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Effective Potential

Consider a three-body system with m3 << m2 ≤ m1, from this point narratored with m1 as
a star, m2 as a planet and m3 as a small satellite. We shall use a rotating non-inertial coordinate
system, which rotates about the barycenter but with the origin centered on the planet. Oriented
such that the barycenter falls along the x–axis, in the x > 0 half, and the axis of rotation is
parallel to the z–axis.

Rewrite, m1 ≡M∗ as the mass of the star, and m2 ≡MP as the mass of the planet. Define ~a
as the vector from center of the planet to the center of the star, ~̀ as the vector from the center
of the planet to the barycenter, and ~r⊥ ≡ ~ρ, as projection of the vector from the center of the
planet to a given point into the plane normal to the axis of rotation (such given point denoted
as ~r).

To be succinct, ~r⊥ = |~r| sin(θ)
(

sin(θ)r̂ + cos(θ)θ̂
)

= ρρ̂, where the angle is the usual spherical

coordinate definition and ρ is the standard cylindrical coordinate, as used by physicist. We chose
to define this last vector, since it is the relevant distance for determining the centrifugal potential,
along with ` and Ω. The effective potential per unit mass, u, for a tertiary object in a planet-star
system is

ueff (~r) = −GMP

|~r|
− GM∗
|~a− ~r|

− 1

2
Ω2|~r⊥ − ~̀|2. (1)

Respectively the terms are Newton’s gravitational potential from the planet (thus defining G
as Newton’s gravitational constant), the gravitational potential from the star and the centrifugal
potential from an object moving about the barycenter with angular frequency Ω.

Since we can describe a scalar field potential to the entire space, there is a corresponding curl-
free force. This is given as Feff (~r) = −∇Ueff (~r). Assuming |~a| is constant, we limit ourselves
to circular orbits, and carrying out the calculation for the force per unit mass, f , we find

feff (~r) = −GMP

|~r|2
r̂ − GM∗

|~a− ~r|2

[
(|~r| − |~a| cos (φ) sin(θ))r̂ + |~a| sin (φ)φ̂− |~a| cos(φ) cos(θ)θ̂

|~a− ~r|

]

+Ω2|~r⊥ − ~̀|


(
|~r⊥| − |~̀| cos(φ)

)
ρ̂+ |~̀| sin(φ)φ̂

|~r⊥ − ~̀|

 .
Note that the parts of the second and third term enclosed in square brackets, are unit vectors.

Moreover, they are the unit normalized vectors of ~r−~a and ~r⊥ − ~̀, respectively. Physically, the
first one points from the star to the point r, and the second one points from the barycenter to
the projection of the point in the plane normal to the rotation axis. Let’s define unit vectors
such that they point opposite of the terms enclosed in square brackets, physically said they are
directed from a given point, or it’s projection, towards the object of interest. We will call these
r̂ra and r̂r⊥`.

r̂ra = −(|~r| − |~a| cos (φ) sin(θ))r̂ + |~a| sin (φ)φ̂− |~a| cos(φ) cos(θ)θ̂

|~a− ~r|
, (2)

r̂r⊥` = −(|~r⊥| − |~̀| cos (φ))ρ̂+ |~̀| sin (φ)φ̂

|~r⊥ − ~̀|
, (3)
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feff (~r) = −GMP

|~r|2
r̂ +

GM∗
|~r − ~a|2

r̂ra − Ω2|~r⊥ − ~̀|r̂r⊥`. (4)

For a Keplerian system Ω2|~a|3 = G(M∗ +MP ), thus

feff (~r) = −GMP

|~r|2
r̂ +

GM∗
|~r − ~a|2

r̂ra −
G(M∗ +MP )|~r⊥ − ~̀|

|~a|3
r̂r⊥`. (5)

ueff (|~r|) = −GMP

|~r|
− GM∗
|~r − ~a|

+
G(M∗ +MP )|~r⊥ − ~̀|2

2|~a|3
. (6)

