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Density profile

Consider an atmosphere described by the fluid equations in hydrostatic equilibrium, then

~∇P = −ρ~∇φ. (1)

To simplify the problem take the atmosphere to be spherically symmetric, such that we have a
one dimensional problem. We may then rewrite hydrostatic equilibrium using ~∇φ = −GMenc

r2
ρ(r)

dP

dr
= −GMenc

r2
ρ(r) = −4πGρ(r)

r2

∫ r

0
ρ(r′) r′2 dr′ =

−GMp

r2
ρ(r)−4πG

r2
ρ(r)

∫ r

Rp

ρ(r′) r′2 dr′. (2)

Next assume the mass in the atmosphere is much less than the mass of the central object,
Mp. This allows us to drop the second term which has to do with the gravitational pull on the
atmosphere at r from the atmosphere below it. Thus we arrive at

dP

dr
= −GMp

r2
ρ(r). (3)

Next we will take the atmosphere to be isentropic, with isentropic exponent γ, i.e., P = Kργ .
Thus we may solve for the density structure of an atmosphere under these assumptions

Kγργ−1 dρ

dr
= −GMp

r2
ρ →

∫
ργ−2 dρ = −GMp

γK

∫
1

r2
dr. (4)

It is at this point which we will select a reference location which we will assign initial condi-
tions. Let’s start by integrating from R0 with local density ρ0.

∫ ρ(r)

ρ0

ργ−2 dρ = −GMp

γK

∫ r

R0

1

r2
dr

1

γ − 1

(
ρ(r)γ−1 − ργ−1

0

)
=

GMp

γK

(
1

r
− 1

R0

)
ρ(r) =

[
(γ − 1)GMp

γK

(
1

r
− 1

R0

)
+ ργ−1

0

] 1
γ−1

.

For an ideal gas, we can determine the constant K by noting P
ρ = c2

s, where cs is the

isothermal sound speed. Thus
P0

ρ0
= c2

s,0 = Kργ−1
0 → K = c2

s,0 ρ
1−γ
0 . Thus for ideal isentropic

atmospheres of negligible mass

ρ(r) = ρ0

[
(γ − 1)GMp

γ c2
s,0

(
1

r
− 1

R0

)
+ 1

] 1
γ−1

. (5)

It will be algebraically useful to define a “radius” Rc =
(γ − 1)GMp

γ c2
s,0

. Then we can rewrite

the density structure as
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ρ(r) = ρ0

[
Rc

(
1

r
−
(

1

R0
− 1

Rc

))] 1
γ−1

. (6)

In this form two things become apparent. First when 1
r = 1

R0
− 1

Rc
the density goes to zero.

We will now define that radius as Rz =
R0Rc
Rc −R0

, the zero radius. Second is to notice if Rc ≤ R0,

then the density never goes to zero (easily seen as Rz being negative)! Noting this, Rc is called
the critical radius, as it splits the atmospheres into two regimes; of course as written it is not
very intuitive how our arbitrary radius R0 and Rc are related to determine two fundamentally
different regimes.

To explore this phenomena let’s rewrite the inequality by unpacking Rc

Rc ≤ R0,

(γ − 1)GMp

γ c2
s,0

≤ R0,

γ − 1

γ

GMp

R0
≤ c2

s,0,

γ − 1

2γ
v2

esc ≤ c2
s,0,

If we pick our thermal speed to be a factor of
γ − 1

2γ
greater than our escape speed, the

planet’s atmosphere extends out to infinity. We will call atmosphere’s with c2
s,0 ≤

γ − 1

2γ
v2

esc,

thermally bounded atmospheres, and otherwise thermally unbounded. Note our choice of R0

remains arbitrary, but our choice of the temperature we assign at that point, c2
s,0, determines

the structure of the atmosphere.
To gain some perspective on what to expect in nature, let’s consider Jupiter with a pure

ideal hydrogen atmosphere: MJ = 2 × 1030g, RJ = 7 × 109cm, then c2
s,0 ≥ 2.76 × 106cm/s or

equivalently T ≥ 9.2 × 104 K. Thus we really wouldn’t expect thermally unbound atmospheres
in hydrostatic equilibrium unless they were Jupiter sized stars.

