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The unceasing miniaturization of
semiconductor integrated circuits is widely
expected to end within the next 20 years due
to the fundamental impossibility of pattern-
ing features smaller than the length scale of
single atoms and molecules.1 However, the
laws of quantum physics arising at such small
scales provide intriguing possibilities for
obtaining computational speedups by enabling
algorithmic feats that would otherwise be
impossible. Such possibility is the promise of
the quantum computation and quantum
information fields, which seek to exploit quan-
tum physics for solving classical information
processing and communication tasks.2,3

Quantum computers are extremely chal-
lenging to experimentally realize due to the
difficulty of retaining quantum properties of
systems while simultaneously controlling their
dynamics. However, in the past three years, a
laboratory technique based on nuclear mag-
netic resonance has been unexpectedly suc-
cessful in implementing quantum computers
with a few “quantum bits” (qubits) and in
demonstrating simple quantum algorithms.4,5

In a recent experiment using such tech-

niques,6 we implemented a quantum com-
puter with five qubits to test two key features
in fast quantum algorithms—mathematical
computation of modular exponentiation and
the quantum fast Fourier transform. These
features underlie Shor’s famous quantum fac-
toring algorithm, which exponentially out-
performs the best-known classical algorithms
for factoring integers.7,8

Theory of quantum computing 
A description of the fundamental concepts

behind quantum computation begins with
the complexity of problems, qubits, and a
look at quantum parallelism, quantum algo-
rithms, and the challenges of building a quan-
tum computer.

The power of quantum computers
The theoretical promise of quantum com-

puters is their ability to fundamentally reduce
the resources required to solve real and rele-
vant mathematical problems. To understand
how fast quantum computers are compared
to their classical counterparts, we must com-
pare their speed in a way that is technology
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independent. Specifically, modern classical
computers equipped with MHz and GHz
processors completely outperform all present
quantum computers, which have clock fre-
quencies on the order of hundreds to thou-
sands of hertz. However, because of the way
they use quantum interactions, quantum
computers can perform instructions impossi-
ble on classical machines and so require fewer
steps to solve certain mathematical problems.

Complexity theory provides the basis for
comparing quantum and classical computers.
Complexity theory analyzes the fundamental-
ly minimal physical resources (time, space,
energy) demanded by an algorithm to solve a
given problem, as a function of problem size n.
The key distinction in comparing different
models of computation is whether the resources
required are polynomial or exponential in n.
Two n-digit numbers, for example, can be
added in O(n)—a linear function of n—
elementary operations such as NAND gates. 

In contrast, factoring an n-digit integer into
prime numbers requires exponentially many
operations by the best-known algorithms,
O(en1/3)to be precise. Since there is no effi-
cient—that is, polynomial—classical algo-
rithm for prime factorization, computer
scientists currently consider this problem
intractable on classical machines. By increas-
ing n, it quickly becomes impossible to factor
an n-digit integer in a reasonable time, even
using the fastest conceivable supercomputers.

The allure of quantum computation rose
dramatically in 1994 when Peter Shor showed
that, on a quantum computer, factoring an n-
digit number could be accomplished using
only O(n3) elementary quantum operations.7,8

This is exponentially fewer operations than is
possible classically. A similar speedup is pos-
sible for simulating the dynamics of quantum
systems, as Richard Feynman showed.2

Quantum computers provide a speedup for
other problems including searching unsorted
databases,9 although here the advantage is
only quadratic rather than exponential. Quan-
tum mechanics also allows certain distributed
computation and communication tasks to be
sped up significantly.2

Quantum parallelism
How do quantum computers work? The

starting point is a remarkable theorem stating

that quantum computation subsumes classi-
cal computation. This is not obvious, since
the laws of quantum mechanics demand
microscopic reversibility, whereas today’s clas-
sical computers are not at all reversible. As evi-
dence, note that a computer generates heat
and requires power to operate. However, in
1973, Charles Bennett proved that an ideal
classical computer can, in principle, be made
to dissipate no energy and thus operate
reversibly.2 This result implies that quantum
machines can perform any classical computa-
tion, using the microscopic reversibility of the
governing equation of quantum physics:
Schrödinger’s equation.

