
Physics 236: Cosmology Review

FRW Cosmology

1.1 Ignoring angular terms, write down the FRW metric. Hence express
the comoving distance rM as an function of time and redshift. What is
the relation between scale factor a(t) and redshift z? How is the Hubble
parameter related to the scale factor a(t)? Suppose a certain radioactive
decay emits a line at 1000 Å, with a characteristic decay time of 5 days.
If we see it at z = 3, at what wavelength do we observe it, and whats
the decay timescale?

The FRW metric is given as

ds2 = −c2dt2 + a(t)2[dr2 + Sκ(r)2dΩ2]. (1)

Where for a given radius of curvature, R,

Sκ(r) =


R sin(r/R) κ = 1

r κ = 0

R sinh(r/R) κ = −1

Suppose we wanted to know the instantaneous distance to an object at a given time, such
that dt = 0. Ignoring the angular dependence, i.e. a point object for which dΩ = 0, we can solve
for rM as ∫ dp

0
ds = a(t)

∫ rM

0
dr,

dp(t) = a(t)rM (t). (2)

Where dp(t) is the proper distance to an object, and rM is the coming distance. Note that
at the present time the comoving distance and proper distance are equal. Consider the rate of
change of the proper time

ḋp = ȧr =
ȧ

a
dp. (3)

Hubble is famously credited for determining what is now called Hubbles law, which states
that

vp(t0) = H0dp(t0). (4)

Relaxing this equation to now be a function of time we will let the Hubble constant now be
the Hubble parameter. Therefore we see that the definition of the Hubble parameter in relation
to the scale factor is

H(t) ≡ 1

a

da

dt
=
ȧ

a
. (5)

To enlighten what the comoving distance is, consider a photon which is known to have a
null geodesic, or in terms of the metric ds = 0. Then the FRW tells us, again ignoring angular
dependence,
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∫ t0

te

c

a(t)
dt =

∫ rM

0
dr.

Thus,

rM =

∫ t0

te

c

a(t)
dt. (6)

This comoving distance is then, the distance of which the photon has traveled, as measured
by the photon—or something that was theorectically comoving with the photon.

To express this in terms of redshift we will show that λe/a(te) = λ0/a(t0). This is derived
from (6), where we say the comoving distance of a photon coming to us is equal to the comoving
distance of another photon one wavelength behind the original photon.∫ t0

te

c

a(t)
dt =

∫ rM

0
dr =

∫ t0+λ0/c

te+λe/c

c

a(t)
dt. (7)

If we multiple both sides by the comoving distance of the photon one wavelength behind from
where it starts to where it is when the first photon is observed

∫ t0
te+λe/c

c
a(t)dt, we get∫ te+λe/c

te

c

a(t)
dt =

∫ t0+λ0/c

t0

c

a(t)
dt. (8)

Note these time intervals are extremely short in the context on which a(t) varies. This is on
the order of 10−15 s, compared to some fraction of the age of the universe, order of 1017 s, on
which the scale factor changes of order itself during directly measurable epochs. Thus we can
pull a(t) out of these equations to good approximation to get

λe
a(te)

=
λ0

a(t0)
. (9)

Note that we can clearly see this is a time dilation effect if you call δte = λe/c and δt0 = λ0/c.
Then we see that

δt0 =
δte
a(te)

. (10)

Taking the limit as λ → 0, then δt → 0, and we see that dt0 = dte
a(te)

, therefore, we see that

a(t) dilates the time making intervals longer in the observing frame.
With the definition of redshift being

z ≡ λ0 − λe
λe

=
λ0

λe
− 1. (11)

We can use (9) and (11) together to find the familiar equation

a(t) =
1

1 + z
, (12)

where a(t0) = 1. Now we can rewrite the comoving distance in terms of redshift, now
having a relationship between the scale factor and the redshift. Since z = a(t)−1 − 1, then
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ż = −ȧ/a2 = −H/a → dt = − a
Hdz. Making the substitution we have, and noting the minus

sign flips the integral bounds where te is at redshift z and t0 is at redshift 0,

rM =

∫ t0

te

c

a(t)
dt. =

∫ z

0

c

H(z)
dz. (13)

Now consider the atomic line being emitted at a redshift of z = 3. From (9), with λe = 1000Å,
and z = 3

λ0 = a(t0)λe/a(te) = (1 + z)λe = 4000Å.

To get the decay timescale in the observing frame we recall from (10) that the scale factor,
and hence the redshift, dilates the time to be longer in the observing from by a factor of 1 + z,
therefore,

∆t0 = (1 + z)∆te = 20 days.

1.2 Give definitions for the angular diameter distance, and luminosity dis-
tance (you dont have to derive them, just explain what they are). How
are they related to the comoving distance in a flat universe? Explain
why they are sensitive to cosmology. Mention a few ways we’ve used
these to constrain cosmology.

The angular distance is given by

dA ≡
`

δθ
. (14)

For a fixed length object of length `, from the FRW metric we find that ` = a(te)Sκ(r)δθ.
Thus we can rewrite the angular distance as

dA =
Sκ(r)

1 + ze
. (15)

For flat space this reduces to dA = a(te)rM = dp(te), that is to say the angular distance
measured now is what the proper distance was to the object when it emitted the light that is
reaching us now!

For luminosity distance is defined as

dL ≡

√
L

4πf
. (16)

We’ll want an expression for f to determine dL better, which alters from out normal definition
in two aspects. First geometrically the space may not be flat so the area of the sphere in curved
space is given by Ap(t0) = 4πSκ(r)2. Next the energy of each photon is also decreased by
a factor of a(te), which is seen by the fact that E = hc/λ, and λ0 = λe/a(te). Secondly
there is a time dilation effect that slows down the photons arriving to us, since initially the
proper distance between two pulses is cδte, but the distance is stretched as it travels such that
cδt0 = cδte/a(te)→ δt0 = δte/a(te). Thus our definition of flux, in a curved space, is altered by
a factor of 1/a(te)

2, or
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f =
La(te)

2

4πSκ(r)2
.

