Classification of Emission-line Spectra: The Presentation

John McCann
26 February, 2016
CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS

J. A. BALDWIN AND M. M. PHILLIPS
Cerro Tololo Inter-American Observatory, ° Casilla 603, La Serena, Chile

AND

ROBERTO TERLEVICH
Institute of Astronomy, Madingley Road, Cambridge, England CB3 0HA

Received 1980 August 21

An investigation is made of the merits of various emission-line intensity ratios for classifying the spectra of extragalactic objects. It is shown empirically that several combinations of easily-measured lines can be used to separate objects into one of four categories according to the principal excitation mechanism: normal H II regions, planetary nebulae, objects photoionized by a power-law continuum, and objects excited by shock-wave heating. A two-dimensional quantitative classification scheme is suggested.

Key words: H II region—Seyfert galaxies—quasars—spectral classification
Significance of the paper

The achievement of the paper is the construction of a quantitative classification scheme for emission-line extragalactic objects. The foundation of the construction is built upon distinguishing the excitation mechanism of the line-emitting gas. The classification categories are:

- photoionization by main sequence O and B stars
 - H II regions
- photoionization by power-law continuum sources
 - Seyfert 1, Seyfert 2 and narrow-line radio galaxies
- shock-wave heating
 - LINERS (low-ionization nuclear emission-line region)
- extremely hot O stars
 - Planetary nebulae
Sections

I. Introduction

II. The Data Base

III. A Search for Useful Intensity Ratios

IV. Toward a Quantitative Classification Scheme

V. Discussion

VI. Summary
Objects of Interest

- Normal H II regions
- Planetary nebulae
- Objects photo ionized by power-law continuum
- Objects excited by shock-wave heating

(a) ESO 97-G13 from Hubble
(b) M87 in X-ray from Chandra

†hint: this is an ISM class
Emission-lines used for diagnostics

Transition lines

<table>
<thead>
<tr>
<th>[O II] 3727</th>
<th>[O I] 6300</th>
<th>Hβ 4861</th>
</tr>
</thead>
<tbody>
<tr>
<td>[O III] 5007</td>
<td>[N II] 6584</td>
<td>Hα 6563</td>
</tr>
</tbody>
</table>

\[\lambda_{\text{O II}} = 3727, \quad \lambda_{\text{O I}} = 6300, \quad \lambda_{\text{H}\beta} = 4861, \quad \lambda_{\text{O III}} = 5007, \quad \lambda_{\text{N II}} = 6584, \quad \lambda_{\text{H}\alpha} = 6563\]
Reddening Corrections

- To achieve our goal we will need to correct line strengths for reddening.
- Use the Whitford (1958) reddening law, parameterized by Miller and Mathews (1972)

\[
\left(\frac{\lambda_1}{\lambda_2}\right) \equiv \log\left[\frac{I(\lambda_1)}{I(\lambda_2)}\right]_{obs} + C_1 \log\left[\frac{I(H\alpha)}{I(H\beta)}\right]_{obs} - C_2. \quad (1)
\]
Corrected Intensity Ratios

- Intrinsic intensity is related to the reddened intensity by
 \[I(\lambda) = F(\lambda) \times 10^c f(\lambda) \]

 - \(f(\lambda) \) is the reddening function defined as \(\delta m_\lambda / \delta m_\beta \)
 - \(\delta m_\lambda \) is the renormalized magnitude extinction given by \(\Delta m_\lambda + m_R \)
 - \(\Delta m_\lambda \) is the magnitude extinction shown by Whitford, parameterized by Miller for 3,200–11,000 Å (\(\lambda^{-1} \) in \(\mu m^{-1} \))

 \[
 \Delta m_\lambda = \begin{cases}
 .74\lambda^{-1} - .34, & \lambda^{-1} \geq 2.29\mu m^{-1}; \\
 .43\lambda^{-1} + .37, & \lambda^{-1} < 2.29\mu m^{-1}.
 \end{cases}
 \]

- \(c \) is the extinction parameter defined as \(\log(I(H\beta)/F(H\beta)) \)
- Use \(H\alpha/H\beta \) intrinsic ratio of 2.86 (case B, \(T_e = 10^4 \) K, \(N_e = 10^2 \))
- Note that these are reasonable for H II regions and planetary nebulae, but application to other excitation methods unassured\(^\dagger\)

\(^\dagger\) However, the scheme still discriminates without a reddening correction

\(^\dagger\) collisional excitation and self-absorption affect intrinsic Balmer decrement
Compared Ratios

- No single intensity ratio fully discriminates excitation processes
- Focus on \((\lambda 3727/\lambda 5007)\) due to its strength and excitation sensitivity
 - O III and O II have photoionization potentials of 13.62 and 35.12eV
- Secondary ratios used are: \((\lambda 5007/\lambda 4861)\), \((\lambda 6584/\lambda 6563)\) and \((\lambda 6300/\lambda 6563)\)
- Also briefly analysis \((\lambda 5007/\lambda 4861)\) verse \((\lambda 6584/\lambda 6563)\)
Figure 1