Given that quantum computation sub-
sumes classical computation, it’s natural to
employ a language of quantum bits and quan-
tum circuits analogous to the classical case.
Any quantum system with two distinct dis-
crete states can, in principle, serve as a quan-
tum bit—a photon with vertical or horizontal
polarization (� or ↔), an electron spin that
points up or down (↑ or ↓ ), an electron locat-
ed in one of two quantum dots, and so forth.
The two quantum mechanical states are
denoted |0〉 and |1〉 , corresponding to logical
zero and one. We can then devise quantum
logic gates that act on the qubits exactly like
(reversible) classical gates act on classical bits.

What really distinguishes quantum bits
from classical bits is that qubits, unlike classi-
cal bits, can exist in so-called superposition
states written as a|0〉 + b|1〉 , where a and b are
complex numbers satisfying |a|2 + |b|2 = 1. In
some sense, this means that a qubit can be in
|0〉 and |1〉 at the same time. Consider now
what happens if we evaluate a 1-bit logic gate
that maps |x〉 to |f(x) 〉 (where f is a classical
Boolean function), when the input qubit is
prepared in the state

(1)

an “equal” superposition of |0〉 and |1〉. By lin-
earity of quantum mechanics, the logic gate f
transforms the qubit state to

(2)

The output state is now a superposition of the
two output values. In this sense, f is evaluat-
ed for both possible input values in one step.
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Similarly, we may prepare each of two qubits
in a superposition of |0〉 and |1〉 , so together
they are in a superposition of four states:

c0|00〉 + c1|01〉 +  c2|10〉 +  c3|11〉 (3)

A 2-qubit logic gate g will transform this state
to

c0|g(00)〉 + c1|g(01)〉 +  c2|g(10)〉 +  c3|g(11)〉 (4)

so in a sense g has been evaluated for four
input values in parallel. For every extra qubit
involved in the computation, the number of
parallel function evaluations doubles. This
exponential parallelism became known as
quantum parallelism.

Making use of quantum parallelism is
tricky, however. Quantum mechanics dictates
that when we measure a qubit or set of qubits
in a superposition state, the superposition col-
lapses—that is, only one term in the superpo-
sition is observed. So, upon measurement of
the state of Equation 4, for example, we
obtain g(00) with probability |c0|

2, g(01) with
probability |c1|

2, and so forth. Thus, straight-
forward measurement does not simultane-
ously provide all output values produced by
quantum parallelism, which limits the power
of quantum computers. Nevertheless, special
quantum algorithms let us exploit quantum
parallelism to solve certain problems in far
fewer steps than is possible classically.

Shor’s factoring algorithm
The most remarkable quantum algorithm to

date serves to efficiently determine a particular
function’s period. The significance of period
finding is that from the period r of the function
f(x) = ax mod N (the remainder of ax divided by
N), the prime factors of N can be computed
quickly using results from number theory. No
efficient classical algorithm is known to find
periods, but with Shor’s algorithm, we can find
r using a number of quantum bits and gates
polynomial in the length of N.7,8

The heart of Shor’s algorithm is the quan-
tum Fourier transform (QFT). The QFT is
closely related to the well-known classical fast
Fourier transform (FFT), but can be com-
puted exponentially faster. The FFT takes as
input a string of K complex numbers, xk, and
produces as output another string of K num-

bers, yk, with

(5)

For an input string of K numbers, which
repeat themselves with period r, the FFT pro-
duces an output string with period K/r, as
illustrated in the following examples for the
case of K = 8 (the output strings have been
rescaled for clarity).

1 0 0 0 0 0 0 0 → 1 1 1 1 1 1 1 1 
1 0 0 0 1 0 0 0 → 1 0 1 0 1 0 1 0 
1 0 1 0 1 0 1 0 → 1 0 0 0 1 0 0 0 
1 1 1 1 1 1 1 1 → 1 0 0 0 0 0 0 0 

In case r divides K with a remainder, the inver-
sion of the period is only approximate. 

Furthermore, the FFT turns shifts in the
input string into phase factors in the output
string:

1 0 0 0 1 0 0 0 → 1 0 1 0 1 0 1 0
0 1 0 0 0 1 0 0 → 1 0 –i 0 –1 0 i 0
0 0 1 0 0 0 1 0 → 1 0 –1 0 1 0 –1 0
0 0 0 1 0 0 0 1 → 1 0 i 0 –1 0 –i 0

The QFT performs exactly the same trans-
formation as the FFT, but the complex num-
bers are stored in the amplitude and phase of
the terms in a superposition. For example,
the 2-qubit superposition c0|00〉 + c1|01〉 +
c2|10〉 + c3|11〉 represents the complex num-
bers c0, c1, c2, and c3.