Substituting this into (16) we arrive at

dL = Sκ(1 + ze). (17)

Looking at (15) and (17), we can derive a relationship between the two as

dA(1 + ze) = Sκ(r) =
dL

1 + ze
. (18)

In a flat universe, κ = 0, Sκ(r) = r. Thus (18) gives the relationship between the comoving
distance and they two distance measures. Moreover, in a flat universe we also have Sκ = dp(t0).

For low redshift, or observations of events that have occurred close to our current time
(remember looking out into the universe is looking back in time), we can Taylor expand the scale
factor. To second order we write the scale factor as

a(t) ≈ 1 +H0(t− t0)− 1

2
q0H

2
0 (t− t0)2. (19)

Where we have created a parameter q0 called the deceleration parameter

q0 ≡ −
ä

aH2

∣∣∣
t=t0

. (20)

Thus the sign of q0 depends on the acceleration of the universe, positive for a negatively
accelerating universe and positive for a positively accelerating universe. With some algebraic
gymnastics we can define a comoving distance in terms of H0 and q0.

a(t)−1 ≈ 1−H0(t− t0) +
1 + q0

2
H2

0 (t− t0)2.

r =

∫
c

a(t)
dt ≈ c(t0 − te) +

cH0

2
(t0 − te)2.

z = a(te)
−1 − 1 ≈ H0(t0 − te) +

1 + q0

2
H2

0 (t0 − te)2,

(t0 − te) ≈ H−1
0

[
z − 1 + q0

2
z2

]
.

With all of this we can now write the comoving coordinate in terms of H0 and q0 as we have
set out to do.

r ≈ c

H0

[
z − 1 + q0

2
z2

]
+
cH0

2
z2H2

0 =
c

H0
z

[
1− 1 + q0

2
z

]
. (21)

In a flat universe the luminosity distance and angular distance can both be written in terms
of the comoving coordinate, thus since our comoving coordinate depends on H0 and q0, we see
there is a clear dependence on the cosmology, note the acceleration. Following the approximation
z << 1 we see that
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dA ≈ r(1− z) ≈
c

H0
z

[
1− 3 + q0

2
z

]
. (22)

dL = r(1 + z) ≈ c

H0
z

[
1 +

1− q0

2
z

]
. (23)

We have used the angular distance to make measurements of the CMB. Using CMB Doppler
peaks we get an idea of the length of the ruler and then can infer the redshift of the surface of last
scattering. Unfortunately there is no good standard ruler in cosmology to make other meaningful
measurements, at least that are known or reasonably performable with current limits.

Luminosity distance has found uses in cosmology a little closer to us by measuring type IA
supernovas. By making multiple measurements of these standard candles at various redshifts we
have been able to infer that the universe is accelerating. Noting that an accelerating universe,
with q0 < 0, gives us smaller fluxes than a decelerating universe would. Which was found to be
the case with q0 = −.55.

1.3 Write down the two Friedmann equations in a flat universe. Show that
in an vacuum-dominated universe, ρΛ ≈ const, the scale factor increases
exponentially with time.

The first Friedmann equation is (
ȧ

a

)2

=
8πG

3c2
ε(t)− κc2

R2
0a(t)2

. (24)

The second Friedmann equation, or the acceleration equation, is

ä

a
= −4πG

3c2
(ε+ 3P ). (25)

For completion the fluid equation relating P and ε is

ε̇+ 3
ȧ

a
(ε+ P ) = 0. (26)

In a flat universe simply set κ = 0. In a universe that is flat and vacuum-dominated such
that the dominate energy density is εΛ = constant, solving (24)∫ a(t)

1
d log a =

√
8πGεΛ

3c2

∫ t

t0

dt,

a(t) = eH0(t−t0), (27)

where

H0 =

√
8πGεΛ

3c2
.

This definition is clearly merited if we look at
ȧ

a

∣∣∣
t=t0

for the scale factor as defined in (27),

which should be H0.
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1.4 People talk a lot about the search for w in dark energy—how is ‘w’
defined? Find the relation between scale factor and time in a matter
dominated and a radiation dominated universe. Write down the ap-
proximate value of the Hubble constant (including correct units), and
hence give a rough estimate of the age of the universe.

Given a component of the universe, labeled by ‘w’, which satisfies Pw = wεw, the fluid equation
tells us how the energy density scales with the scale factor. Plugging in this definition of P into
(26)

ε̇+ 3 ȧaε(1 + w) = 0,
−3(1 + w)d log a = d log ε.

Therefore we see that the energy density evolves as

εw(a) = εw,0a
−3(1+w). (28)

Now using this in the first Friedmann equation, (24), where only one component of the
universe is dominating at the given time

da

dt
=

√
8πGε0

3c2
a

−(1+3w)
2 .

Guess a solution to the scale factor such that it is a power-law in time, such that a ∝ tp, thus
p− 1 = −1+3w

2 p. Solving for p we get that

p =
2

3(1 + w)
→ a ∝ t

2
3(1+w) ,

or

a(t) =

(
t

t0

) 2
3(1+w)

. (29)

We can backtrack to solve for t0 by noticing that from the first Friedmann equation and this
result,

p
tp−1

tp0
=

√
8πGε0

3c2

(
t

t0

)p−1

→ t0 =
p√

8πGε0
3c2

.

Simplifying this gives us

t0 =
1

1 + w

√
c2

6πGε0
, (30)

this is the age of the universe in a single component cosmology.
Lastly, before getting to the actual questions, we can talk about the Hubble constant in this

single component universes by

H0 ≡
(
ȧ

a

) ∣∣∣
t=t0

=
2

3(1 + w)
t−1
0 . (31)
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We can rewrite the scale factor in terms of the Hubble constant instead of the age of universe,
giving us

a(t) =

(
3(1 + w)

2
H0t

) 2
3(1+w)

(32)

For matter w = 0 and for radiation w = 1/3, thus we get the the scale factor for a matter
domination universe is

am(t) =

(
t

t0

)2/3

, (33)

and for radiation dominated universe

ar(t) =

(
t

t0

)1/2

. (34)

From the Benchmark model referred to in Ryden we have H0 = 70± 7 km s−1 Mpc−1. This
corresponds to an age of the universe of 13.5±1.3 Gyrs with the appropriate cosmology. Roughly
a Hubble time is H−1

0 ≈ 14 Gyr, and for the Matter+Lambda model the numerical factor is .964
(This is very close to actual since radiation domination was so brief). If we wish to only consider
a single component and the age in these universes we get

tm,0 =
2

3H0
≈ 9.3Gyr, (35)

and for radiation

tr,0 =
1

2H0
≈ 7Gyr. (36)

1.5 Derive the critical density ρc in terms of the Hubble constant H0. Given
the present value of the Hubble constant, express ρc in physical units
(g cm−3). If I tell you that Ωb = 0.04 and that the universe is pure
hydrogen, what is the number density of protons today?

