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Restricted three body problem

We begin by introducing the restricted three body problem. In this scenario we have two
massive objects in circular orbits about their center of mass, with a third non-gravitationally
interacting body. Our task in this section is to write out the equation of motion for the third
body. Our analysis will be carried out in the non-internal frame co-rotating with the two massive
objects, such that they are at rest along the x–axis, and the axis of rotation is align with the
z–axis.

In non-intertial frames, non-intertial forces arise; specifically for a frame rotating with angular
frequency Ω there are the centrifugal, Coriolis and Euler forces. From a simple analysis of a how
a time derivative transforms between an inertial and rotating frame, one could discover that(

∂

∂t

)
I

→
(
∂

∂t

)
R

+ ~Ω× .

Where the subscripts “I” and “R” are in turn for inertial and rotating. Thus, the kinematics
are changed in a rotating frame by the additional ~Ω0× term, giving rise to the three previously
mention non-inertial forces when writing out Newton’s Second Law. These are, per unit mass(

∂2~x

∂t2

)
I

=

(
∂2~x

∂t2

)
R

+ ~Ω× ~Ω× ~x+ 2~Ω×
(
∂~x

∂t

)
R

+
∂~Ω

∂t
× ~x.

Thus in a rotating frame we have the forces appearing as(
∂2~x

∂t2

)
R

=

(
∂2~x

∂t2

)
I

− ~Ω0 × ~Ω0 × ~x− 2~Ω0 ×
(
∂~x

∂t

)
R

− ∂~Ω0

∂t
× ~x.

On the righthand side, moving left to right these are the: inertial forces (all forces present in
the inertial frame, −∇φ), the centrifugal force, Coriolis force and Euler force. Back to the three
body problem as described our frame has ~Ω = {0, 0,Ω0}, thus there is no Euler force (∂t~Ω = 0),
and both the Coriolis and centrifugal forces are only present in the x and y components of motion
(~Ω × ẑ = 0). The next step of writing this out in component can be done from the previous
equation and recalling that ẑ × x̂ = ŷ and ẑ × ŷ = −x̂. Thus

ẍ = −~∇φ · x̂+ Ω2
0x+ 2Ω0ẏ.

ÿ = −~∇φ · ŷ + Ω2
0y − 2Ω0ẋ.

z̈ = −~∇φ · ẑ.

So far we have not really thought about the other two bodies except for they interact with
each other and are fixed along the x–axis in the co-rotating frame. However, these two bodies also
impose forces on our third body, but the third body imposes no appreciable force on them. This
is built into the −~∇φ term, which we will now write for gravitational forces. Recall the graviton
potential energy and write the distance to the two bodies as r1 =

√
(x+ µ2a)2 + y2 + z2, where

µ2 = m2
m1+m2

, and similarly r2 =
√

(x− µ1a)2 + y2 + z2, where µ1 = m1
m1+m2

.
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−~∇φ = −(∂x, ∂y, ∂z)

[
−GM1

r1
+
−GM2

r2

]
=

([
−GM1(x+ µ2a)

r31
+
−GM2(x− µ1a)

r32

]
,

[
−GM1

r31
+
−GM2

r32

]
y,

[
−GM1

r31
+
−GM2

r32

]
z

)

Combining all of this together we have the equation of motion for the third body in the
rotating reference frame, with origin center on the barycenter of the two massive bodies is as
follows

ẍ− 2Ω0ẏ − Ω2
0x = −

[
GM1(x+ µ2a)

r31
+
GM2(x− µ1a)

r32

]
,

ÿ + 2Ω0ẋ− Ω2
0y = −

[
GM1

r31
+
GM2

r32

]
y,

z̈ = −
[
GM1

r31
+
GM2

r32

]
z.

Hill Equations: Local to Second Body Approximation

Consider the case where the two massive bodies are a star and planet, with the star much
more massive than the planet. What does this imply for the third body? Far away from the
planet the third body will not feel an appreciable force from the planet and will effectively just
be a small perturbation from a Keplerian orbit around the massive star. However, we will take
a look at what happens when the third body approaches the planet. Let’s call µ1 = 1 − ε and
µ2 = ε, where ε is presumed to be a small number when the star is much more massive than the
planet.

We will shift our coordinate system such that is aligns with the planet’s core, i.e., x →
x+ a(1− ε), additionally we will consider distances from the second body much small than the
distance between the two massive bodies, a, i.e., x << a (Note this x and from here on out is
the shifted x centered on the planet).

ẍ− 2Ω0ẏ − Ω2
0(x+ a(1− ε)) = −

[
GM1(x+ a)√

(x+ a)2 + y2 + z2
3 +

GM2(x)√
x2 + y2 + z2

3

]
,

ÿ + 2Ω0ẋ− Ω2
0y = −

[
GM1√

(x+ a)2 + y2 + z2
3 +

GM2√
x2 + y2 + z2

3

]
y,

z̈ = −

[
GM1√

(x+ a)2 + y2 + z2
3 +

GM2√
x2 + y2 + z2

3

]
z.

Let’s focus on the centrifugal term and the stellar gravitational force for the x equation of
motion, bringing both on the right hand side. Expand for small x, y, and z.
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Ω2
0(x+ a(1− ε))− GM1(x+ a)√

(x+ a)2 + y2 + z2
3

= Ω2
0(x+ a(1− ε))− GM1(x+ a)

a3
1√

(1 + x
a )2 + y2 + z2

3 ,

= Ω2
0(x+ a(1− ε))− GM1(x+ a)

a3

[
1− 3

x

a
+O(x2) +O(y2) +O(z2)

]
,

From Kepler’s Second Law,

GM1

a3
=
GM

a3
(1− ε) = Ω2

0(1− ε).