A 5-qubit example shows how quantum
parallelism and use of the QFT make it pos-
sible to efficiently find the period of a func-
tion. For clarity, the states are written in
decimal instead of binary notation, for exam-
ple, |010〉 will be denoted |2〉 .

Consider two registers (groups of qubits) in
which the first register contains three qubits,
each initialized to an equal superposition of
|0〉 and |1〉 , and with the second register con-
sisting of two qubits set to |0〉 . Suppressing
normalization constants for clarity, the state
of the system is thus written as

(|0〉 + |1〉 + |2〉 + |3〉 + |4〉 + |5〉 + |6〉 + |7〉) |0〉 (6)

We now evaluate some function f(x) with a
period r, which is initially unknown. The first
register represents x, and the output f(x) is
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stored in the second register. For some f(x) with
r = 2, the initial state is thus transformed to

|0〉 |3〉 + |1〉 |1〉 + |2〉 |3〉 + |3〉 |1〉 + |4〉 |3〉+ |5〉 |1〉+
|6〉 |3〉 + |7〉 |1〉 (7)

or also

(|0〉 + |2〉 + |4〉 + |6〉)|3〉 + (|1〉 + |3〉 + |5〉 + |7〉)|1〉
(8)

This is where quantum parallelism mani-
fests itself—even though we apply the func-
tion f(x) once, it is evaluated for eight possible
values of x. However, no measurement can,
due to the collapse of the quantum states,
extract the outcomes for all eight input values
simultaneously. Instead, we now apply the
QFT to the first register, which transforms the
state of Equation 8 to

(|0〉 + |4〉) |3〉 + (|0〉 − |4〉) |1〉 (9)

We can verify that the QFT removed the
shift in the first register seen in Equation 8
and turned it into a phase factor. Furthermore,
the QFT inverts the period from r = 2 to K/r
= 8/2 = 4. Now measurement of the first reg-
ister yields useful information because the
quantum states of the first register can only
collapse to multiples of K/r—in this case |0〉
or |4〉 . In contrast, for the state of Equation
8, measurement of the first register random-
ly returns one of the eight states |0〉 , …, |7〉 .
From the measurement result (a multiple of
K/r), the inverted period K/r can be extracted
efficiently on a classical computer via the con-
tinued fraction expansion—a technique from
number theory—provided the first register is
large enough. Then the period r can be imme-
diately derived as well. Each of the above steps
can be completed in polynomial effort, so
period finding can indeed be accomplished
efficiently on a quantum computer.

Requirements and challenges
Quantum computers’ enormous theoreti-

cal promise motivates an investigation of the
practical requirements for the experimental
implementation of such a device. First, we
need a system of qubits. Second, the qubits
must be individually addressable and must
interact with each other to provide for a uni-

versal set of logic gates. Third, it must be pos-
sible to initialize them to a known state
because the result of a computation generally
depends on its input state. Fourth, we must
be able to extract a computation result from
the qubits by some measurement.

The last three requirements mandate exper-
imental access to and external control over the
quantum system. However, interactions
between a quantum system and the environ-
ment (everything outside the quantum sys-
tem) necessarily cause the quantum system to
lose its quantum properties. In particular,
“open” quantum systems can sustain super-
position states only for a limited time, known
as the coherence time. A quantum computa-
tion must be performed within this time win-
dow because quantum algorithms inherently
rely on superpositions. Thus, the fifth and
final requirement is a long coherence time
compared with an average logic gate’s dura-
tion, such that many logic gates can be imple-
mented within the coherence time.

Meeting all these requirements simultane-
ously poses a significant experimental chal-
lenge. How can we gain access to a quantum
system and, at the same time, keep coherence
times long?

Nuclear magnetic resonance quantum
computing (NMR QC)

Nuclear magnetic resonance (NMR) tech-
niques largely satisfy the practical require-
ments described in the previous section and
have enabled the experimental exploration of
small-scale quantum computers.