The critical energy density εc is the energy density such that the universe is flat. If at a given
time, ε(t) > εc, then the universe is positively curved, κ = 1. Likewise, if ε(t) < εc, then the
universe is negatively curved, κ = −1. Thus to determine for εc, set ε(t) = εc, then κ = 0 and
the first Friedmann equation, (24), tells us

εc ≡
3c2H2

8πG
. (37)

Really this is the definition of the critical energy density so we are actually defining it, not
solving for it. For the critical energy density today, we see it will be given in terms of the Hubble
constant and thus we can solve for it—given knowledge of H0.

εc,0 =
3c2H2

0

8πG
= 8.3x10−9ergs cm−3. (38)
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In the massive non-relativistic limit, ε ≈ ρc2, thus in some situation, e.g. matter dominated
universes, we could say that

ρc,0 =
3H2

0

8πG
= 9.2x10−30g cm−3. (39)

It is often convent to talk about the density parameter, Ω, of the energy density which a
component makes up of the universe. This is defined as

Ωi(t) ≡
εi(t)

εc(t)
. (40)

Thus if we are given a component which massive and non-relativistic, which baryons are a
good approximation of, we have

ρb = Ωb ρc.

Thus given Ωb,0 = .04 we can find the number density of baryons today as

nb,0 =
ρb,0
µ

=
Ωb,0 ρc,0

µ
.

If the universe was purely Hydrogen then nb,0 = np,0 and µ = mp, thus

np,0 =
Ωb,0 ρc,0
mp

= 2.2x10−7cm−3.

1.6 How does energy density in CDM scale with redshift? How does energy
density in radiation scale with redshift? How does the temperature of
the CMB scale with redshift?

From (28) we determined the dependence of a component’s energy density based on its en-
ergy/pressure relationship. For dark matter, similar to matter in that w = 0, we get

εDM (t) = εDM,0a
−3 = εr,0(1 + z)3. (41)

For radiation, w = 1/3, we find that

εr(t) = εr,0a
−4 = εr,0(1 + z)4. (42)

From statisitical mechanics we also know that a blackbody has an energy density of εbb =
σSB

c
4T

4. Thus for a blackbody radiating we can get a temperature dependence on redshift as
follows

σSB
c

4
T 4 = σSB

c

4
T 4

0 (1 + z)4,

T = T0(1 + z). (43)
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Thermal History, Big Bang Nucleosynthesis

2.1 What are modern estimates for the CMB temperature Tγ today? What
are modern estimates for Ωm, ΩΛ, h. Hence estimate the redshift zeq
of matter radiation equality (derive it, dont just state it). Give the
characteristic age and temperature of the universe during primordial
nucleosynthesis and recombination.

From the Benchmark model provided by Ryden, based on current measurements available at the
time of publication, we present the following table.

Modern Density Parameters

photons Ωγ,0 =5.0x10−5

neutrinos Ων,0=3.4x10−5

total radiation Ωr,0=8.4x10−5

baryonic matter Ωb,0=0.04
nonbaryonic dark matter Ωdm,0=0.26
total matter Ωm,0 =0.30
cosmological constant ΩΛ≈ 0.70
curvature |Ωk| ≈ 0∗

Epoch Equalities

radiation-matter arm = 2.8x10−4

matter-lambda amΛ = 0.75

Cosmology Parameters

Hubble constant H0 = 70 km s−1 Mpc−1

deceleration parameter q0 = −0.55
CMB temperature Tγ,0 = 2.725 K
baryon-to-photon ratio η = 5.5x10−10

Helium fraction Y = 0.24

Events

neutron freezeout T = 9x109 K E = 1.29 MeV t ≈ 1 s
nucleosynthesis T = 7.6x108 K E = 66 keV t ≈ 200 s
recombination T = 9730 K E = .323 eV t ≈ 47 kyr
∗Current constrains |Ωk| ≤ 0.2.

We then see that since h is the ignorance factor by saying H0 = 100h km s−1 Mpc−1, that
h = 0.7.

A simple way to find the scale factor of epoch equalities is to set the energy densities of the
two epochs equal to each other, as follows.

εX(tXY ) = εY (tXY ).

Then the ratio is equal to one, trivially. However, less trivially, the ratio is also equal to the
density parameters now scaled by the scale factor depending on how each component scales. The
scaling dependence can be given by (28), thus
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εX(tXY )

εY (tXY )
=
εX,0
εY,0

a(tXY )3(wY −wx) =
ΩX,0

ΩY,0
a(tXY )3(wY −wX).

Thus setting this equal to one and solving for a(tXY ) we get

a(tXY ) =

(
ΩY,0

ΩX,0

) 1
3(wY −wX )

. (44)

Now we can see that for radiation-matter equality

a(trm) =

(
Ωr,0

Ωm,0

) 1
3(1/3−0)

=
8.4x10−5

.3
= 2.8x10−4. (45)

Thus the redshift is zrm = 3570.43.

2.2 What was the temperature of the universe at recombination, and how
did the characteristic energy, kBT , compare with the ionization poten-
tial of hydrogen, Eionize = 13.6 eV. What redshift did recombination take
place?