By far the most convent way to write the density profile is

ρ(r) = ρ0

[
Rc

(
1

r
− 1

Rz

)] 1
γ−1

= ρ0 [f(r)]
1

γ−1 . (7)

Since our gas was described by a polytropic relationship, specifically an isentrope, then we
also know the pressure profile

P (r) = Kρ(r)γ = c2
s,0 ρ0 [f(r)]

γ
γ−1 . (8)

The last equality held for an ideal gas, thus we can also use the ideal gas equation to obtain
a temperature profile

T (r) =
µ

k

P

ρ
=
µ c2

s,0

k
[f(r)]

γ
γ−1
− 1
γ−1 = T0 f(r). (9)
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Note that all quantities are dependent on the function f(r) to various powers, as expected
given the invoked relationships. Thus all quantities goes to zero Rz. Furthermore note that
df(r)

dr
= −Rc

r2
< 0 for all r, so these quantities are strictly decreasing outwards. Reminder

f(R0) = 1 and f(Rz) = 0.

Scale Heights: F , G and H

In this section we will discuss scale heights in atmospheres, and come across three of interest:
Fn(r), G(r) and Hn(r). In the isothermal case, all three scale height functions Fn(r), Hn(r) and
G(r) are equal to each other, denoted as Hiso(r).

Hiso(r) =
r2 kT (r)

GMµ
=
γ − 1

γ
r

(
1− r

Rz

)
. (10)

Call the number of e-foldings of the quantity Xn(r) between r = a and r = b, Ne(a, b). Take
as the intuitive definition of Ne(a, b) as

Xn(b) = Xn(a) eNe(a,b). (11)

Therefore we can solve for Ne(a, b) and rewrite it as

Ne(a, b) = log

(
Xn(b)

Xn(a)

)
=

∫ Xn(b)

Xn(a)
d lnXn =

∫ b

a

d lnXn(r)

dr
dr. (12)

To progress let’s examine the integrand,
d lnXn(r)

dr
=

1

Xn(r)

dXn(r)

dr
. Dimensionally, it has

inverse units of what one integrates with respect to, traditionally spatial distance. Mathemati-
cally, it is the infinitesimal relative change of the quantity Xn(r), i.e., the absolute infinitesimal
change in Xn(r) normalized to it’s current value.

This makes intuitive sense given the multiplicity law of exponentials and the poor man’s
limit interpretation of Riemann integrals. To illuminate that statement, think of d lnXn(r)

dr dr as,
δf(r)dr, the relative fraction of change to the function Xn(r) at r by moving a distance dr.∫ b

a

d lnXn(r)

dr
dr =

∫ b

a
δf(r) dr → lim

n→∞

n∑
i=0

δf (a+ i∆rn) ∆rn. (13)

Now going back to our definition of Ne(a, b), and isolating the exponential, let’s plug in this
new interoperation and see what we get. I will drop the lim

n→∞
, as it is implicitly understood and

define δfi = δf(a+ i∆rn),

Xn(b)

Xn(a)
= eNe(a,b) → e

∑n
i=0 δfi∆rn ,

=
n∏
i=0

eδfi∆rn ,

=

n∏
i=0

(1 + δfi∆rn).
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Where the last line we taylor expanded the exponential, as in the limit of large n we can
ignore higher order terms as ∆rn ∝ n−1. Thus we can see that δf is the fractional change to the
quantity Xn(a) for every step ∆rn; hopefully illuminating the logarithmic derivative.