Concept
Many atoms such as 1H, 13C, and 19F have

a spin-1/2 nucleus. A nuclear spin-1/2 can be
thought of as a tiny bar magnet spinning
about its own axis, with two well-defined
states; it can be aligned or anti-aligned with
respect to an external magnetic field (spin up
or spin down) and thus can represent logical
zero and one. Since a nuclear spin is extreme-
ly small, it’s a quantum mechanical object and
can exist in a superposition of up and down. 

We can visualize the state of a single spin as
a point on a sphere, as shown in Figure 1, anal-
ogous to a bar magnet pointing in a particular
direction. However, this is only a pictorial rep-
resentation—a spin that we describe as point-
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ing somewhere halfway
between up and down is real-
ly in a quantum mechanical
superposition state. An atom-
ic nucleus’ spin can thus serve
as a quantum bit.

An NMR quantum com-
puter consists of several indi-
vidual atoms with a spin-1/2
nucleus. We could place these
atoms on a surface, bury them
in a bulk material, or chemi-
cally bond them in a mole-
cule. Because the first two
approaches require substantial
new technology development,
we took the molecular
approach in our quantum
computing demonstrations.

Researchers identified
nuclear spins early on as
excellent candidates for quan-
tum computers because of
their long typical coherence
times—often several sec-
onds—compared to nanosec-
onds for electron spins in

solids, for example.
Having satisfied the first and fifth require-

ments—establishing qubits with long coher-
ence times—we now show how we can satisfy
the second requirement: to implement arbi-
trary single-qubit operations and a specific 2-
qubit operation (the controlled-NOT or
CNOT gate). Together, these operations form
a universal set of quantum logic gates, the
equivalent of a NAND gate or a NOR gate
for classical logic.

Arbitrary single-qubit operations are
accomplished by applying electromagnetic
fields in the transverse plane (perpendicular to
the static magnetic field along z). When placed
in a static magnetic field, a spin—and also a
bar magnet—will precess about the magnetic
field’s axis with a frequency linear in the field
strength. This motion is similar to how a spin-
ning top precesses about the gravity axis. Typ-
ical frequencies are in the radio-frequency (RF)
range. If, in addition, we apply a transverse RF
field on resonance with the spin precession fre-
quency, the spin state will gradually rotate
about an axis in the transverse plane (the point
on the sphere of Figure 1 will move).10

The exact axis of rotation depends on the
phase of the RF field; the rotation angle is pro-
portional to the RF field’s duration and ampli-
tude. A properly timed and calibrated RF pulse
can thus flip the state of a spin from up to down
or vice versa, thereby implementing a NOT
gate. An RF pulse of half the duration of a NOT
gate rotates a spin from up (|0〉) into a super-
position of up and down  (1/√ 2 |0〉+1/√ 2 |1〉).

Selective addressing of one spin without
affecting the state of any other spin is possible
because different kinds of atoms (1H, 19F, …)
have different resonance frequencies ν. Fur-
thermore, if the molecule exhibits sufficient
asymmetry in its structure, the resonance fre-
quencies of different atoms of the same kind
(for example, two 19F atoms) are also shifted
with respect to each other (chemical shift).
Figure 2 shows a molecule with five 19F atoms
that exhibit remarkably distinct spin preces-
sion frequencies, allowing each spin to be
addressed individually.

All 2-qubit gates require an interaction
between the qubits. In modern computers,
transistors provide the means for two input
voltages to “communicate,” leading to a third
output voltage that represents the result of a
2-bit interaction. In NMR, shared chemical
bonds between atoms provides a natural inter-
action between spins.

Consider two neighboring spin-1/2 atoms
(or two tiny bar magnets) in each other’s vicin-
ity. Spin 2 is subject to the stray field produced
by spin 1 (either aligned or anti-aligned with z),
in addition to the externally applied magnetic
field. Since a spin’s precession frequency is pro-
portional to the magnetic field strength it’s
placed in, the precession frequency of spin 2 is
now J/2 lower or higher depending on whether
spin 1 is up (|0〉) or down (|1〉), where J is the
coupling strength expressed in frequency units. 

In NMR quantum computing, we desire
molecules where the frequency differences
between different spins are much larger than
the J-coupling. We can then implement a sim-
ple 2-bit gate by applying a narrowband 180-
degree pulse at ν2 + J12/2, such that spin 2 is
inverted if and only if spin 1 is |1〉 . This is the
CNOT gate; it performs a NOT operation on
the target qubit if and only if the control qubit
is |1〉 : A CNOT of spin 1 onto spin 2 per-
forms the transformation |00〉 → |00〉 , |01 →
|01〉 , |10〉 → |11〉 , and |11〉 → |10〉 .
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Figure 1. Representation of four different
qubit states.

