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Rankie-Hugoniot relations

The equations that govern fluids are capable of discussing discontinuities in
the field. Let’s take a look at interfaces between two fields and see how the
system behaves. The relations derived are known as the Rankie-Hugoniot
relations.

See figure below for the setup of the two fields in the problem. We will consider the fluid
parameters ρ, p and the flow velocity u. Note for simplicity we carry out the work in the shock
frame, and can boost to other frames later as desired.

Figure 1: Field 1 on the left and field 2 on the right. The black bar between the two is the
interface, possibly a shock front.

Consider the one dimensional continuity equation, which we will justify using briefly,

∂ρ

∂t
+

∂

∂x
(ρ ux) = 0, (1)

at an interfaces of two uniform fields: field 1 and field 2. The properties of these fields are
subscripted such that ρ1 is the density in field 1, ux,2 is the x velocity of the fluid in field 2, etc.
Now integrate the continuity equation around a layer of thickness d` about the interface of the
two fields. ∫ d`/2

−d`/2

∂ρ

∂t
+

∂

∂x
(ρ ux) dx = 0.

∫ −d`/2

0

∂ρ1
∂t

+
∂

∂x
(ρ1 ux,1) dx =

∫ d`/2

0

∂ρ2
∂t

+
∂

∂x
(ρ2 ux,2) dx.

Now the time derivative term is zero since as d`→ 0 so does the value of the integral and the
value of that does not change much over time, therefore we are okay to ignore it. The remaining
term is a simply application of the fundamental theorem of calculus, resulting in
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ρ1 ux,1 = ρ2 ux,2. (2)

Where these values are evaluated d`/2 distance away from the interface in each field. Thus
as d` → 0 these are the left and right limiting values of the interface, possibly a discontinuity.
This is the first Rankie-Hugoniot relation.

Next we do the same for the momentum equation, written in component form with a contin-
uous potential

∂ρ~ui
∂t

+ ∂j (ρujui + pδij) = −ρ∂iΨ. (3)

Since the shock plane is the surface of interest in the problem, let’s only consider momentum
which is transferred through the shock surface, limiting us to j = x. Now consider the x
component of that momentum transport, that is i = x

∂ρux
∂t

+
∂

∂x
(ρ ux ux + p) = −ρ∂Ψ

∂x
. (4)

We can see the maths will be the same, except we will give special attention to the continuous
potential. We will start by integrating the RHS of the previous equation by parts∫ 2

1
ρ
∂Ψ

∂x
dx = ρΨ

∣∣∣2
1
−
∫ 2

1

∂ρ

∂x
Ψdx. (5)

Since Ψ is continuous and as d`→ 0, then the value of Ψ is approximately constant across d`,
thus to good approximation we can pull Ψ out of the integral, it is equal to the approximation
that Ψ1 = Ψ2 and will simply the first term too. Note the second term on the LHS is then just
another application of the fundamental theorem of calculus∫ 2

1
ρ
∂Ψ

∂x
dx = Ψ(ρ2 − ρ1)−Ψ(ρ2 − ρ1) = 0. (6)

We have just shown that any continuous potential maybe acting on our system and will have
no effect on the second Rankie-Hugoniot relations. Going back to equation (4) we can apply all
of our knowledge to see

ρ1 u
2
x,1 + p1 = ρ2 u

2
x,2 + p2. (7)

This is the second Rankie-Hugoniot relation.
As a side note if we consider the off diagonal terms from the momentum equation (i = y

or i = z), terms were the stress tensor does not include the thermal pressure, we see that the
components of the Reynolds stress tensor are conserved across the interface (ρ uj ui). However
from the continuity equation we know that ρ ux is conserved, thus we can see that uy is conserved
and so is uz. It is convent to set these to zero, at no loss of generality, when working out the
physics of a non-relativistic shock.

One could also use the symmetry of an infinite plane to argue these values are constant.
Assume uy changed across the interface, then by the symmetry of the plane, every streamline
across the interface would have to have the same ∆uy across the interface. Now rotate our
coordinate frame about the normal of the interface by a degree θ. As we rotate our frame we
will need to require ∆uy = ∆uy′ , since by the symmetry of the plane there is no distinction
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between the two frames. To keep this ∆uy′ = ∆uy as is required by our assumption what
does ∆uz need to be? A simple rotation has ∆uy′ = ∆uy sin(θ) + ∆uz cos(θ), therefore ∆uz =
∆uy(1 − cos(θ))/ sin(θ), which is not a constant unless ∆uy = 0, which violates our original
assumption. Therefore ∆uy = 0 and ∆uz = 0.

Lastly we deal with the energy equation

∂E

∂t
+∇ · [(E + p)u] + ρQ̇cool − ρ

∂Ψ

∂t
= 0 (8)

We will simply the energy equation by saying we are working with an adiabatic gas, and that
the potentials are time independent. For an Adiabatic gas Q̇cool = 0, and for time independent
potentials ∂tΨ = 0. Using the same math rigmarole we get that the conserved value across the
interface is

(E1 + p1)u1 = (E2 + p2)u2. (9)

Now lets say the energy of the gas is simply kinetic, 1/2ρu2, internal, ρε, and energy from
continuous, time independent potentials, ρΨ,

E =

[
1

2
u2 + ε+ Ψ

]
ρ. (10)

The continuous potentials cancel on both sides since the interface is infinitesimally small and
they have the same values immediately on either side of the interface. Then

(
1

2
u21 + ε1 +

p1
ρ1

)ρ1 u1 = (
1

2
u22 + ε2 +

p2
ρ2

)ρ2 u2. (11)

Now from our first Rankie-Hugoniot relation, we see the ρu terms on both side cancel. Next
we will also rewrite the internal energy as ε = 1

γ−1
p
ρ , a completely general property for any gas.