To determine when recombination happened we need to define what is meant. Let’s say recom-
bination happens when half of the electrons have combined with the protons. Now we can use
statistical mechanics to determine when this occurred since the protons and electrons will be in
thermal equilibrium, thanks to the electromagnetic force. A speicies X will follow a Maxwell-
Boltzmann distribution for some temperature T as follows

nX = gX

(
mXkT

2π~2

)3/2

exp

(
−mXc

2

kT

)
. (46)

Taking the ratio of combined hydrogen to free protons and electrons we get the Saha equation

nH
nenp

=

(
mekT

2π~2

)−3/2

exp

(
Eionize
kT

)
. (47)

Defining the ionization fraction X ≡ np
np+nH

=
np

nbary
and the baryon to photon ratio η ≡ nb

nγ
,

we can rewrite the Saha equation and solve for X. This results in

1−X
X2

=
4
√

2ζ(3)√
π

η

(
kT

mec2

)3/2

exp

(
Eionize
kT

)
. (48)

Setting X = 0.5, we find that kTrec = .323 eV, or Trec = 3740 K. Note that kTrec ≈
1
42Eionize << Eionize, thus a large fraction of the photons are no longer photoionizing combined
hydrogen. Since radiation took place during a matter dominated epoch, we can use the handy
relation from (43) to relate the temperature with a redshift to find

zrec =
Trec
Tγ,0

− 1 = 1371.48. (49)
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2.3 Explain the concept of ‘freeze-out’. In particular, if the weak interac-
tion cross section σ ∝ E2, show that the neutron abundance ‘freezes-out’
falls as the temperature of the universe falls. At what redshift does the
temperature of the ionized plasma differ from that of the CMB, and how
is it that the two temperatures are still coupled after recombination?

The concept of ‘freeze-out’, whence-fore dubbed freeze-out, is when a reaction can no longer
efficiently occur to keep two or more populations in thermal equilibrium. In a cosmological
context this happens due to the expansion of the universe and we declare a freeze-out when
Γreaction ≤ H. Typical the reaction rate has a dependence on a number density, cross section for
interaction and the speed of the particles. As an example Thomson scattering has

ΓTomson(z) = ne(z)σT c = (1 + z)3ne,0σT c. (50)

Thus consider the low energy photons decoupling from the electrons,

ΓTomson(z) = (1 + z)3X(z)nb,0σT c ≤ H0

√
Ωm,0(1 + z)3/2 = H. (51)

Find the exact redshift for the freeze-out simply take the equality and solve for z. The result
is zTdec ≈ 1100.

Now let’s consider the neutron freeze-out that occurs just prior to BBN, safely in the radiation
dominated epoch. Given that σweak ∝ E2, and that E = εrV = εr,0a

−4V0a
3 ∝ a−1, therefore,

σweak ∝ a−2. Further from the first Friedmann equation we know that H = H0

√
Ωr,0a

−2.
Now the reaction rate of both: n+ νe � p+ e+ and n+ e+ � p+ ν̄e are dependent on the

weak cross section since they involve neutrinos. Thus we calculate when these reaction freeze
out by

Γ = nnσweakc ∝ a−5,

and

H = H0

√
Ωr,0a

−2 ∝ a−2.

Thus look at the ratio of the reaction rate to the Hubble expansion rate, and recall that
a−1 ∝ T ,

Γ

H
∝ a−3 ∝ T 3.

Thus as T → 0, then so does the neutron abundance freeze-out as T 3. Thus to freeze-out
more neutrons we want to do this ASAP.

The rewritten Saha equation, (48), to a decent approximation, will continue to hold true until
the recombination rate is smaller than the expansion rate, that is Γrecombination ≤ H. Thus we will
find that we have a freeze-out population of free electrons which will never combine with protons.
Given a thermally average cross-section for recombination of 〈σv〉/c = 4.7x10−24(kbT/1eV )−1/2,
we can find the freeze-out abundance as

Γ = ne(z)
〈σv〉
c
c = H0

√
Ω0,ma

−3/2 = H (52)
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Solving for this numerically we find that zls ≈ 1000. This leaves a freeze-out population of
electrons of X ≈ 6x10−4. Note that recombination happens later for smaller η, or having more
photons. This is because the freeze out happens because the photons follow a Planck distribution
and if there are simply more, then there are more in the high energy tail and can keep hydrogen
from being neutral.

This population of electrons can now stay coupled to the CMB loosely through Compton
scattering. They will also loosely stay in contact with rest of the baryons, thus keeping the
baryons and CMB coupled well beyond recombination, as you might have expected. To determine
when the CMB and baryons actually decouple will we need to look when the Compton scattering
reaction rate freezes-out.

We could look at the Klein-Nishina formula to get the cross section of Compton scattering,
but that is beyond I will show here. Therefore I will just quote the result from that calculation
and say that zCdec ≈ 150.

2.4 Given the temperature Tfreeze of the neutrons, how can one crudely es-
timate the abundance of Helium in the universe? Name the 4 light
elements produced in Big Bang Nucleosynthesis. How are other ele-
ments in the universe made? How would the Helium abundance in the
universe change if the weak interaction was higher? If the baryon den-
sity was higher? If there were extra relativistic species in the universe.
Explain how the abundance of light elements was used to constrain the
number of neutrino species, Nν = 3

We can write a Saha-like equation for the ratio of neutrons to protons. This becomes

nn
np

= exp

(
−(mn −mp)c

2

kT

)
. (53)

Given a Tfreeze, we can calculation this fraction f . Then you could estimate the abundance
of Helium by assuming 100% efficiency in forming Helium. Defining Y ≡ ρHe/ρbary, we find that

Ymax =
2ρn

ρn + ρp
=

2fρp
fρp + ρp

=
2f

1 + f
. (54)

From this calculation we find that f = 0.2, thus we get a Ymax = 1/3. This is definitely
an upper bound since it assumes the neutrons don’t decay during BBN, however they do start
decaying before they can become bound since the universe first needs to cool down enough to for
Deuterium! This doesn’t happen until around t ≈ 200 s, and a significant amount of neutrons
have decayed. Thus the new ratio of f = 0.15, which placesYmax ≈ 0.27.