F3

F2

F5

F4

F1

Fe
(CH)5    (CO)2

C C

C C

Figure 2. Molecule with five fluorine spins.
All five spins are well-separated spectrally
and are pairwise coupled. This molecule was
used as a 5-qubit computer. Copyright ©
2000, The American Physical Society.



Figure 3 shows an alternative and more
widely used implementation of the CNOT
gate.4,5 The diagram shows the evolution of
spin 2 in a coordinate system that rotates
around the z axis at ν2, when spin 1 is |0〉
(solid line) and |1〉 (dashed line).

First, an RF pulse centered at ν2 and of a
spectral bandwidth such that it covers the fre-
quency range ν2 ± J12 but not ν1, rotates spin
2 from +z to –y. Then we allow the spin sys-
tem to freely evolve for a duration of 1/2J12

seconds. Because the precession frequency of
spin 2 is shifted by ± J12/2 depending on
whether spin 1 is in |1〉 or |0〉 , after 1/2J sec-
onds spin 2 will have rotated to either +x or to
–x (in the reference frame rotating at ν2),
depending on the state of spin 1. Finally, a 90-
degree pulse on spin 2 about the –y axis rotates
spin 2 back to +z if spin 1 is |0〉 , or to –z if
spin 1 is in |1〉 . The net result is that spin 2 is
flipped if and only spin 1 is in |1〉 .

Two complications arise when we want to
implement 2-qubit gates for systems with
more than two spins; Figure 4 illustrates the
two extreme scenarios of coupling networks.

• If every spin is coupled to every other
spin (possible only in relatively small
molecules), the pulse sequence of Figure
3 must be supplemented by “refocusing”
pulses, designed to remove the effect of
all couplings except between the two
spins involved in the 2-qubit gate.

• Performing a CNOT gate between two
spins that aren’t directly coupled to each
other is still possible if a network of cou-
plings connects them. For example, if
spin 2 is coupled to 1 and 3, but 1 and 3
are not coupled to each other, we can per-
form a CNOT of spin 1 on spin 3 as fol-
lows: first swap the state of spins 1 and 2
(achieved with a sequence of three
CNOTs), then perform a CNOT of 2
and 3, and finally swap 1 and 2 back. 

A computation on an NMR quantum com-
puter thus consists of the application of a care-
fully designed sequence of RF pulses separated
by delay times. We can view those elementary
instructions—pulses and delay times—as the
machine language. Furthermore, the process
of decomposing a high-level description of an
algorithm into 1- and 2-qubit gates and, sub-

sequently, into RF pulses and delay times, is
analogous to compiling code on a classical
computer.

The third requirement for building a quan-
tum computer is the ability for state initial-
ization. The initial state that is experimentally
most easily accessible is the thermal equilibri-
um state—equilibration simply means wait-
ing a few minutes. However, the thermal
equilibrium state of a nuclear spin at room
temperature is highly random. The spin-up
and spin-down states are almost equally like-
ly, with a bias of only about 1 in 105. The
desired initial state for quantum computa-
tions, in contrast, is a pure state, for example,
the state where all the spins are in |0〉 .

Although it’s not currently possible to cre-
ate a pure state with nuclear spins at room
temperature, it is possible to create an “effec-
tive pure” state, which produces a signal pro-
portional to the pure state signal. This insight,
along with explicit procedures for creating
effective pure states, was the main conceptu-
al breakthrough that made NMR quantum
computing possible 4,5

The fourth requirement is that the final
state of the qubits must be read out because
it constitutes the result of the computation.
This is done with a read-out pulse. If the final
state of a spin is either |0〉 (along +z) or |1〉
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Figure 4. Two possible coupling networks for a five-spin molecule. The circles
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(along –z), a read-out pulse rotates the spin
to ±x. At this point the spins precess about the
axis of the external magnetic field at a specif-
ic resonance frequency. These tiny precessing
bar magnets produce a time-varying magnet-
ic field in their spatial vicinity. This magnet-
ic field can be measured, recorded, and Fourier
transformed to obtain spectra that in turn can
be integrated. With properly calibrated receiv-
er phase settings, a positive integral indicates
the spin was in |0〉 , and a negative integral
indicates the spin was in |1〉 . By performing
this procedure on all spins, we can learn the
state of each spin and the result of a compu-
tation can thus be read out via the spectra.

