRB counterparts Background

Joint CBC–sGRB detections

0.2–200 BNS events/year

1–180 sGRB/year†

0.02–7 joint detections/year

They will be detecting GW and do followup for sGRB afterglow

Likelihood of catching concurrent sGRB from GW detection: “low”‡

Possible observe sGRB and look for GW event§

Less computationally expensive, fewer number of waveform templates
Enables multi-detector coherent schemes, better than coincidence

Overall, joint-detections allow for orientation to be a known, from
sGRB beaming angle, allowing for higher signal to noise

†Assuming 15◦ collimation
‡“Compounded” with GW error box of ∼ 100’s square degrees
§Swift already great at relaying GRB information fast
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V. Analysis Goal

Goal

Assess how well calibration scale factor can be estimated from single
GW–sGRB co-detection. We’ll want to be at least competitive with
current methods of ∼ 10%.
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V. Analysis Method

Measured data

LIGO’s polarization model, our naive work was of close order, given by

h̃+(f ) ∝ (1 + cos2(ı))D−1
L M

5/6f −7/6e−iΨ(f ,M,tc ,φc ). (30)

h̃×(f ) ∝ cos2(ı)D−1
L M

5/6f −7/6e−iΨ(f ,M,tc ,φc ). (31)

Fourier transform of GW strain at k–th detector, with antenna
response functions F—dependent on polarization angle and sky
position

h̃k(f ) = F k
+(α, δ, ψ)h̃+(f ) + F k

×(α, δ, ψ)h̃×(f ). (32)

Measured data, with true noise ñ and waveform parameters θθθ, then
given by

d̃k(f ) = Ck(ñk(f ) + h̃k(f , θθθ)) (33)
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V. Analysis Method

The likelihood function‡

Adopt a Gaussian likelihood function

L(θθθ,CCC , I |ddd) = p(ddd |θθθ,CCC , I ) ∝ exp

−4∆f

Ndet∑
k=1

ihigh∑
i=ilow

|dk,i − Ck h̃k,i |2

Sk,i

 .
(34)

S is the noise power spectrum distribution, and I = {ilow , ..., ihigh}†
Analyzed frequency range is 20—400 Hz, ∼ 95% of BNS events

†I presume...
‡They claim to use “Bayes’ theorem”
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V. Analysis Method

Prior PDFs

Events that are co-detected give us more information on the priors

Analysis uses sGRB to say source distance is δ–function prior
Moreover, sky position also a δ–function prior
Events also relatively face-on, so nearly circularly polarized

sGRB beaming poorly understood, adopt half–normal distribution
with median of ı= 10◦ → prior ı is Gaussian with σ = 14.8◦

Prior on masses† assumed Gaussian

BNS: µ = 1.35 M�, σ = 0.13 M�
NSHB: µ = 5 M�, σ = 1 M�

Several other priors are left as uniform: time of coalescence, tc
(±0.01 s about recorded), reference phase, φc , polarzation angle, ψ

†Constrained from an observation—prior not too important
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V. Analysis Method

Prior PDF on calibration scale factor

Use log–normal distribution, peaked near 1 and probability of
calibration being either too small by ‘x ’ or too big by ‘x ’ are equal

p(C |I ) =
1

Cσ
√

2π
exp

[
−(log(C )− µ)2

2σ2

]
. (35)

σ = 1.07 and µ = 1.15, “arbitrarily” chosen σ → µ = σ2 (mode at 1)

Arbitrarily: P(C = 10)/P(C = 1) ≈ P(C = 1/10)/P(C = 1) ≈ 1/10
Log-normal also favors close to above unity, over close to below unity
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V. Analysis Simulations

BNS & NSBH simulated events

Now need to simulate data, which will

Simulations of BNS and NSBH signals spanning 20–400 Hz

BNS range from 50–500 Mpc at 50 Mpc increments
BHNS range from 100–900 Mpc at 100 Mpc increments
O(1000) simulations at each distance, randomly drawing from prior
distribution and randomly throughout the sky (uniform)

Criteria for detection SNR ≥ 5.5 in at least two detectors

Leading to a selection of effect of face-on (circularly polarized)
Also preferred sky locations at large distances (best antenna response)
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VI. Results

Figures 1 & 2

Three detectors used in these simulations: two aLIGO (H1 and L1)
and the AdV (V1)

Posterior distributions have been generated from the likelihood and
priors via simulations

Give minimal 68% credible region for calibration factors

Figure 1 for BNS systems and Figure 2 for NSBH systems at selected
distances
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VI. Results

Figures 3 & 4

From posterior distributions, calculated at each distance is: σ (box
bars), 2σ (whiskers), median (black line), mean (star), and
percentage of signals fulfilling SNR criterion (dashed magenta line)
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VI. Results

Figure 5

Calculate self-consistency of PDFs at 50 & 500 Mpc for BNS

Closer to the diagonal the better
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VII. Discussion

Discussion

For BNS calibration scale factor on average within

10% out to 100 Mpc
20% out to 450 Mpc

Similar results for NSBH

Significant delay between observation and calibration assessment

However, gives independent check

Possible for relative calibration between detectors

They’d like a continuous GW source for this though
This would help account for sky location biases for burst sources (CBC)
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