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Lie algebra valued connection A.
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In the first order formulation of gravity. We can write gravity as a constraint SO(4) BF theory.
BF theory is a topological field theory which depends on a group G. It depends on a choice of

a Lie algebra valued 2-form field B and a Lie algebra valued connection A. And the action of the
theory is simply given by

S =
∫

Tr(Σ ∧ F (A))

The equation of motions are trivial in the sense that it implies that the connection is flat, if one
varies Σ. Now if one reduces to the gauge group being SO(4) (for the case of Riemannian gravity)
we can obtain gravity by imposing the simplicity constraints that says that the two form field is
not arbitrary but can be written as a wedge product:

Σ � � =
(

!(e ∧ e) +
1
γ

e ∧ e

) � �

(17)

Here

!Σ � � ≡ 1
2
ε� � � �Σ� �

Now we now that the discrete phase space of BF theory is essentially going to be given by the
tensor product of the cotangent bundle of SO(4). If one take a slice of this spin foam model we
get a graph whose edges are pairs labelled by an SO(4) connection G�on one hand and a pair of
Lie(SO(4)) valued fields Σ�and Σ̃�related as follows

Σ�= −G�· Σ̃�

where · denotes the SO(4) action.
Now we would like to impose the simplicity constraints. One first remark that a bivector Σ is

γ-simple that is is of the form

Σ = !(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

if and only if

U � (Σ− γ ! Σ) � � = 0 (18)

In the time gauge where U = U (0) with U (0) = (1, 0, 0, 0). This condition reads

Σ0�− γΣ�= 0 Σ�=
1
2
ε� � ÿΣ� ÿ

Σ�is the rotation part of the bivector. This means that a way to impose the simplicity condition
on SO(4) BF theory is to assign to every vertex a unit vector Uɏ∈ R4 and impose the condition

U �
ſe

(Σ�− γ ! Σ�)� � = 0 Σ�= −G�· Σ̃� (19)

Note that always go to the time gauge by chosing a group element G�∈ SO(4) such that

G�· U (0) = U

redefining the connection

Ĝ ≡ G−1
� GG�̃

The conditions now reads

Σ0�
� = γΣ�

� Σ�= −Ĝ�· Σ̃�

The eom implies that the connection is flat
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What we are left to show is two fold: First one need to see that ∆ij is in fact the dihedral angle
of the geometrical 4-simplex and second we are going to see that for internal faces the sum

∑

w⊂f

νw = 0 (π)

after integration over nij

Ui · Uj = Tr
(
u+

i (u−i )−1u−j (u+
j )−1

)
= Tr

(
(u−i )−1u−j (u+

j )−1u+
i

)
(17)

=
1
2
〈nij |(u−i )−1u−j (u+

j )−1u+
i |nij〉+ c.c (18)

=
1
2
e

i
2 (νij+∆ij)〈nij |(u−i )−1u−j |nji〉+ c.c (19)

=
1
2
ei∆ij + c.c (20)

This shows that the angle ν define a flat connection and is therefore pure gauge, it can be
eliminated out.
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ΣIJ =
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#(e ∧ e) +
1
γ

e ∧ e

)IJ

(21)

Here

#ΣIJ ≡ 1
2
εIJKLΣKL

Now we now that the discrete phase space of BF theory is essentially going to be given by the
tensor product of the cotangent bundle of ∈ SO(4). If one take a slice of this spin foam model we
get a graph whose edges are pairs labelled by an SO(4) connection Ge on one hand and a pair of
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Σe = −Ge · Σ̃e
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if one reduces to the gauge group to be SO(4) (Riemannian gravity) 
we can obtain gravity by imposing the simplicity constraints

It says that the two form field is not arbitrary but can be written as a 
wedge product
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 Immirzi parameter 

duality

does not affect the dynamics of GR

8

VIII. FORMULAE

∫
eI ∧ eJ ∧ F IJ =

∫
eI ∧ d2

AeI =
∫

dAeI ∧ dAeI ∼ 0

at the phase space level

Θ = Tr(Σ+dg+g−1
+ ) + Tr(Σ−dg−g−1

− ) (26)

becomes

Θ = j+Tr(Ndg+g−1
+ ) + j−Tr(Ndg−g−1

− )