Because of the J-coupling, extra informa-
tion can be obtained from the spectrum of just
a single spin. The spectrum of a spin coupled
to m other spins will contain 2m lines, at fre-
quencies νi + Σj

m ± Jij/2 where νi is the center
frequency of the spectrum. We can assign each
line to a specific state of the remaining m spins
based on the values of the J-couplings.
Depending on which of these lines we observe
and whether it is up or down, we can tell the
state of all spins just from one spectrum
(assuming all couplings and lines are resolved).

Nuclear spins manipulated and read out
using nuclear magnetic resonance thus, in
principle, meet all the requirements for build-
ing a quantum computer.

Experimental apparatus
Figure 5 gives a schematic

overview of what an NMR
quantum computer looks
like. As described previously,
the heart of an NMR quan-
tum computer is a molecule
containing several atoms with
a spin-1/2 nucleus. In prac-
tice, the signal from a single
molecule is too weak for
researchers to detect with cur-
rent techniques. So, to boost
the signal, we use about 1018

molecules. Each molecule in
the ensemble acts as an indi-
vidual quantum computer,
and all 1018 quantum com-
puters perform the same
operations (thus, it is a SIMD
machine, with no inter-
processor communication).

We dissolve the molecules in a liquid solvent
such as acetone, ether, or chloroform. The liq-
uid solution is held in a thin-walled glass sam-
ple tube of 5 mm in diameter, about 6 cm full.

We place the sample tube in the room-tem-
perature bore of a superconducting solenoid.
The solenoid is immersed in a bath of liquid
helium, at a temperature of 4.2 degrees above
absolute zero. The helium vessel is surround-
ed by a vacuum seal and a liquid nitrogen ves-
sel. A persistent current of about 100 A through
the solenoid’s windings produces a magnetic
field in the bore of more than 10 tesla (about
200,000 times the earth’s magnetic field),
resulting in typical spin resonance frequencies
of 100 to 500 MHz. Strong fields are advanta-
geous because the separation between the spec-
tral lines of different nuclei (the chemical shift)
increases linearly with the field strength. 

A set of correction coils is mounted around
the bore. By tuning the current through these
coils, we can make variations in the strength
of the static magnetic field smaller than 1 part
in 109 over the sample volume. This extraor-
dinary homogeneity ensures that the preces-
sion frequency of corresponding spins in
different molecules varies by less than 1 Hz.

Next to the sample tube, saddle-shaped
Helmholtz coils are mounted. The coils pro-
duce the pulsed electromagnetic fields neces-
sary for single-qubit rotations. As for the static
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field, good RF field homogeneity is crucial to
rotate the spins in all the molecules over the
same angle. The RF signals are generated by a
very stable and accurate frequency source, then
gated and phased-shifted in a transmitter
board, and amplified in a power amplifier (50
to 300 W). The power amplifier output is cou-
pled to the RF coils. Typical 90-degree pulses
are between 10 µs and 10 ms in duration. 

When several spins have comparable reso-
nance frequencies, as in Figure 2, we use
amplitude-shaped pulses to improve the puls-
es’ frequency selectivity. We achieve this by
dividing the pulse in short time slices (as short
as 100 ns), and by changing the amplitude,
slice by slice, to create the desired amplitude
profile. Ideally, one transmitter channel is
available for every spin, but we developed soft-
ware solutions that let us use one transmitter
channel to address several spins.

We also used the same RF coils to read out
the spin states at the computation end. The
oscillating magnetic signal produced by the
spins induces an oscillating voltage in the
coils. To maximize the coils’ sensitivity, we
incorporated them in a multiply resonant cir-
cuit tuned to the spin frequencies of interest.
The induced voltage is sent through a pream-
plifier (approximately 0.8 dB input noise fig-
ure), mixed down to audio-frequencies,
filtered, and digitized. Because this signal is
very small (about –120 dBm) and immedi-
ately follows the high-power pulse, low-noise
electronics and quiet amplifiers are essential.

The whole experiment is controlled by a
Varian-designed system with an embedded
Motorola Vx-Works processor. Pulse
sequences in C and C++ compiled to low-level
instruction for the spectrometer result in RF
pulses and delay times. On the receiver end,
the processor reads data from the digitizer
then uploads it to a workstation for display
and analysis.