The four ‘elements’ produced during the BNN are isotopes of Hydrogen, Helium, Lithium
and Beryllium. During BBN both Deuterium and Tritium are produce, and while Tritium has a
decay time of 18 years, this is effectively stable during BBN. Both 3He and 4He are made, and
are stable. Both 6Li and 7Li are made, and are both stable. Both 7Be and 8Be are made, but 8Be
is extremely unstable and immediately decays back into two 4He atoms. In the end 7Be is also
converted into 7Li via electron caputre. This provided a major road black preventing elements
of A ≥ 8 from being formed during BBN. Elements heavy than these are made in stars where
there is no race against time, and eventually A ≥ 8 can be achieved by overcoming the unstable
elements with A = 5 and A = 8.
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The abundance of Helium produced during the BBN depends on a multiple parameters.
Significant ones are the weak interaction strength, baryon-to-photon ratio, and the number of
relativistic species during the BBN. First, if the weak interaction was weaker than what has been
calculated, then the freeze-out of neutrons would happen sooner leading to a higher number of
frozen-out neutrons. This in turn provides more neutrons for the BBN, which would increase
the yield of Helium. The logical precession is seen as

σ↓ =⇒ Γ↓ =⇒ tfreeze ↓ for Γ(t) = H(t) =⇒ Tfreeze ↑ =⇒
(
nn
np

)
freeze

↑ =⇒ nHe ↑

Next the baryon-to-photon ratio would also alter the abundance of Helium. Since the ratio of
neutrons to Deuterium has η dependence, then changing this variable will alter the temperature
of BBN, since we define BBN when the ratio of neutrons to Deuterium is 1. The Saha-like
equation for this ratio is

nD
nn

=
12(1− f)ζ(3)√

π
η

(
kT

mnc2

)3/2

exp

(
(mp +mn −mD)c2

kT

)
. (55)

At the temperatures of BBN the ratio of Deuterium to neutrons is dominated by the expo-
nential term. Thus if η goes up, then so does Tnuc. Thus BBN starts earlier and we have a more
complete fusion of 4He. However, if η goes up note the reaction rate for p+n� D+ γ also goes
up since there is more baryons. Thus we have a later time for the freeze-out of D, and thus we
have a lower abidance for D. Logical process of these occurrences are

η↑ =⇒ Tnuc ↑ for
nD
nn
≈ 1 =⇒ tnuc ↓ =⇒ nHe ↑

η↑ =⇒ Γ↑ =⇒ tfreeze ↑ for Γ(t) = H(t) =⇒ Tfreeze ↓ =⇒
(
nD
nn

)
freeze

↓ =⇒ nD ↓

Last parameter we will consider is the number of relativistic species. In the radiation domi-
nated era, which BBN took place in, the number of relativistic species has a significant effect on
the energy density. The exact relation is given by

εr =
g∗
2

c

4
σSBT

4 (56)

Thus if the number of relativistic species goes up, i.e. g∗ ↑, then we see that the energy
density also goes up. This leads to the Hubble parameter increasing. Thus if we have a larger
Hubble parameter the reaction will freeze-out earlier at higher temperatures. With higher freeze-
out abundances as a result we will have more time and more material to fusion 4He, and thus
will have a higher abidance of such.

g∗ ↑ =⇒ εr ↑ =⇒ H ↑ =⇒ Tfreeze ↑ =⇒
(
nn
np

)
freeze

↑ =⇒ nHe ↑

Assuming we understand the weak interaction and baryon-to-photon ratio well, which they
are fairly confident in, we could use the abidance of 4He to then constrain the last parameter, the
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number of relativistic species. By the time of BBN it is widely believed we understand all of the
components of the universe that were relativistic, rest mass energies << 66 keV (known particles
that satisfy this are the photons, gluons [but suffer from confinement, thus do not contribute],
neutrinos and perhaps gravitons [unconfirmed]). Thus we could place a constrain on g∗ from
4He, and therefore a bound on the number of neutrino families—if they are the only known
constituents of the relativistic contribution. Doing this we have constrained the number to be
three families, which is in agreement with what particle physicist have found.

2.5 Explain why the neutrino temperature is different from the CMB tem-
perature. Is it higher or lower? Extra credit if you can estimate its
numerical value. What characteristic scale does the ‘first Doppler peak’
in the CMB power spectrum correspond to?

The neutrinos decouple when the weak force became minuscule, around when the neutrons froze
out on the order of 1 second. This was around 1 MeV, when the average photon could still pair
produce. Thus the positron and electron are still relativistic when the neutrinos decouple. Now
when the positron and electrons go non-relativistic, i.e. photons can no longer pair produce,
the electrons and positron still annihilate, effectively dumping their energy into the photons
without receiving any back from pair production. However, since the neutrinos decoupled from
the electrons already, they get none of this energy. Therefore, while in thermal equilibrium with
photons before now, the photons will become hotter than the neutrinos.

Here is a more detailed calculation of how to estimate the relic neutrino background temper-
ature. The comoving specific entropy is given by

s = g∗σSB
c

4
T 3. (57)

While two or more populations are in thermal equilibrium, they have the same specific en-
tropy. Thus the comoving specific entropy of the neutrinos before decoupling is what the entropy
will remain the same after the neutrinos are decoupled (as long as they still remain in thermal
equilibrium with themselves). Designate two times, tbefore, for just after the neutrinos decouple
but before the electron/positrons go non-relativistic, and tafter, for after the electrons/positrons
go non-relativistic. Now the neutrinos specific entropy is also equal to the photon’s specific
entropy at the time of decoupling which is

sγ = sν = g∗before σSB
c

4
T 3
ν . (58)

Now consider the photon’s specific entropy after the electron/positrons go non-relativistic.
Since the photons remain in thermal equilibrium with themselves, these two times will be equal

sγ = g∗before σSB
c

4
T 3
γ,before = g∗after σSB

c

4
T 3
γ,after. (59)

From (58) we can see that Tν = Tγ,before and lets just call Tγ,after = Tγ now. Then from (59)
we find that

Tν =

(
g∗after
g∗before

)1/3

Tγ . (60)
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Now simply count the degeneracy factor for the conditions before and after to find what the
neutrino temperature is in terms of the photon’s. Recall

g∗ =
∑

Bosons

gi +
7

8

∑
Fermions

gi (61)

Now the photons, electron, positrons have g=2, so g∗before = 11/2. And when only the
photons are relativistic then g∗after = 2. Thus we find that

Tν =

(
4

11

)1/3

Tγ . (62)

Or that today Tν,0 ≈ 1.95 K.
The location of the first Doppler peak corresponds to the size of Hubble length at the time of

recombination. This is because this is the largest baryon acoustic oscillation amplitude possible,
corresponding to a baryon-photon plasma that has just reached the center of the potential well,
right before pressure pushes it back out. Modes that have been oscillating longer will have lower
amplitudes due to Hubble friction.

