
Murrary-Clay Group Notes By: John McCann

Ohms Law

Consider a two species fluid of electrons and singly charged ions. Let the fluid be neutral so
that ni = ne, then the current density is

~j = ne(~ui − ~ue).

And the total momentum of the fluid per unit mass is

ρ~u = n(mi~ui +me~ue).

Then it is not hard to solve for the velocities of the two species given the fluids current and
momentum.

~ui = ~u+
me
~j

eρ
,

~ue = ~u− mi
~j

eρ
.

Now use these expression in Euler’s equation, including a frictional force Q, which describes
the electron resistivity. This can be modeled by Qs = νs;s′msns(~us′ − ~us), where νs;s′ is the
frequency of collisions between the two species s and s′. Note that Qs+Qs′ = 0, by conservation
of momentum (Newton’s third Law).

∂t(nmi~ui) + ~∇ · (ρi~ui~ui) = −~∇pi +
ne( ~E + ~ui × ~B)

c
+Qi.

∂t(nme~ue) + ~∇ · (ρe~ue~ue) = −~∇pe −
ne( ~E + ~ue × ~B)

c
+Qe.

Now multiple the ion’s equation by e/mi and the electron equation by −e/me and summing
together we have

∂t(en(~ui−~ue))+∇·(en(~ui~ui−~ue~ue)) = − e

mi

~∇pi+
e

me

~∇pe+
ne2

c

(
mime

mi +me

~E +

(
~ui
mi
×+

~ue
me
×
)
~B

)

∂t~j+~∇·(~u~j+~j~u)+
m2
e −m2

i

e(mi +me)
~∇·(1

ρ
~j~j) = − e

mi

~∇pi+
e

me

~∇pe+
ρe2

mimec
( ~E+~u× ~B)+

ne2(m2
e +m2

i )

cmemi
ρ~j× ~B.

Alfvén waves

Recall the derivation for sound waves in a uniform medium, or at least uniform locally. We
shall repeat the procedure including magnetic fields in the medium. If you have never seen the
derivation for sound waves, follow along and just set ~B = 0 —two derivations for the price of
one.

Start with the full suite of equations for ideal magnetohydrodynamics for a adiabatic gas,
they are: continuity, Euler’s equation, the barotropic equation of state, Ampère’s Law without
Maxwell extension, Maxwell-Faraday equation, and ideal Ohm’s Law.
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∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (1)

∂~v

∂t
+ ~v · ~∇~v = −1

ρ
~∇p− ~∇φ+

~j × ~B

ρc
, (2)

p = K ργ , (3)

~∇× ~B =
4π

c
~J, (4)

~∇× ~E =
−1

c

∂B

∂t
, (5)

~E = −~v × ~B. (6)

We can use then eliminate the electric field, current and pressure to reduce the equations
down to

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (7)

ρ
∂~v

∂t
+ ρ~v · ~∇~v = −γK~∇ρ− ρ~∇φ+

(~∇× ~B)× ~B

4πc
, (8)

~∇× (~v × ~B) =
1

c

∂B

∂t
. (9)

Let’s consider initial conditions such that the medium is uniform in ρ, p and ~B; then they
are perturbed such that

~v(~r, t) = δ~v(~r, t),

p(~r, t) = p0 + δp(~r, t),

~B(~r, t) = ~B0 + δ ~B(~r, t).

Replacing these quantities into the reduced equations lead us to

∂δρ

∂t
+ ~∇ · (ρ0δ~v) +O(δ2) = 0,

ρ0
∂δv

∂t
+ γK~∇δρ+ δρ~∇φ− (~∇× δ ~B)× ~B0

4πc
+O(δ2) = 0.

1

c

∂δ ~B

∂t
= ~∇× (δv × ~B0) +O(δ2).

Now we will take these equations to linear order int δ. We will then use the equations to
eliminate δ ~B and δρ, by taking the gradient of the linearized continuity equation and multiplying
it by −γK, and adding it to the time derivative of the linearized Euler’s equation.
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ρ0
∂2δ~v

∂t2
− γK~∇(~∇ · (ρ0δ~v))−

(~∇× 1
c
∂δ ~B
∂t )× ~B0)

4π
= 0.

Notice, that time indepdent potentials drop out. Now substituting in our linearized Ampère’s
equation into this expression, and dividing through by ρ, we arrive at

∂2t δ~v − γK~∇(~∇ · δ~v)− B2
0

4πρ

(
~∇×

(
~∇× (δ~v × êB)

))
× êB = 0.

You may already know that γK = c2s, where cs is the speed of sound, so we are tempted to

view the coefficient on the second term as some velocity too, which I will label c2A =
B2

0
4πρ . Now

to understand what these “velocities” are we will solve for a dispersion relation from the above

the equation by taking δ~v(~r, t) = ~vei(
~k·~r−ωt).

−ω2δ~v + c2s
~k(~k · δ~v) + c2A

(
~k ×

(
~k × (δ~v × êB)

))
× êB = 0.