Great care must be taken in selecting a suit-
able molecule. Since the duration of a single
2-qubit gate is on the order of 1/2J, the J-cou-
plings must be large compared to the deco-
herence rate, such that many operations can
be completed within the coherence time. Fur-
thermore, the chemical shifts must be large
compared to the J-couplings, such that shaped
pulses can be designed that cover the entire
multiplet of one spin without affecting the

multiplets of other spins. Reasonable chemi-
cal shifts are in the range of a few kHz to a few
tens of kHz. Good values for J-couplings are
a few tens to a few hundred Hz; logic gates
thus last on the order of a few milliseconds to
tens of milliseconds. Finally, reasonable val-
ues for the coherence times are tenths of sec-
onds to several seconds.

The main experimental challenge is to
achieve sufficient coherent control over the
dynamics of a set of coupled nuclear spins.
This involves molecule selection and synthe-
sis, pulse shape design, pulse sequence design,
and hardware configuration. Currently, it’s
possible to successfully concatenate tens to
hundreds of logic gates on a handful of spins.
Realistically, this is not enough to perform
computations beyond the reach of classical
computers. However, it does let us demon-
strate the principles of quantum computation
and acquire a practical understanding of what
implementing quantum computers entails.

Quantum algorithm implementation
The invention of NMR QC led to the first-

ever demonstrations of simple quantum com-
putations and of quantum parallelism to solve
certain problems in fewer steps than is possi-
ble classically.11 However, an algorithm with
the structure of Shor’s algorithm has thus far
remained beyond the reach of these small-
scale realizations. This structure is common
to all algorithms that achieve an exponential
advantage compared to classical machines.

We’ve successfully implemented a general-
ization of Shor’s algorithm, using NMR tech-
niques, demonstrating for the first time the
algorithm’s two major components working
together to find the order of a permutation.6

This experiment was made possible by the
synthesis of a five-spin molecule (Figure 2)
with excellent spectral properties, and by the
development of new methods and experi-
mental techniques for initial state preparation
and control over the dynamics of five spins.

Finding the order of a permutation πcan be
described as follows. Imagine 2n rooms and
one-way corridors connecting the rooms with
exactly one entrance and one exit in each room.
Note that a corridor may loop right back to the
room it came from. This setup ensures that
when making transitions from one room to the
next, we eventually come back to the starting
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room. We then define the order r as the mini-
mum number of transitions needed to return
to the starting room. This number generally
depends on the starting room. The task is to
determine r solely by trials of the type “make x
transitions using π starting from room y and
check which room you are in.” Mathematical-
ly, such trials are described as queries of a black
box or oracle that outputs πx(y).

We implemented the order-finding algo-
rithm to determine the order of a representa-
tive subset of all 4! = 24 permutations on four
input elements. Classically, the optimal way
of finding the order of a permutation on four
elements is to ask the oracle for the result of
π3(y). If the answer is y, then the order r must
be 1 or 3; otherwise, it must be 2 or 4. So,
with a probability of 50%, we can guess the
answer correctly after one query.

On a quantum computer running the order-
finding quantum algorithm, we can guess the
correct answer with a probability of 55% with
only one oracle query because, in some sense,
a quantum computer can make transitions to
many rooms at once. (In the NMR apparatus,
the probability is boosted to virtually 100%
because of the large number of molecules in the
sample.) While in this case the quantum com-
puter advantage is only small, the gap between
classical and quantum algorithms grows expo-
nentially for increasing n.

The main steps in the algorithm are outlined
in the quantum circuit of Figure 6. After the
state initialization procedure, all qubits start off

in the state |0〉 . Qubits 1
through 3 are then rotated into
an equal superposition of |0〉
and |1〉 by applying 90-degree
pulses. Qubits 4 and 5 are set
to y1y0, a binary representation
of the starting room y. The
next step is an oracle query of
the type πx(y), where x is the
state of the first register (which
at this point is in a superposi-
tion of |0〉 through |7〉), and
the output πx(y) will be stored
in the second register. 

The oracle call performing
the permutation is imple-
mented via a sequence of
pulses and delay times, where
the exact pulse sequence

depends on π (systematic methods exist to
design actual pulse sequences starting from a
high-level description). Next, we apply the
QFT on the first register, also by a sequence of
pulses and delays. The final step is to acquire
output spectra for the first three spins.