Consider what we have found about this integrand so far, namely it has units of [dr]−1 and
is a fractional change. This motivates us to define a reciprocal fractional change “height” as
follows1

− 1

Fn(r)
≡ d lnXn(r)

dr
→ dXn(r)

dr
= −Xn(r)

Fn(r)
. (14)

From this it is clear that Fn(r) is the scale length for an e-folding when Xn(r) is of the form
Xn(r) = X0e

(−r/Fn(r)). However, for general Xn(r) this is not the case, and we must fall back
on our fractional change interoperation—as is the case for an adiabatic atmosphere.2 Focusing
on our selected atmosphere, we previously noted all quantities are of the form Xn(r) = X0f(r)n,
where n is some power and X0 is the quantities value at R0. Then

dXn(r)

dr
= nX0f(r)n−1 df(r)

dr
= −nX0f(r)n−1Rc

r2
= − nRc

r2 f(r)
Xn(r) = −Xn(r)

Fn(r)
. (15)

Therefore the reciprocal fractional change height is given as Fn(r) =
1

n

r2 f(r)

Rc
=
r

n

(
1− r

Rz

)
.

It is worth noting at this point that Fn(r) is equal to γHiso(r), when n = 1
γ−1 , i.e., the den-

sity scale height. This means Fρ(r) is the scale height of an isothermal atmosphere with local
quantities equal to those in our adiabatic atmosphere, except with a sound speed

√
γcs,0!

From the definition of Fn(r) the number of e-foldings between r = a and r = b is given by

Ne(a, b) =

∫ b

a
− 1

Fn(r)
dr = n [log(r −Rz)− log(r)] |ba = n log

(
a

b

b−Rz
a−Rz

)
. (16)

In general when Fn(r) has r dependence, i.e., Xn(r) is not strictly an exponential decay, then
the distance given by Fn(r) is not the distance in which the quantity will drop by one factor of
e.3 If we wanted a physical measure of the scale height, H(r), in which was the actual distance
from a given r at which the quantity Xn(r) changes by a factor of s, we would need to solve the
equation

Xn(r +Hn(r)) = sXn(r). (17)

Where s is the folding factor we are interested in, typically e−1 for the e-folding scale. Then

1The negative sign is to enforce Fn(r) to be positive for outwardly decreasing functions, such as those in
atmospheres

2In general we fit two points with an exponential decay, but that by no means is because it actually exponentially
decays.

3Rather it is the distance at which an isothermal atmosphere, with conditions at r, would drop by a factor of e
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X0[f(r +Hn(r))]n = sX0[f(r)]n(
1

r +Hn(r)
− 1

Rz

)
= s

1
n

(
1

r
− 1

Rz

)
Hn(r) =

(
s

1
n

(
1

r
− 1

Rz

)
+

1

Rz

)−1

− r.

Hn(r) =
(1− s

1
n )(Rz − r)

s
1
n

(
Rz
r − 1

)
+ 1

.

Hn(r) =
(1− s

1
n )(Rz − r)

s
1
n (Rz − r) + r

r.

Hn(r) =
Rz − r

r + (s−
1
n − 1)−1Rz

r.

Note that as s→ 0, then Hn(r) = Rz − r, which is what we expect since this is the distance
from r to the zero radius. As s → ∞, Hn(r) = −r. This tells us that origin is infinitely dense,
as one might have already notice.

The next way to think about a scale height will be the most useful for the optical depth, as
it will get us exact results. We define the third scale height, Gn(r), as follows∫ ∞

r
Xn(r′) dr′ = Xn(r)Gn(r). (18)

The physical meaning of this scale height is stated as, the height of a paralleled atmosphere
of constant “density”, X(r), of equal “column density” to our actual atmosphere out to infinity.

