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1 Ionization Equilibrium

From Murray-Clay et al. 2009, equation 7 states

FUV e
−τ

hν0
n0σν0 = n2+α+

1

r2
∂

∂r

(
r2n+v

)
. (1)

Where n0 is the number density of neutral hydrogen, σν0 is the cross section for photoion-
ization of hydrogen from light at a frequency of ν0, FUV is the flux in the uv, τ is the optical
depth, α is the recombination coefficient, n+ is the number density of ionized hydrogen, r
is the distance to the center of the planet, and v is the velocity of the wind.

1.1 L.H.S.

The L.H.S. of this equation represents the number of ionizations per unit volume, per unit
time. Picking apart the expression, let’s look at

FUV e
−τ

hν0
. (2)

The term FUV is the flux produced from the star in the uv, which is the amount of
energy emitted at ν0 per area per time. To get the number of photons per area per time
we divide FUV by the energy of a photon at that frequency, namely, hν0. Thus the term

FUV
hν0

=
the number of photons at ν0

area · time
.

However, in our model we will include some extinction from material between the star
and the planet. Thus the flux that reach the planet is attenuated by a factor of exp (−τ).
Therefore, accounting for this extinction, the true number of photons to reach a position
r per time per area is given by (2).
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To find the number of ionizations per unit volume per time, i.e. (1), we will want to
find the number of collisions per number of photon per length, in addition to our number
of photons per area per time, i.e., (2).

The number of collisions per number of photons per length, is the number of collisions
per time per number of photons times the amount of time elapsed divided by distanced
traveled by a photon in that time. More compactly, almost incorrectly, said the collision
rate divided by the speed of light.

n0σν0 =
collision rate

speed of light
. (3)

Thus putting (2) and (3) together we exactly get (1), and our work is done.

To illuminate what was just done, we can reimagine the picture. Using our physical
intuition, unit analysis and cleverness

total # of collisions = collision rate ·# of photons · time,

total # of collisions

time
= collision rate ·# of photons,

total # of collisions

time · volume
= collision rate · # of photons

volume
. (4)

Now we can also figure out how many photons there are in a given volume,

# of photons

volume
=

# of photons

area · time
· time · 1

length
,

# of photons

volume
=
FUV e

−τ

hν0
· t · 1

ct
.

Plugging this back into (4), and recalling what the collision rate expression is, we can
see that

total # of collisions

time · volume
= n0σc ·

FUV e
−τ

hν0
· t · 1

ct
.

Thus we get that

total # of collisions

time · volume
= n0σ

FUV e
−τ

hν0
.

Where we are using the word collision and ionization interchangeably.
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1.2 R.H.S.

There are two terms on the R.H.S. The first being recombination and the second being
advection. Both of these will lead to a loss of ions, since you lose one ion every time an
electron recombines with an ion to form a neutral hydrogen, and advection is simply the
outflow of sometime, physically leaving the system.

The R.H.S. is the continuity equation rewritten. Where the continuity equation is

∂ρ

∂t
+ ~∇ · j = σ.

In this situation the rate of change of ion density with respect to time is the recombi-
nation rate term

∂ρ

∂t
→ n2+ α.

The divergences of the flux of ions is the amount of ions being transported out via
advection, exactly as written.

~∇ · j → ~∇ · (n+~v) =
1

r2
∂

∂r

(
r2 n+ ~v

)
.

These two terms together is equal to the number of recombinations per volume per
time, which is what σ is defined as in the continuity equation.

Recombination. Following our previous argument on how to ”derive” the ionization
rate, we can use the same idea to talk about the recombination rate. The only difference
is now we consider electrons colliding with ions, instead of photons colliding with neutral
hydrogen. Reformulating (4) we replace photons with electrons and neutral hydrogen with
ions to get

total # of collisions

time · volume
= collision rate · # of electrons

volume
.

We know that the collision rate will be the density of ions, times the cross sectional
area, times the speed of the electrons. We will denote these as n+, σn and v respectively.
Where σn is the cross sectional area for an electron becoming bound in the n-th hydrogen
energy level.

