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1 Parker Model of Solar Winds

1.1 Momentum Equation

For an isothermal, stationary wind we consider the Parker Model which states that

u
du

dr
+

1

ρ

dp

dr
+
GM∗
r2

= 0. (1)

Where u is the velocity of the fluid, ρ is the density, p is the pressure, G is Newton’s
gravitational constant and M∗ is the mass of the star.

1.2 Mass Conservation

We adopt an Eulerian specification of the flow field for the derivation of the mass conser-
vation. Fixing some volume element in space we can calculate the total mass within the
volume element as

M =

˚
V
ρ dV. (2)

We now think of how the total mass enclosed changes with time in terms of the mass
leaving the volume element. This is the mass flux through an area element, integrated over
the total surface area of the volume element. By convention we chose n̂ to point outward,
so what we have described is the net mass flow outwards, which is equal to negative the
change in mass or negative net mass flow inwards.

dM

dt
= −
‹

∂V

~ΦM · n̂ dS = −
‹

∂V
(ρ ~u) · n̂ dS. (3)

Noting we have a closed surface integral of a flux, we invoke Gauss’s theorem to rewrite
the change of mass in time as
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dM

dt
= −

˚
V
∇ · (ρ ~u) dV. (4)

Differentiating (2) with respect to time and setting the RHS equal to the RHS of (4)
we get

d

dt

˚
V
ρdV = −

˚
V
∇ · (ρ ~u) dV. (5)

Since the volume element is fixed in space throughout time, we may commute the time
derivate with the volume integral. Moreover the total time derivative of this integral is
equal to the partial time derivative of the integral. Since these are the same integrals we
may also add the integrands together by bringing the divergence term over to the LHS

˚
V

[
∂ρ

∂t
+∇ · (ρ ~u)

]
dV = 0. (6)

We have not put any restrictions on what V is, therefore this must be true for any
arbitrary volume element. Thus we can deduce that the integrand must be zero

∂ρ

∂t
+∇ · (ρ ~u) = 0. (7)

This is our conservation of mass equation which can be rewritten to talk about the
change of density in time as a function of the divergence of the mass flux.

∂ρ

∂t
= −∇ · (ρ ~u). (8)

1.3 Momentum Conservation

Begin the same as we did for mass conservation and write the total momentum in a volume
element as

~P =

˚
V
ρ ~udV. (9)

We are interested in finding how the momentum in the volume element changes through
time. To simplify the problem let’s consider the flow of one component of the momentum,
let’s call this Pi for the i-th direction of momentum. So the i-th component of momentum
in the volume element is

Pi =

˚
V
ρ ui dV. (10)
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This momentum can change with time due to several factors. We will consider: the flow
of the fluid carrying momentum out or in of the volume element, internal fluid pressures on
the volume element and external volumetric forces acting throughout the volume element.

The flow of the fluid will give rise to a momentum flux through the surface of the
volume (N.B. the flow can carry some i component of the momentum in or out of the box
through a fluid flow in the j-th direction). We can then write the change in momentum in
the i-th direction as the momentum flux through the surface of the volume

dPi

dt
= −
‹

∂V
ΦPi · n̂ dS = −

‹
∂V

(ρ ui) ~u · n̂ dS. (11)

How to think of the change in momentum due to internal pressure from the fluid is

similar to the external forces (~Fp = p ~A = ~̇P ). At each face of the volume element there will
be a pressure exerted by the surrounding fluid. Pressure that will change the momentum
in the i-th direction across some area element is −p î · n̂ dS. Thus the change in the i-th
direction of the momentum will be

dPi

dt
= −

‹
∂V
p î · n̂ dS. (12)

The change in momentum, in the i-th direction, from external forces (~Fext = ~̇P ) can
be written as the volume integral of the volumetric force, in the i-th direction, acting on
the fluid

dPi

dt
=

˚
V
ρ fi dV. (13)

Applying Gauss’s Theorem to (11) and (12) turns them into

dPi

dt
= −

˚
V
∇ · (ρ ui ~u) dV, (14)

dPi

dt
= −

˚
V
∇ · (p î) dV. (15)

Collecting the RHS of (13), (14) and (15), we find the total change of momentum due
to all three effects is

dPi

dt
= −
˚

V
∇ · (ρ ui ~u) dV −

˚
V
∇ · (p î) dV +

˚
V
ρ fi dV. (16)

Since these integrals all talk about the same volume element we can combine these
integrals into one big integrand. We can also rewrite the LHS by taking a time derivative
of (10), which again commutes with the volume integral and is equivalent to a partial
derivative with respects to time. This tells use that
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˚
V

∂(ρ ui)

∂t
dV =

˚
V

[
−∇ · (ρ ui ~u)−∇ · (p î) + ρ fi

]
dV. (17)

With the same arguments from the mass conservation section, we say that

∂(ρ ui)

∂t
= −∇ · (ρ ui ~u)−∇ · (p î) + ρ fi. (18)

We can further simply this equation by using the product rule, mass conservation and
the fact that the divergence of a unit vector is zero

∂(ρ ui)

∂t
= ui

∂ρ

∂t
+ ρ

∂ui
∂t

= −ui∇ · (ρ~u) + ρ
∂ui
∂t

.

−∇ · (ρ ~uui) = −ui∇ · (ρ ~u)−∇ui · ρ ~u.

−∇ · (p î) = −∇p · î− p∇ · î = −∇p · î.
Thus

ρ
∂ui
∂t

= −∇ui · ρ ~u−∇p · î+ ρfi. (19)

One last note is that −∇ui · ρ ~u = −ρ [(~u · ∇)~u]i . Writing this out in components we
see this more easily

−∇ui·ρ ~u = −ρ ~u·∇ui = −ρ
∑
j

uj
∂ui
∂xj

= −ρ

∑
j

uj
∂

∂xj

ui = −ρ(~u·∇)ui = −ρ [(~u · ∇)~u]i .

With this knowledge we can now write an equation for momentum conservation. We do
so by noting that (19) is purely depended on the i-th component, this allows us to simply
slap these together with their respective unit vector and sum the orthogonal unit vectors
to get a vector.

∂~u

∂t
+ (~u · ∇)~u = −1

ρ
∇p+ ~f. (20)

This is the momentum conservation which takes only into account internal pressure
and external forces acting on a flow.

1.4 Parting Question

Assume a plant of mass M has an atmosphere in hydrostatic equilibrium. Using an isother-
mal model find the density as a function of distance. What is the pressure at infinity? What
does this mean?
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