TA: John McCann ### Angular Momentum **10.42** • **CP** A small block on a frictionless, horizontal surface has a mass of 0.0250 kg. It is attached to a massless cord passing through a hole in the surface (Fig. E10.42). The block is originally revolving at a distance of 0.300 m from the hole with an angular speed of 1.75 rad/s. The cord is then pulled from below, shortening the radius of the circle in which the block revolves to 0.150 m. Model the block as a particle. (a) Is the angular momentum of the block conserved? Why or why not? (b) What is the new angular speed? (c) Find the change in kinetic energy of the block. (d) How much work was done in pulling the cord? **10.52** •• Sedna. In November 2003, the now-most-distant-known object in the solar system was discovered by observation with a telescope on Mt. Palomar. This object, known as Sedna, is approximately 1700 km in diameter, takes about 10,500 years to orbit our sun, and reaches a maximum speed of 4.64 km/s. Calculations of its complete path, based on several measurements of its position, indicate that its orbit is highly elliptical, varying from 76 AU to 942 AU in its distance from the sun, where AU is the astronomical unit, which is the average distance of the earth from the sun $(1.50 \times 10^8 \text{ km})$. (a) What is Sedna's minimum speed? (b) At what points in its orbit do its maximum and minimum speeds occur? (c) What is the ratio of Sedna's maximum kinetic energy to its minimum kinetic energy? # Equilibrium **11.19** •• A 3.00-m-long, 240-N, uniform rod at the zoo is held in a horizontal position by two ropes at its ends (Fig. E11.19). The left rope makes an angle of 150° with the rod and the right rope makes an angle θ with the horizontal. A 90-N howler monkey (*Alouatta seniculus*) hangs motionless 0.50 m from the right end of the rod as he carefully studies you. Calculate the tensions in the two ropes and the angle θ . First make a free-body diagram of the rod. Figure **E11.19** **11.62** •• **CP** A uniform drawbridge must be held at a 37° angle above the horizontal to allow ships to pass underneath. The drawbridge weighs 45,000 N and is 14.0 m long. A cable is connected 3.5 m from the hinge where the bridge pivots (measured along the bridge) and pulls horizontally on the bridge to hold it in place. (a) What is the tension in the cable? (b) Find the magnitude and direction of the force the hinge exerts on the bridge. (c) If the cable suddenly breaks, what is the magnitude of the angular acceleration of the drawbridge just after the cable breaks? (d) What is the angular speed of the drawbridge as it becomes horizontal? **11.66** • A holiday decoration consists of two shiny glass spheres with masses 0.0240 kg and 0.0360 kg suspended from a uniform rod with mass 0.120 kg and length 1.00 m (Fig. P11.66). The rod is suspended from the ceiling by a vertical cord at each end, so that it is horizontal. Calculate the tension in each of the cords A through F. Figure **P11.66** ### TA: John McCann # Young's Modulus **11.89** ••• **CP** A 12.0-kg mass, fastened to the end of an aluminum wire with an unstretched length of 0.50 m, is whirled in a vertical circle with a constant angular speed of 120 rev/min. The cross-sectional area of the wire is 0.014 cm². Calculate the elongation of the wire when the mass is (a) at the lowest point of the path and (b) at the highest point of its path. ## Fluid Mechanics **12.9** •• Oceans on Mars. Scientists have found evidence that Mars may once have had an ocean 0.500 km deep. The acceleration due to gravity on Mars is 3.71 m/s^2 . (a) What would be the gauge pressure at the bottom of such an ocean, assuming it was freshwater? (b) To what depth would you need to go in the earth's ocean to experience the same gauge pressure? **12.37** • Water is flowing in a pipe with a circular cross section but with varying cross-sectional area, and at all points the water completely fills the pipe. (a) At one point in the pipe the radius is 0.150 m. What is the speed of the water at this point if water is flowing into this pipe at a steady rate of 1.20 m 3 /s? (b) At a second point in the pipe the water speed is 3.80 m/s. What is the radius of the pipe at this point?