We want to consider that an electron can recombine into any of the hydrogen energy
levels, and thus we will sum over all possible recombinations. Moreover, the cross sectional
area will depend on velocity and we will have some distribution of velocity for a gas of
electrons. There we will integrate over all possible velocities to find the recombination rate
for a single energy state as follows

αn =

ˆ
σn(v)vf(v)dv.
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Where f(v) is the distribution of the electrons (Maxwellian). Note this distribution
depends on the temperature of the gas by definition of temperature. Now to get the total
recombination rate we will sum over all recombination coefficients at various energy levels,
and denote this as αA.

αA =

∞∑
n=0

αn,

This is called the total recombination coefficient. We want to exclude recombinations
into the ground state, since we will assume that the emitted photon will quickly be resorbed
and ionize a neutral hydrogen. Resulting in no net change in the ionization rate. This is
call the recombination rate B, often denoted as αB,

αB =

∞∑
n=1

αn.

Now we can say that the collision rate in this situation is as follows

collision rate = αB n+.

Therefore all that is left to complete the recombination rate is to mutliple by the number
density of electrons. Note that we are considering a neutral gas, such that ne = n+, thus
we can write the recombination rate as

total # of collisions

time · volume
= n2+αB.

Where we use the word collision and recombination interchangeably. As referenced in
the paper from Storey & Hummer 1995, the value for αB = 2.7× 10−13(T/104K)−0.9.

Advection. Skipping motivation for advection, I will just not that we are using spher-
ical coordinates and the equation as written in (1) simply expands ∇ · ~A, assuming that ~A
is only a function of r. In our model we only consider a radial velocity field.

1.3 Rewriting the advection

The advection term in (1) is

1

r2
∂

∂r

(
r2n+v

)
,

note that this is equivalently

~∇ · (n+~v) .

4



Neglecting the mass contribution from ionized elections in the gas, we can say that
ρ = nµ, where n = n0 + n+, the number density of neutral plus ionized hydrogens, and µ
is the mean molecular mass. Note that

µ =
n0mH + n+mH + neme

n0 + n+ + ne
≈ n

n+ n+
mH =

1

1 + f+
mH .

Where we have said the mass of the electron is negligible, the number of electrons is
equal to the number of ions, and f+ = n+

n .
Now we can rewrite the advection as follows

~∇ · (n+~v) = ~∇ ·
(
n+
ρ
ρ~v

)
=

1

µ
~∇ · (f+ρ~v)

=
1

µ

[
~∇f+ · ρ~v + f+(∇ · (ρ~v))

]
= nv

∂f+
∂r

.

Which is what we wanted. Note that we used mass conservation to say that ∇·(ρ~v) = 0,
and that there is only a radial component of the velocity.

1.4 Notes about collision rates

Consider hydrogen with a cross sectional area of size σ. Then a single photon passing
through that area is going to interact with that atom, by the definition of cross sectional
area. The photon will traverse a distance c t in a time t, where c is the speed of that object.
If there is a number density n of hydrogen in the volume swept out by the photon, where
that volume is σ c t, then there will be nσ c t interactions. Thus

collision rate = nσc,

time between collisions =
1

nσc
,

mean free path =
1

nσ
.

1.5 Notes about optical depth

From wikipedia, ”Optical depth is defined as the negative natural logarithm of the fraction
of radiation (e.g., light) that is not scattered or absorbed on a path.” Better said

I(τ) = I0e
−τ .

5



From radiative transfer the optical depth between points a and b is defined as

τ ≡
ˆ b

a
α(s)ds.

Where α is the absorvitiy coefficient, which we define as σn. Therefore in our situation
of the star and planet

τ(r, a) =

ˆ a

r
n0(s)σν0ds.

Where a is the distance from the center of the planet to the star. Note that the cross
section is independent of our location on the path, and thus can be pulled outside the
integral. Further, we can say that n0(s) is essentially 0 at distances greater than a. If that
is true then integrating out to infinity will not change the optical depth. Thus

τ(r) = σν0

ˆ ∞
r

n0(s)ds.