Structure Formation

3.1 Explain the difference between comoving and proper coordinates. If
a filament is 5 Mpc in comoving coordinates, how big is it in proper
coordinates?

The exact definitions of comoving and proper coordinates were discussed in section on FRW.
Coming coordinates are fixed in time, while the proper coordinate gives a physical distance
between two points, and change in time. The relationship is given by (2) or restated in terms of
redshift here

r = (1 + z)dp. (63)

Thus if we have a filament that is 5 Mpc in coming coordinates it’s proper distance is

dp =
5

1 + z
Mpc. (64)

3.2 Consider a uniform, initially static medium with density ρ and temper-
ature T . Estimate the Jeans mass in terms of ρ, T and fundamental
constants. Is it larger or smaller if the expansion of the universe is
taken into account?

The Jeans Length is given by

λJ = 2πcstdyn. (65)

The dynamic time scale for gravitational collapse is

tdyn =

√
1

4πGρ̄
. (66)

Page 15



Physics 236: Cosmology Review

The speed of sound of a component with parameter ‘w’ is

cs = c

√
dP

dε
=
√
wc. (67)

For massive baryonic matter we know that w ≈ kT/(µc2). Thus, taking all this together we
get the Jeans length for a static medium with density ρ and temperature T

λJ = 2π

√
kT

µc2
c

√
1

4πGρ̄
=

√
πkT

Gµρ
. (68)

Thus defining the Jeans mass to be the mass inclosed in a sphere of radius Jeans length we
get a Jeans mass of

MJ =
4

3
πρ

(√
πkT

Gµρ

)3

=

√
16π5k3T 3

9G3µ3ρ
∝ T 3/2

ρ1/2
. (69)

Taking the expansion of the universe into account we have to reconsider what the dynamic
time scale is. Recall that δ(r, t) = (ε(r, t) − ε̄(t))/ε̄(t). The dynamic timescale in an initially
static, homogeneous matter only universe can be derived from δ̈ = 4πGρ̄δ. However, in an ex-
panding universe there is an additional term called the Hubble drag which makes the perturbation
equation as follows

δ̈ + 2Hδ̇ = 4πGρ̄δ (70)

Therefore we can see that this frictional term will act to damp the growth of density per-
turbations, thus increasing the dynamical time for collapse. Therefore will a longer dynamical
time, we have a longer Jeans length, which directly leads to a larger Jeans mass.

Note the a better description of how perturbations will grow involves a fluid dynamic ap-
proach to consider other physics involved in the problem. We have only considered large scale
perturbations, a complete description also considers smaller scales, or larger k values is give

δ̈ + 2Hδ̇ = (
3

2
ΩmH

2 − k2c2
s

a2
)δ (71)

3.3 How does the growth factor D depend on the scale factor a(t) in the fol-
lowing 4 cases: superhorizon and subhorizon in both matter-dominated
and radiation dominated eras (assume a flat universe). Give brief phys-
ical arguments why the radiation-dominated case is either faster or
slower than the matter-dominated case for sup/super horizon perturba-
tions. Given these scalings, explain with order-of-magnitude arguments
why despite the fact that ∆T/T ∼ 10−5 at recombination, structure for-
mation was nonetheless able to go non-linear today.

From (71) we can solve for the density perturbation in various regimes. Sometimes we write the
density perturbation in Fourier transformed components as follows

δ = D(t)
∑
k

δk exp (−i~k · ~r). (72)
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To solve (71) lets assume that δ is a power-law in t, or δ ∝ D tp. Then (71) becomes

p(p− 1)D tp−2 + 2HpD tp−1 = (
3

2
ΩmH

2 − k2c2
s

a2
)pD tp (73)

In radiation and matter dominated periods the Hubble parameter goes as t−1. Thus we
can solve for p from these equation for cases when we can ignore the sound speed term, the
sub horizon terms. We find that D grows as t2/3 ∝ a(t) in matter dominated period and as
log(t) ∝ log(a(t)) in radiation dominated periods. We quote the results for superhorizons and
summarize in the follow table

D ∝ a(t) Sub-Horizon Super-Horizon

Radiation Dominated constant a(t)2

Matter Dominated a(t) a(t)

We can think of the radiation dominated results as a consequence of the speed of light being
finite and the definition of the horizon. For sub-horizon scales the photons can easily stream out
of any potential wells and then smooth out the density perturbations. However on super-horizon
scales the photons, by definition, cannot transverse this scale. Thus the matter and photons
combine together to create a density perturbation.

Despite the ∆T/T ∼ 10−5 observed in the CMB, leading to a density pertubation of δ ∼ 10−2

today, we find that δ ∼ 1 (enabling non-linear growth). This is because the dark matter decoupled
from radiation during the radiation-matter equality epoch and not at recombination. Thus
the dark matter density perturbations have been growing much longer, and when the baryons
decoupled from the photons they quickly feel into the dark matter potential wells giving them a
larger perturbation to start growing from (δDM = 10−3). Note the dark matter perturbation is
not seen in the CMB since the baryonic plasma’s sound speed was so large, preventing it from
falling in to the CDM wells.

3.4 Write down the perturbed Poisson equation, and show that in a flat
universe, linear potential fluctuations are time-independent.