Note 1 + 1
γ−1 = γ

γ−1 . Lastly we will find it interesting to recast the equation in terms of speed

of sound, for adiabatic gas c2s = γ pρ .

1

2
u2x,1 +

γ

γ − 1

p1
ρ1

=
1

2
u2x,2 +

γ

γ − 1

p2
ρ2
, (12)

1

2
u2x,1 +

c2s,1
γ − 1

=
1

2
u2x,2 +

c2s,2
γ − 1

.

This will be our third and final Rankie-Hugoniot relations, which all together are (2), (7) and
(12).

Jump Conditions

From the Rankie-Hugoniot relations we can get some interesting physical
results from some algebra manipulation. In this derivation the symmetry of
the equations is preserved, until the final step when we wish to break it for
the desired result.

Let’s relabel the first relation as j = ρ1 u1 = ρ2 u2, a typical looking density current. Now
rewriting the second relation in suit results in
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p1 +
j2

ρ1
= p2 +

j2

ρ2
.

Solve for j2

j2 =
p2 − p1
1
ρ1
− 1

ρ2

.

The third relationship rewritten in terms of j gives

1

2

j2

ρ21
+

γ

γ − 1

p1
ρ1

=
1

2

j2

ρ22
+

γ

γ − 1

p2
ρ2
.

Now from this equation we will derive the jump conditions, making the appropriate substi-
tution of j2 and doing some algebra.

j2

2

[
1

ρ21
− 1

ρ22

]
=

γ

γ − 1

[
p2
ρ2
− p1
ρ1

]
,

1

2

p2 − p1
1
ρ1
− 1

ρ2

[
1

ρ21
− 1

ρ22

]
=

γ

γ − 1

[
p2
ρ2
− p1
ρ1

]
,

Note: x2−y2
x−y = (x+y)(x−y)

x−y = (x+ y),

1

2
(p2 − p1)

[
1

ρ1
+

1

ρ2

]
=

γ

γ − 1

[
p2
ρ2
− p1
ρ1

]
,

Now group density on each side,

1

ρ1

[
1

2
(p2 − p1) +

γ

γ − 1
p1

]
=

1

ρ2

[
1

2
(p1 − p2) +

γ

γ − 1
p2

]
,

Note: 1
2 + γ

γ−1 = γ+1
2(γ−1) ,

1

ρ1

[(
γ + 1

γ − 1

)
p1 + p2

]
=

1

ρ2

[(
γ + 1

γ − 1

)
p2 + p1

]
.

Finally arriving at,

ρ2
ρ1

=
(γ + 1)p2 + (γ − 1)p1
(γ + 1)p1 + (γ − 1)p2

=
u1
u2
. (13)

These are known as the jump conditions.
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Applications

Shocks happen whenever two fields interface with each and create a discon-
tinuity. You might recall that shocks are commonly caused by SN in astron-
omy, however distinguish that a SN itself does not generate a shock. If a SN
went off in a vacuum we would not observe a shock! or those pretty super
bubbles. What causes the shock is the SN slamming into the ISM, which
is another field with different parameters and at their interface we have a
discontinuity. A blast wave is a shock such that the pressure inside the shock
front is immensely greater than the ambient medium. In this case we have
the condition p2 >> p1, this is called a strong shock.

Consider a strong shock for a monatomic gas (γ = 5
3). From the jump conditions the limit of a

strong shock is that

ρ2
ρ1

=
γ + 1

γ − 1
=
u1
u2
. (14)

For γ = 5
3 , we get that this ratio is 4.

Note that all this work has been done with respect to the shocks reference frame. That is,
that the shock is stationary and the gas has been passing through. However, typically we are not
in the shocks reference frame when we are observing (unless we are riding on the blast wave).
Thus is it useful be able to frame shift into the “lab” frame.

At this point it is best to draw two frames of references, a lab frame where the ambient
medium is typically taken to be zero, and the shock frame, where the shock is stationary. In the
shock frame, we know that the upstream fluid is moving four times faster than the downstream
fluid, in the case of a strong shock.

Figure 2: Left: The lab frame of a shock. Right: Shock frame of the shock.

In the lab frame, given the the ambient medium is stationary, the shock front is moving at
the speed of the upstream velocity in the shocks frame. The velocity of the shocked gas is also
the velocity of the shock minus the downstream velocity. This all translates to
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Lab:
vs = −u1,

vg = u2 + vs,

Shock:
u1 = 4u2.

Where vs is the shock’s speed, u1 is the upstream velocity, u2 is the downstream speed.
Putting this all together we get that the shocked gas is moving at 3

4vs.

Conditions for Shocks

We have seen the relations which govern how shocked gas behaves, specifically
it’s properties are set by the field is is crashing into, not the field which is
“generating” the shock. But what determines when a shock happens and
when it doesn’t?
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