2 Critical point of Parker Wind

Picking up where we left off in Meeting 1 notes, the momentum equation for Parker winds
is as follows

v
∂v

∂r
+

1

ρ

∂P

∂r
+
GM∗
r2

= 0. (5)

2.1 Reformulating the equation in terms of velocities

Using the ideal gas law, defining the speed of sound as c2s = kT
µ , we can rewrite the pressure

term as

1

ρ

∂P

∂r
=

1

ρ

(
c2s
∂ρ

∂r

)
.

Where P = nkT = c2sρ. Now using mass conservation, we can say the mass passing
through a sphere at a given radius is

Ṁ = 4πr2ρ(r)v(r) = 4πFm.

Where Fm is the flux of mass per steradian, which in our model is a constant since we
state the planet is losing mass at a constant rate and the wind is in a steady state. Now
we can say what the density is as a function of r

ρ(r) =
Fm

r2 v(r)
.
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Therefore

1

ρ(r)

∂ρ(r)

∂r
=

1

ρ(r)

∂Fm
∂r

1

r2 v(r)
+

Fm
ρ(r)

∂

∂r

(
1

r2 v(r)

)
,

=
Fm
ρ(r)

(
− 2

r3 v(r)
− 1

r2 v(r)2
∂v(r)

∂r

)
,

= −2

r
− 1

v(r)

∂v(r)

∂r
.

Now we have a way of expressing the second term of (5), in terms of velocities. For the
third term we can rewrite it in terms of the escape velocity.

v2esc(r) =
2GM∗
r

.

Thus (5) becomes (
v − c2s

v

)
∂v

∂r
=

2 c2s
r
− v2esc

2r
,

1

v

∂v

∂r
=

1

2r

4 c2s − v2esc
(v2 − c2s)

. (6)

From (6) we see that there is a critical point in the velocity field when v2esc = 4c2s, or at

a radius of r =
GM

2c2s
, except when the denominator is equally 0. Thus at the critical point

there could be a non-zero velocity gradient if v2 = c2s. Investigating this case we find that(
∂v

∂r

)
rc

=
±2c2s
GM∗

.

Analyzing (6) further we can get a feel for the various solutions. We can physically
argue that the isothermal sound speed is less than the escape velocity below the critical
radius.1 Therefore at distances less than the critical radius the numerator is negative, and
the gradient then depends on wether the velocity is greater than or less than the sound
speed. If the velocity is less than the sound speed, below the critical radius the velocity
field has a positive gradient–and vice versa. After the critical point the velocity will grow
if it was initially greater than the sound speed or decrease if it was initially less than the
sound speed, UNLESS it is the critical solutions, which hits the sound speed at the critical
radius. This is the interesting case in which you get a transonic solution. See Fig. 1 visual
representation of various solutions.

1At distances r > GM∗µ
2kT

, the isothermal sound speed is greater than the escape velocity. Since the sound
speed is constant throughout the wind, is equal to the escape velocity at the critical distance, and escape
velocity increases as you move in, then it is clear that the sound speed is less than the escape velocity below
the critical radius.
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Figure 1: Taken from Introduction to Stellar Winds by Lamers & Casselli. See page 65 for
further discussion of solutions.

3 Parting Questions

What is the minimum mass for a solar nebula? Consider a disc with surface density
Σg ∼ 2 × 103(a/AU)−1 g/cm2 (Note that our solar system has (a/AU)−3/2, but most
observations of other disk larger than 20 AU suggestion a power of -1). A dust to gas ratio
of fd ∼ 10−2, and the central body is accreting at a rate of Ṁ ∼ (10−8− 10−6)M�/yr, the
typical accretion rate of a young sun like star.

How much solid mass verse gas mass is there at 1/2a, a and 2a?
Consider Toomre’s Q

Q =
csΩ

πGΣ
,

where cs is the sound speed in the disc, Ω is the angular frequency of the disc, G is
Newton’s gravitational constant and Σ is the surface density. Note that Q < 1 is unstable
to self gravity. Where to be unstable self gravity overcomes pressure. On large scales
gravity overcomes pressure, and on small scales gravity wins out over tidal gravity.
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