This is very useful for optical depths, as this is reducing the integral for optical depth into
simple function definitions. Unfortunately, for our atmosphere of interest this scale height is not
composed of elementary functions. Since this scale height will almost exclusively be useful for
column density, we will work with the specific case of Xn(r) = ρ(r), therefore
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∫ ∞
r

ρ(r′) dr′ = ρ0R
1

γ−1
c

∫ Rz

r

(
1

r′
− 1

Rz

) 1
γ−1

dr′,

= ρ0R
1

γ−1
c

∫ Rz

r
(r′)
− 1
γ−1

(
1− r′

Rz

) 1
γ−1

dr′.

Variable substitution x =
r′

Rz
,∫ ∞

r
ρ(r′) dr′ = ρ0

(
Rc
Rz

) 1
γ−1

Rz

∫ 1

r
Rz

x
− 1
γ−1 (1− x)

1
γ−1 dx,

= ρ0

(
Rc
Rz

) 1
γ−1

Rz

[∫ 1

0
x
− 1
γ−1 (1− x)

1
γ−1 dx−

∫ r
Rz

0
x
− 1
γ−1 (1− x)

1
γ−1 dx

]
.

Note that β(x, a, b) =

∫ x

0
ta−1(1− t)b−1dt, this is known as the incomplete Beta function.∫ ∞

r
ρ(r′) dr′ = ρ0

(
Rc
Rz

) 1
γ−1

Rz

[
β

(
1, 1− 1

γ − 1
, 1 +

1

γ − 1

)
−β
(
r

Rz
, 1− 1

γ − 1
, 1 +

1

γ − 1

)]
.

Therefore we can read off G(r), noting Rz
R0
− 1 = Rz

Rc
,

G(r) =

(
Rz
r
− 1

)− 1
γ−1

Rz

[
β

(
1− 1

γ − 1
, 1 +

1

γ − 1

)
− β

(
r

Rz
, 1− 1

γ − 1
, 1 +

1

γ − 1

)]
. (19)

Note the first incomplete Beta function reduces into a regular Beta function. Recalling that

β(x, y) =
Γ(x)Γ(y)

Γ(x)Γ(y)
. For negative values of x in Γ(x), use the recurrence relationship Γ(x− 1) =

Γ(x)
x−1 , which doesn’t help for negative integer x− 1, as you will eventually recurrence to 0 leading

to complex infinity. Then, we will want γ not of the form n+1
n , n ∈ Z+, which rules out relativistic

ideal gases with γ = 4/3.

G(r) =

(
Rz
r
− 1

)− 1
γ−1

Rz

Γ
(

1− 1
γ−1

)
Γ
(

1 + 1
γ−1

)
Γ(2)

− β
(
r

Rz
, 1− 1

γ − 1
, 1 +

1

γ − 1

) . (20)

For the γ = 5/3 case

G(r) =

(
Rz
r
− 1

)−3/2

Rz

[
−3π

2
− β

(
r

Rz
,−1

2
,
5

2

)]
. (21)

Admittedly this is not a huge improvement over actually numerically doing the integral, as
we will now how to numerically evaluate the Beta function; however in principle we have reduced
the scale height to “known” functions.
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Numerical Stability

To model a hydrostatic adiabatic atmosphere numerical, we will first need to deal with the
infinite core quantities, i.e., the quantities Xn(r) → ∞ as r → 0. To resolve this issue, we pick
a inner most radius, r0, under which we hardwire the quantities to Xn(r0). This immediately
breaks the assumption of a hydrostatic adiabatic atmosphere and the atmosphere would evolve
non-adiabatically; to prevent this, we artificially force the adiabatic hydrostatic solution from
r0 to rb, the base of our organic atmosphere. The goal is the have the atmosphere above rb
evolve naturally, while keeping the interior of our atmosphere adiabatic and hydrostatic. This
require the number of cells between r0 and rb, be at a minimum the number of cell used in your
interpolation algorithm.

The values between rb and r0 should be thought of as the boundary conditions necessary
establish a hydrostatic atmosphere. The values below r0 are simply set if you cannot turn off
the integration over this region, their values are set to keep the “boundary” conditions from
drastically evolving over a time step.

Page 7