The perturbed Poisson equation is

∇2φ = 4πGa2ρ̄δ. (74)

Consider large scale structure, or superhorizon scales. In the radiation dominated epoch
δ ∝ a2 and ρ̄ ∝ a−4. While for matter dominated epoch δ ∝ a and ρ̄ ∝ a−3. Thus in both epochs
the combination δρ̄ ∝ a−2. Thus taking this into account in (75), we find

∇2φ ∝ constant. (75)

This seems to be circular logic since the requirement that ∇2φ ∝ constant for superhorizon
perturbations, is what got us the growth rate factors.
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3.5 Sketch the power spectrum P (k) vs. k, and explain the reason for the
asymptotic slopes at the smallest and largest wavenumbers (you should
derive the latter). What characteristic scale does the peak in the power
spectrum P(k) correspond to? How do mass fluctuations σ(M) depend
on P (k)? How do they depend on the growth factor? Explain why this
implies that the CDM is a bottom-up hierarchical cosmology, with the
smallest structures collapsing first.

The power spectrum has asymptotic behavior of ∝ k for k << 1 and ∝ k−3 for k >> 1. We
can derive this by considering when perturbations collapse into the horizon. During radiation
dominated era, perturbations do not grow, thus perturbations smaller than the horizon are frozen
until matter-radiation equality. Thus consider two cases: the perturbation crosses within the
horizon before matter-radiation equality, and the perturbation crosses within the horizon after
matter-radiation equality. Then we can say the density perturbation for zcross > zrm are frozen
in until zrm and lose out on a perturbation growth by a factor of the ratio of the scale factors.
While for perturbations with zcross < zrm will have never experience a freezing. Thus since this
takes place during the radiation dominated period δ ∝ a(t)2. Then

δ ∝

1 zcross < zrm(
1+zrm

1+zcross

)2
zcross > zrm

(76)

Now we want this in terms of k, so find the relation between k and zcross. We expect the
perturbation will have a horizon crossing when λproper ∼ dH . Thus

λproper(tcross) = a(tcross)
2π

k
=

2π

k(1 + zcross)
.

dH(tcross) =
c

H
=

c√
Ωr
a(tcross)

2 =
c√

Ωr(1 + zcross)2

Thus we find that k ∝ (1+zcross). Now we are told that P (k) = Ak δ2 (Harrison-Zel’dovich),
thus

P (k) ∝

{
k k dH << 1 or (zcross < zrm)

k−3 k dH >> 1 or (zcross > zrm)
. (77)

From this derivation it is easy to see that the peak in the power spectrum corresponds to the
event horizon at time of matter-radiation equality.

The mass fluctuation σ(M) is define as

σ(M)2 =

∫
P (k)|Ŵ (k)|d3k ∝ P (k) k3. (78)

Since P (k) = 〈|δ~k|
2〉, then we know that P (k) ∝ δ2 ∝ D2. But also we assume the power

spectrum is invariant, thus P (k) ∝ kn. Thus

σ(M) ∝ Dk(3+n)/2. (79)

Thus we have that σ ∝ k(3+n)/2. For n > −3, which we just showed, we have that as you
go to smaller scales, larger k, you have larger mass fluctuations, σ(M). Therefore you will have
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collapse acting faster where there is larger fluctuations, therefore we will collapse first at small
scales and then larger scales. This shows that CDM is hierarchal.

3.6 P (k) ∝ k is often referred to as a scale invariant power spectrum. Ex-
plain what this means. What is the relation between perturbations in
matter δm and perturbations in radiation δr if the perturbations are adi-
abatic?

A scale invariant power spectrum predicted by most inflationary scenarios, (n=1), means that
the mass fluctuations has the same amplitude at all scales when the enter the horizon in the
radiation dominated epoch. Let’s show what the condition for a invariant power spectrum is,
and why we chose n = 1 or P (k) ∝ k.

σ(M) ∝ Dk(3+n)/2 ∝ a2M−(3+n)/6. (80)

Since k ∝ λ−1 ∝ M−1/3 and D ∝ a2, since these perturbations are happening during the
radiation dominated era, outside the horizon. Now the M or the horizon mass is equal to

M ∝ ρ

H3
∝ a−3

(a−2)3
∝ a3. (81)

Thus we find a ∝M1/3, telling us that

σ(M) ∝M (1−n)/6 =⇒ σ(M) = constant, for n = 1. (82)

For adiabatic perturbations, we assume that the entropy is constant. Therefore the perturba-
tions between the matter and radiation are in communication and are related somehow. Recall
the comoving specific entropy s ∝ T 3. Then the specific entropy per baryon, sm is

sb ∝
T 3

ρm
∝ ρ

3/4
r

ρm
. (83)

Therefore, since the fluctuations are constant so that, (mathematical note: δsb
sb
≈ d log sb in

the limit δ → 0)

δsb
sb

=
3

4

δρr
ρr
− δρm

ρm
= 0. (84)

Thus,

δm =
3

4
δr. (85)

3.7 Define the correlation function ζ(r), and define the power spectrum P (k)
(if you cant give a strict mathematical explanation, at least give a qual-
itative explanation). What is the relation between them?

The galaxy correlation function is the excess probability of finding a galaxy at a radius r of a
known one. Mathematically that is
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dN = N0[1 + ζ(r)]dV. (86)

Thus is galaxies are uncorrelated at a radius R, ζ(R) = 0, and we would get dN
dV = N0, as

expected. We can calculate the correlation function by

ζ(r) =

〈
ρ(r)ρ(0)

ρ̄2

〉
− 1 = 〈δ(r)δ(0)〉 . (87)

Recall from earlier that P (k) = 〈|δ~k|
2〉, thus looking at these two expression we see that they

are simply the Fourier transformation of each other.

3.8 Top-hat model. Write down the relation between kinetic and potential
energy for virialized objects. Hence, what is the relation between the
turnaround radius and the virial radius? How does the velocity disper-
sion σ scale with mass for virialized objects; hence, how does the virial
temperature scale with mass? What is the linear overdensity at which
an object collapses into a halo? What is the corresponding non-linear
overdensity?

From classical mechanics, relating the potential energy, kinetic energy and second time derivative
of the moment of inertia together, we can derive what is called the virial theorem.

Ï = 2U + 4K. (88)

We say a system is virialized if Ï = 0, or K = −1
2U . From this relationship we can derive

another relationship between the turnaround radius and virial radius. We define the turnaround
radius at which the kinetic energy is zero, thus

E = U = −GM
rta

.

And for the virial radius do the same equation for something that has been virialized, and
then set these energies equal to each other (this is saying that we want objects within a radius
turnaround to become virialized).