Ω2
0(x+ a(1− ε))− GM1(x+ a)

a3

[
1− 3

x

a
+O(x2) +O(y2) +O(z2)

]
,

= Ω2
0(x+ a(1− ε))− Ω2

0(1− ε)(x+ a)
[
1− 3

x

a
+O(x2) +O(y2) +O(z2)

]
,

= Ω2
0 [x+ a− aε− x+ εx− a+ aε+ 3x− 3xε] +O(x2) +O(y2) +O(z2),

= Ω2
0 [3x− 2xε] +O(x2) +O(y2) +O(z2).

If we take ε to be O(xa ), then to first order the tidal term (centrifugal and stellar forces) is
3Ω2

0x.

ẍ− 2Ω0ẏ =

3Ω2
0 −

GM2(√
x2 + y2 + z2

)3
x,

ÿ + 2Ω0ẋ = − GM2(√
x2 + y2 + z2

)3 y,

z̈ = −

 GM1(√
(x+ a)2 + y2 + z2

)3 +
GM2(√

x2 + y2 + z2
)3
 z.

Generalizing for non-Keplerian systems

We have assumed a Keplerian rotation curve, which follows naturally from a singular massive
gravitating body; however, this might not always be the case so let’s take a step back and
generalize our equations. We still wish to have circular orbits, such that in a frame rotating at
Ω0, a position r0 is fixed. Thus we will need a potential that satisfies

−~∇φ
∣∣∣
r0

= −Ω2
0~r0.

The equation of motion in this case are
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ẍ− 2Ω0ẏ = (Ω2
0 − Ω2)(x+ r0).

ÿ + 2Ω0ẋ = (Ω2
0 − Ω2)y.

z̈ = −Ω2z.

Let’s define a parameter q as

q ≡ −∂ ln Ω

∂ ln r
.

Examples of the parameter are: solid body rotation (q = 0), flat rotation curves (q = 1),
uniform angular momentum disc (q = 2), and Keperlian disc (q = 3/2). Angular rotation profiles
that follow this definition are of the form

Ω(r) = Ω0

(r0
r

)q
.

Shifting from the origin to our region of interest, the shearing box, we can rewrite this as

Ω(x, y, z) = Ω0

(
r0√

(x+ r0)2 + y2 + z2

)q

.

Since we are considering a local region with linear length much less than r0, we will Taylor
expand Ω around this region to first order.

Ω(∆x,∆y,∆z) = Ω(0, 0, 0) + ∆x
∂Ω

∂x

∣∣∣
r0

+ ∆y
∂Ω

∂y

∣∣∣
r0

+ ∆z
∂Ω

∂z

∣∣∣
r0

+O(∆x2) +O(∆y2) +O(∆z2),

= Ω0 -
qΩ0

r0
∆x+O(∆x2) +O(∆y2) +O(∆z2).

Squaring this, keeping only linear terms, and putting it into our equations of motion yield

ẍ− 2Ω0ẏ = 2qΩ2
0x.

ÿ + 2Ω0ẋ = 0.

z̈ = −Ω2
0z.

∂2~x

∂t2
= −2~Ω0 × ~v + Ω2

0(2qxx̂− zẑ).

Shearing Box

The past two decades have seen recent application of this approximation in MHD disc sim-
ulations, dubbed the shearing box approximation. We will now consider the implication of this
approximation in continuum mechanics. Let’s start by review the momentum equation. Widely
stated as

∂~u

∂t
+ (~u · ~∇)~u = −1

ρ
~∇p+ ~f.
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However, let’s rewrite this equation in conservative form. We will start by noting this is the
momentum equation, so we will want to have the momentum being differentiated with respect
to time. From the derivation of this form we used the continuum equation to disassemble that
term, so now let’s reassemble it. First multiple the equation by ρ.

ρ
∂~u

∂t
+ (~u · ~∇)(ρ~u) = −~∇p+ ρ~f.

Now recall the continuity equation

∂ρ

∂t
+ ~∇ · (ρ~u) = 0.

Multiplying this by ~u and adding it to our momentum equation nets us

ρ
∂~u

∂t
+ ~u

∂ρ

∂t
+ ~u

(
~∇ · (ρ~u)

)
+ (~u · ~∇)(ρ~u) = −~∇p+ ρ~f.

Recall the divergence of a tensor, using Einstein summation notation,

~∇ · τ =
∂τij
∂xj

ei.

If τ is a dyadic tensor (τij = aibj), then

~∇ · τ = (~b · ~∇)~a+ ~a(~b · ~∇).

Note that this appears in our momentum equation and thus we can simply the equation to
compactly write

∂ρ~u

∂t
+ ~∇ · (ρ~u~u) = −~∇p+ ρ~f.

This is the conservative form which has the flux of momentum (ρ~u~u), and the sources terms,
both internal (−~∇p) and external (ρ~f). Replacing f with our local approximation forces we
found for a general system with shear parameter q

∂ρ~u

∂t
+ ~∇ · (ρ~u~u+ pI) = −2ρ~Ω0 × ~v + ρΩ2

0(2qxx̂− zẑ).

Slight modification to the energy equation we simply need to recall that ∂E
∂t = ~f · ~u and we

get

∂E

∂t
+ ~∇ · (E~u+ pI · ~u) = Ω2

0ρ~u · (2qxx̂− zẑ).

Notice the Coriolis force does no work, thus does not alter the energy equation.
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