Up until now we have been exact for circular orbits, let’s consider realistic systems with
MP << M∗ fields of interest being ~r << ~a. That means M∗ + MP ≈ M∗ or the limit that the
ratio of the planets mass to the stars is zero. Then we get that

lim
MP /M∗→0

~̀= ~a. (7)

Furthermore, let’s use ~r << ~a, such that θ ≈ π/2. Then r̂ra ≈ r̂`a. This regime leads to the
equation simplifying to

feff (~r) = −GMP

|~r|2
r̂ +

GM∗
|~r − ~a|2

r̂ra −
GM∗|~r − ~a|
|~a|3

r̂ra. (8)

ueff (|~r|) = −GMP

|~r|
− GM∗
|~r − ~a|

+
GM∗|~r − ~a|2

2|~a|3
. (9)

Let’s now group the star’s gravitational potential/force and the centrifugal potential/force
into one term and Taylor expand.

GM∗
|~r − ~a|2

r̂ra −
GM∗|~r − ~a|
|~a|3

r̂ra =
GM∗
|~a|3

(
|~a|3 − |~r − ~a|3

|~r − ~a|2

)
r̂ra

=
GM∗
|~a|2

(
1− |~r~a − 1|3

|~r~a − 1|2

)
r̂ra

=

(
3GM∗|~r|
|~a|3

cos(φ) +O

((
|~r|
|~a|

)2
))

r̂ra

− GM∗
|~r − ~a|

+
GM∗|~r − ~a|2

2|~a|3
= −GM∗

2|~a|3

(
2|~a|3 − |~r − ~a|3

|~r − ~a|

)
= −GM∗

2|~a|

(
2− |~r~a − 1|3

|~r~a − 1|

)

=

(
−GM∗

2|~a|
− 2GM∗|~r|

|~a|2
cos(φ) +O

((
|~r|
|~a|

)2
))

feff (~r) = −GMP

|~r|2
r̂ +

3GM∗|~r|
|~a|3

cos(φ)r̂ra +O

((
|~r|
|~a|

)2
)
. (10)
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ueff (|~r|) = −GMP

|~r|
− GM∗

2|~a|
− 2GM∗|~r|

|~a|2
cos(φ) +O

((
|~r|
|~a|

)2
)
. (11)

Note the potential is the potential from the planet, plus half the potential from the star and
some funny “tidal” potential. The half potential from the star can be understood from the virial
theorem, since the effective potential is really a kinetic energy term moved into the potential
(Ueff = 1

2mφ̇
2+U), thus the kinetic energy plus the potential energy is half the potential energy.

Assumptions: circular orbit (|~a| = constant), MP << M∗, and |~r| << |~a| to ignore higher order
terms.

What is the centrifugal force? Consider a Lagrangian description! Given some mass fixed to
a 2-dimensional plane, we can write L = 1

2m(ṙ2 +r2φ̇2)−U(r, φ). If the potential is independent
of φ, then φ is a cyclic coordinate, meaning ∂φ̇L = constant = L. Therefore we can move the
kinetic energy involving φ into the potential, creating an effective potential, since it is only a
function of r, namely −1

2mr
2φ̇2 = − L2

2mr2
(the negative since we are moving it from the kinetic

to potential term and in Lagrangian formalisms they differ by a sign). By doing this we have
reduced the problem to a 1-dimensional problem, namely r. Physically what has happened is
we have shifted into a rotating reference frame co-rotating with the particle. Thus this effective
potential term is what is known as the centrifugal potential, now we can get the centrifugal force
by taking the negative gradient of this potential term, −∇(−1

2mr
2φ̇2) = mrφ̇2 r̂.

Unfortunately, the potential description does not yield the full suite of fictitious forces. This
is because we thought only of stationary positions in our field; while the Coriolis force discusses
the force felt from moving from point to point, and the Euler force talks about spinning up or
down our frame itself. These two effects slightly complicate the picture and will be discussed in
future notes.
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