Expanding the quadruple cross product

êB ×
(
~k ×

(
~k × (δ~v × êB)

))
= εijk(êB)j

(
εlmj(~k)l

(
εnom(~k)n (εpqo(δ~v)p(êB)q)

))
=

(
εikjεlmj(êB)j(~k)l

)(
εnmoεpqo(~k)n(δ~v)p(êB)q

)
= (δilδkm − δimδkl) (êB)j(~k)l (δnpδmq − δnqδmp) (~k)n(δ~v)p(êB)q

=
(

(êB)l(~k)lδkm − (êB)m(~k)k

)(
(~k)n(δ~v)n(êB)m − (~k)n(δ~v)m(êB)n

)
= (êB · ~k)(~k · δ~v)êB − (êB · ~k)(~k · êB)δ~v

−(êB · êB)(~k · δ~v)~k + (êB · δ~v)(~k · êB)~k.

Thus we have arrived at the dispersion equation for Alfvèn waves,

−ω2δ~v + (c2s + c2A)~k(~k · δ~v) + c2A(êB · ~k)
(

(~k · êB)δ~v − (~k · δ~v)êB − (êB · δ~v)~k
)

= 0. (10)

Now to simply the math, chose ~B to be along the z–axis, and rotate the x–y plane such that
~k lies in the x–z plane. Thus

~B = B0êz,
~k = k (sin(θ)êx + cos(θ)êz),
δ~v = δvxêx + δvy êy + δvz êz.

Then,

(êB · ~k) = k cos θ,

(~k · δ~v) = k (sin(θ)δvx + cos(θ)vz),
(êB · δ~v) = δvz.

−ω2δ~v+k(c2s+c
2
A) (sin(θ)δvx + cos(θ)vz)~k+c2Ak cos(θ)

(
k cos θδ~v − k (sin(θ)δvx + cos(θ)vz) êB − δvz~k

)
= 0.
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(
−ω2 + k2c2A cos2 θ

)
δ~v+k

(
(c2s + c2A)δvx sin(θ) + c2sδvz cos(θ)

)
~k−c2Ak2 cos(θ) (sin(θ)δvx + cos(θ)δvz) êB = 0.

(11)
This now allows us to look at each component of δ~v and written in matrix notation

M =

−ω2 + k2c2s sin2 θ + k2c2A 0 k2c2s cos(θ) sin(θ)
0 −ω2 + k2c2A cos2(θ) 0

k2c2s sin(θ) cos(θ) 0 −ω2 + k2c2s cos2(θ)

δvxδvy
δvz

 =

0
0
0


Solving the characteristic equation for ω2 we will find three solutions.

det(M) =
(
−ω2 + k2c2A cos2(θ)

) (
ω4 − k2(c2s + c2A)ω2 + k4c2Ac

2
s cos2(θ) sin2(θ)

)
= 0.

ω2 = k2c2A cos2(θ),

ω2 = 1
2k

2
(

(c2s + c2A)±
√

(c2s + c2A)2 − 4c2sc
2
A cos2(θ)

)
.

These are in general the dispersion relations for magnetosonic disturbances in a magnetic
fluid. The first one is known as the Alfvèn mode, and the second two are called the fast (+)
and slow (−) modes. For a general disturbance all three modes are present. However, it is
physically enlightening to examine two specific cases; when the ~k is parallel or perpendicular to
the magnetic field.

When the ~k is parallel to the magnetic field, cos(θ) = 1. Thus we have

ω2 = k2c2A,
ω2 = 1

2k
2
(
(c2s + c2A)± (c2s − c2A)

)
.

Thus we see that there is really only two modes with dispersion relations ω2 = k2c2s and
ω2 = k2c2A. Thus we can see right away that there are two types of disturbances with velocities
cs and cA, respectively. Moreover, looking back at equation (??) and substituting in θ = π, and
noting that ~k = kêB, we find that

(−ω2 + k2c2A)δ~v + (c2s − c2A)(~k · δ~v)~k = 0.

Consider the component of the disturbance propagation parallel to ~k, then this reduces to
(−ω2 + c2sk

2)δvk = 0, thus this wave is longitudinal wave that travels at the speed of sound, as
expected. The component perpendicular to ~k has (−ω2 + c2Ak

2)δvk = 0. This is a transverse
wave that propagates at the Alfvèn speed; thus we call this the Alfvèn velocity,

cA =
B0√
4πρ

. (12)

Now, looking at the linearized Ampère’s equation, we find that if there is a magnetic field
disturbance that it comes from the perpendicular component of the velocity disturbance. Thus
the Alfvèn waves do not give rise to a magnetic field disturbance.
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For a completely perpendicular velocity disturbance to the magnetic field vector parallel to
the magnetic field is said to be in the Alfvèn mode. From the dispersion relationship the phase
speed is ±cA| cos(θ)| and a group speed of ±cA, as already noted from the wave relation.

For the perpendicular propagating disturbance we the only non-zero mode is ω2 = k2(c2s+c2A).

This could have easily been seen from equation (??), given êB ·~k = 0. Thus we have a wave that

a wave that propagates with speed
√
c2s + c2A.
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