E =
GM

2rvir
.

Thus,

2rvir = rta. (89)

From the virial theorem, given a velocity dispersion, σ,

σ2 ≈ GM

rvir
∝M2/3a(t). (90)

Where we used the fact that rvir = rvid,pa
−1 = (3πM

4 )1/3a−1.

Thus we find that σ ∝M1/3√a. The virial temperature is just proportional to the disperision
velocity, thus T ∝M2/3a.

The magic number to remember is that for objects to collapses into halos the linear over
density is δcrit ∼ 1.69 and for non-linear case ∆crit ∼ 18π2 ∼ 178.
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3.9 Sketch the Press-Schechter mass function. Which end evolves most
sharply with redshift? Explain the concept of bias—why are massive
halos strongly clustered?

The Press-Schechter mass function talks about the number of collapsed halos as a function of
the halo mass and redshift. The result is the number of objects between M and M + dM is

N(M)dM =
1√
π

(1 +
n

2
)
ρ̄

M2

(
M

Mcrit

)(3+n)/6

exp

(
−
(

M

Mcrit

)(3+n)/3
)
. (91)

For small scale objects, n = 1, we that masses above Mcrit, will evolve more rapidly. Also
note below Mcrit, N(M) ≈ AM−2 ∝M−2.

The concept of bias comes from the fact that we tend to find structure around other structure.
Thus we it seems that there might be some underlaying bias causing this. The underlaying bias
is that if you have collapse you are biased towards having formed from a higher underlaying long
wavelength density perturbation. Thus since it is long wavelength your neighbor is also on this
higher density perturbation that average, so your neighbor is also likely to collapse and form
structure. If everyone was trying to build a tower 10km above sea level, than those who built it
in the Himalayas would have an easier time than those who started at sea level.

Inflation

4.1 Briefly explain some of the problems in cosmology inflation was de-
signed to solve. Why doesnt inflation reduce the number density of
photons to undetectable levels? Give the condition for inflation, either
in terms of the scale factor a or the pressure and density (P, ρ).

Cosmology has a fair deal of problems, making the subject mostly bullshit. Without invoking
inflation, there is the problem of uniformity of the CMB (Horizon Problem), the lack of magnetic
monopoles (Monopole Problem) and the observation of an fairly flat universe (Flatness Problem).

The Horizon Problem, is the issue that the CMB is in complete thermal equilibrium with
itself. This might not be an issue if the entire Horizon had even been in casual contact. However
it turns out at only a 2◦ chunk of the CMB is in causal contact with itself. Thus there are on
the order of 104 patches that are not in casual contact with each other, yet have δT/T ∼ 10−5.
How could this be?

The Monopole Problem, is the issue that we don’t see observe monopoles. Most accepted
cosmologies involve a Big Bang that creates monopoles, and thus there should be an observable
amount of monopoles we could detect today. The fact that Maxwell wrote ∇ · ~B = 0, and is still
consider an acceptable law today, tells us this is a glaring problem. Additionally, the predict
mass of the monopole is huge, on the order of 1012TeV . This would have quickly become non-
relativistic and would actually have been a dominate part of the universe very early, effectively
negating a radiation dominated period. This would cause a whole range of issues for cosmology
as we understand it now.

The Flatness Problem, is a fine tuning problem. For the universe to be flat today, with
current constraints requiring that |Ωk| < 0.2. Using the Benchmark model and following the
evolution of curative back to the Planck time, right before relativity breaks down and we should
stop applying our theories of cosmology, the bound on curvature would be |Ωk| < 10−60. This
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means that the universe when created was pretty much perfectly flat. This seems like a huge
fine tuning issue, since there is nothing in physics whats-so-ever that requires a flat universe.

Introducing the concept of inflation helps solve a lot of these issues. The basic idea is that
there was a period when the universe went rapid exponential growth very early in the universe.
One inflation model has inflation turning on at approxtGUT ≈ 10−36. The universe is then briefly
dominated by some component of the universe with w < −1/3. This causes and exponential
growth in the scale factor. Inflation ends after N e-foldings of the scale factor, around 10−34 s,
when the component of the universe loses all of it’s energy.

This rapid growth allows for a few things to occur. First we can have a CMB that is casually
connected before inflation and reaches thermal equilibrium, then after inflation the CMB is
no longer in casual contact as we observe it today. Next the monopole problem would be
resolved since the monopoles would be drastically diluted. The reason photons are not diluted to
undetectable levels with the monopoles is that the component driving inflation annihilates and
dumps its energy into the relativistic components of the universe. Since the monopoles were so
massive they do not get any of the energy, while the photons do. Thus we can effectively dilute
the monopoles while keep photons at detectable levels. Lastly the flatness problem is adverted
since we could have a highly curved universe to start with, but after inflation the universe will
be rapidly flattened, that is the radius of curvature exponentially grew instead of contracting.

The condition for inflation is that the comoving Hubble distance decreases with time, this
means

d

dt

( c

aH

)
=

d

dt

( c
ȧ

)
= −cä

ȧ2
< 0 =⇒ ä > 0. (92)

From the acceleration equation we see that this corresponds to a w < −1/3. Thus something
like the vacuum would be a good candidate.

4.2 Name four testable predictions of inflation, and give brief explanation.

4.2.1 Gaussian density fields, i.e., the phases of the Fourier components are uncorrelated with
each other. This leads to the power spectrum being scale invariant with a power-law
spectrum form.

4.2.2 Statistical significance of finding monopoles. Inflation predicts that if you find one
monopole, you are highly unlikely to ever find another one. Thus if we find a hand-
ful of monopoles inflation will be in serious trouble.

4.2.3 Flat universe. Inflation predicts that the universe should be flat, since the initial condi-
tion are highly suppressed and we should expect a flat universe now. Somehow probing
before inflation and finding a significantly curved universe would bode well for inflation,
though lack of one is not incriminating.

4.2.4 Background gravitational waves. Gravitational waves come from flocculation in the
metric, and their amplitude scales with the energy of inflation. We are looking to find
this through indirect detections from the B-mode polarization of the CMB.
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