We custom-synthesized the molecule,
shown in Figure 2, to have five specially placed
fluorine spins with distinct frequencies, which
served as the qubits. We hand-compiled the
algorithm into pulse sequences involving
between 50 and 200 RF pulses, for a total
duration of 50 to 500 ms, depending on which
permutation was implemented. Each building
block in the pulse sequence was tested inde-
pendently to confirm its proper operation.

Upon completion of the algorithm, we can
immediately determine the order r of the per-
mutation that was implemented by inspect-
ing the output spectra. In fact, the spectrum
of just spin 1 is sufficient to determine r. The
theoretical prediction is that if r = 1, we should
see only one (positive) line in the multiplet of
spin 1; for r = 2, four lines should be visible;
for r = 4, 16 lines should be visible; and for r
= 3, some lines should be positive, some neg-
ative, and others dispersive, but the net area
under the spectral lines should be zero.

Figure 7 shows this final experimental out-
put, the spectra of spin 1. Aside from slight
deviations from the ideal case we described
(attributed to decoherence and imperfect
pulses), the results are in excellent agreement
with theoretical predictions.
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1.    l0〉 90
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2.    l0〉

3.    l0〉

4.  l y1〉

5.  l y0〉 πi (y ) πi (y )
2

πi (y )
4

QFT

Figure 6. Quantum circuit implementing the order-finding algorithm. Each horizontal line corre-
sponds to one qubit, and the boxes represent operations acting on the qubits (time goes from
left to right). The vertical lines connecting a black dot and a box denotes that the box is to be
executed if and only if the qubit indicated by the black dot is set to 1. The oracle call was imple-
mented in three steps, using the fact that πx(y)=πx0π2x1π4x2, in which x2 x1 x0 is the binary rep-
resentation of x. Copyright © 2000, The American Physical Society.



Future of quantum computing
Despite the promise of the small quantum

computers implemented to date, extraordinary
challenges remain to be solved before quan-
tum processors become useful. The liquid-state
NMR techniques we used in our experiments
will work straightforwardly up to several tens
of qubits (for certain applications) but are dif-
ficult to scale beyond several hundred. Mean-
ingful quantum computation applications
(known today) require thousands of qubits on
a perfect machine, and millions if error cor-
rection is utilized to compensate for inevitable
errors.3 Solid-state technologies thus offer
enormous promise for realizing large-scale
quantum computers, leveraging current trends
in nanoscale engineering. Molecular electron-
ics, which uses nature’s ability to chemically
assemble functional nanometer-sized
machines, may also be able to access the regime
of quantum mechanics. The challenge is to
engineer such systems to make them behave
just like NMR systems: coherently and effec-

tively as implementations of quantum circuits.
Hand in hand with the desire for large-scale

quantum computers is finding uses for them
other than factoring, search, and simulation.
Information-theoretic tasks such as cryptog-
raphy, distributed computation, and com-
munication are key areas for quantum
information science. Applications discovered
so far include superdense coding (sending two
bits with one qubit), state teleportation, and
fast clock synchronization.2 However, whether
quantum-assisted protocols can be put to
practical use remains to be seen.

Driving this field is a tremendous desire by
researchers to understand how and why quan-
tum resources can help information process-
ing. Perhaps the most striking observation is
the quantum computing community’s con-
sensus after over eight years’ work in this area:
It might be uncertain that a practical quan-
tum computer will ever be built but, to our
best knowledge, there are no principles of
physics prohibiting large-scale quantum com-
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Figure 7. Experimentally measured spectra of spin 1, acquired after executing the order-finding
algorithm, for four different cases. The respective permutations are shown in inset, with the
starting element in bold. The markers above the spectra indicate the position of the lines in
the full multiplet. Copyright © 2000, The American Physical Society



puting. Thus, if we fail in implementing such
machines, we stand to gain new understand-
ing of fundamental physics. On the other
hand, if we succeed, the foundations of com-
puter science (namely, the modern version of
Church’s theorem)2 must be overhauled to say
that the complexity of a problem depends on
the laws of physics. While the answers to these
questions might lie still decades into the
future, continued experimental progress in
realizing small quantum processors will pro-
vide useful insight into the realm of quantum
computing and give us a glimpse of what may
lie ahead. MICRO
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