- Plotted are planetary nebulae, H II regions and detached H II regions
- Fitted curve is to the scatter of H II regions
- Notice the tightness of the H II regions to the curve, and the planetary nebulae clearly above it
Fig. 1—The relationship between the $\lambda_{5007}/\lambda_{4861}$ and $\lambda_{3727}/\lambda_{5007}$ intensity ratios for H II regions and planetary nebulae. The intensity ratios are expressed in logarithms with reddening corrections applied as described in the text. Symbols: octagons = normal H II regions; triangles = detached extragalactic H II regions; "+" = planetary nebulae; vertical bar = upper limit on $\lambda_{5007}/\lambda_{4861}$.
Figure 2

- Same as figure 1, but now includes power-law photoionization and shock-heating sources
- Note their departure from the H II region fit, systematically above
Fig. 2—The same as Figure 1, with the addition of objects photoionized by power laws (shown as diamonds), and shock-heated galaxies (shown as "x"s).
Now a different secondary ratio is used ($\lambda_{6584}/\lambda_{6563}$).

Again four separate excitations can be readily discriminated.
Fig. 3—The relationship between the (λ6584/λ6563) and (λ3727/λ5007) intensity ratios. The symbols have the same meanings as in Figures 1 and 2. Almost all of the upper limits (indicated by vertical bars) are for planetary nebulae.
Secondary ratio used: \((\lambda 6300 / \lambda 6563)\)

Best comparative ratios to discriminate H II regions from LINERS and Seyfers

Because of presence of O I in the later two and absences in H II regions

Still need resolution of high ionization verse low ionization to break the degeneracies within O I detection
Fig. 4—The relationship between the (λ6300/λ6563) and (λ3727/λ5007) intensity ratios. The symbols have the same meanings as in Figures 1 and 2.
New abscissa. \((\lambda_{5007}/\lambda_{4861})\) verse \((\lambda_{6584}/\lambda_{6563})\)

- Good since line ratios are close and reddening correction less important
- Bad since sensitive to N/O abundance (same for figure 3 \((\lambda_{6584}/\lambda_{6563})\) verse \((\lambda_{3727}/\lambda_{5007})\))

- Fitted model line \((\lambda_{5007}/\lambda_{4861}) = \log(4.2 - 9.4I(\lambda_{6584})/I(\lambda_{6563}))\)

- Close to Draine (18.12) & (18.13) solving for \(\xi\) in (18.13) and substituting in (18.12)
 - In LLD for \(T_4 = .8\) and solar abundance†
 \((\lambda_{5007}/\lambda_{4861}) = \log(5.0 - 7.1I(\lambda_{6584})/I(\lambda_{6563}))\)

† with 20% of O tied up in silicates
FIG. 5—The relationship between the (λ5007/λ4861) and (λ6584/λ6563) intensity ratios. The symbols have the same meanings as in Figures 1 and 2.
Scheme quantification

- We have seen it is possible to qualitatively classify excitation mechanism from line strengths
- Now we to combine all this information to quantify the scheme
- Model H II regions after Searle’s (1971) work
 - high-ionization inner zone with He^+ and O^{++}
 - low-ionization butter zone with He^0, O^+, and N^+
- With a quasi-analytic H II region equation in hand we can now compute “excitation differences,” $\Delta E(\lambda_1/\lambda_2)$
Excitation Differences

\[\Delta E(\lambda_{5007}/\lambda_{4861}) = (\lambda_{5007}/\lambda_{4861}) + \log(0.32 + x) - 0.44. \quad (2) \]

\[\Delta E(\lambda_{6584}/\lambda_{6563}) = 1/2[(\lambda_{6584}/\lambda_{6563}) - \log(x/(x + 1.93))] + 0.37. \quad (3) \]

\[\Delta E(\lambda_{6300}/\lambda_{6563}) = 1/5[(\lambda_{6300}/\lambda_{6563}) + 2.23]. \quad (4) \]

Averaging all the weighted information together we defined \(\langle \Delta E \rangle \)

\[\langle \Delta E \rangle = 1/3[\Delta E(\lambda_{5007}/\lambda_{4861}) + \Delta E(\lambda_{6584}/\lambda_{6563}) + \Delta E(\lambda_{6300}/\lambda_{6563})]. \quad (5) \]
H II regions are scattered around \(\langle \Delta E \rangle = 0 \), with a standard deviation of \(\sigma = 0.064 \).

We see planetary nebulae all fall within another space, except for 6 which fall into the H II region.

- Authors suggest misclassification or unusually cool stars for planetary nebulae.
- Unfortunately they do not name the systems and cannot be trivially answered 30 years later.
FIG. 8—The relationship between $\langle \Delta E \rangle$ (the average of the individual ΔE indices) and the $\langle \lambda 3727/\lambda 5007 \rangle$ intensity ratio for planetaries and H II regions. Symbols: same as in Figure 1.
Figure 9

- Power-law photoionization zone classified as
 - $-1.3 < \frac{\lambda3727}{\lambda5007} < 0$ and $\langle \Delta E \rangle > .19$

- Shock-heated zone classified as
 - $\frac{\lambda3727}{\lambda5007} \geq 0$ and $\langle \Delta E \rangle > .19$
FIG. 9—The same as Figure 8, except showing objects photoionized by power laws (indicated by diamonds) and shock-heated galaxies ("+" symbols). A few individual galaxies discussed in the text are indicated by name.