A bivector is γ simple if

Σ = "(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

The condition for a bivector to be of this form is that

UI(Σ− γ " Σ)IJ = 0 (27)

In the time gauge where U = (1, 0, 0, 0) this reads

K = γJ

In self dual components this reads

Σ± = j±N j± = (1 ± γ)j (28)

where N is a unit vector. The condition that it comes from a simple bivector reads

u± · N = −ũ± · Ñ

In self dual component
Another route toward the theory of spin network is to try to get a discretisation of the dynamics

of GR.
In order to do so we introduce for every edge a connection SO(4) group element and a vector

U ∈ R4 that describe the normal to the three D volume dual to the edge. Densitised inverse frame
field

To any wedge we can assign a Simple bivector

Σ = "(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

If one take a slice of this spin foam model we get a graph whose edges are pairs labelled by an
SO(4) connection Ge on one hand and a pair of Lie(SO(4)) valued fields Σe and Σ̃e related as
follows

Σe = −Ge · Σ̃e

where · denotes the SO(4) action. How do we describe the discrete simplicity condition? We
assume that at each node there exists a unit normal vector U describing the normal to such that
the simplicity condition

tt

7

where · denotes the SO(4) action.
Now we would like to impose the simplicity constraints. One first remark that a bivector Σ is

γ-simple that is is of the form

Σ = "(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

if and only if

U I(Σ− γ " Σ)IJ = 0 (22)

In the time gauge where U = U (0) with U (0) = (1, 0, 0, 0). This condition reads

Σ0i − γΣi = 0 Σi =
1
2
εijkΣjk

Σi is the rotation part of the bivector. This means that a way to impose the simplicity condition
on SO(4) BF theory is to assign to every vertex a unit vector Uv ∈ R4 and impose the condition

U I
se

(Σe − γ " Σe)IJ = 0 Σe = −Ge · Σ̃e (23)

Note that always go to the time gauge by chosing a group element GU ∈ SO(4) such that

GU · U (0) = U

redefining the connection

Ĝ ≡ G−1
U GGŨ

The conditions now reads

Σ0i
e = γΣi

e Σe = −Ĝe · Σ̃e

VII. SELF DUAL

If one think about a 4-vector as a Unitary matrix

U I → U = U01 + iU iσi

then SO(4) = can be identify with SU(2)× SU(2) modulo Z2

(G · U)I → g+U(g−)−1

Given a bivector ΣIJ ∈ R4 ∧R4 we can construct its self dual and anti self dual components to be
vectors in R3 given by:

Σi
± ≡ [(" ± 1)Σ]oi = Σi ± Σ0i (24)

The main property of this decomposition is that it maps the SO(4) action onto an SU(2)× SU(2)
action that is

(G · Σ)± = g±Σ±(g±)−1

In this self dual formulation the condition that the bivector is simple is the condition that

Σi
± = (1 ± γ)Σi

In other words this reads

Σ± = j±N j± = (1 ± γ)j (25)

where N is a unit vector. This provides an embedding
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At the discrete level we can describe the phase space of SO(4) BF 
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1
γ

(U ∧ Ũ)
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se

(Σe − γ ! Σe)IJ = 0 Σe = −Ge · Σ̃e (19)
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with relation
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VIII. FORMULAE

∫
eI ∧ eJ ∧ F IJ =

∫
eI ∧ d2

AeI =
∫

dAeI ∧ dAeI ∼ 0

(Σ, A)

at the phase space level

Θ = Tr(Σ+dg+g−1
+ ) + Tr(Σ−dg−g−1

− ) (26)

becomes

Θ = j+Tr(Ndg+g−1
+ ) + j−Tr(Ndg−g−1

− )

A bivector is γ simple if

Σ = "(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

The condition for a bivector to be of this form is that

UI(Σ− γ " Σ)IJ = 0 (27)

In the time gauge where U = (1, 0, 0, 0) this reads

K = γJ

In self dual components this reads

Σ± = j±N j± = (1 ± γ)j (28)

where N is a unit vector. The condition that it comes from a simple bivector reads

u± · N = −ũ± · Ñ

In self dual component
Another route toward the theory of spin network is to try to get a discretisation of the dynamics

of GR.
In order to do so we introduce for every edge a connection SO(4) group element and a vector

U ∈ R4 that describe the normal to the three D volume dual to the edge. Densitised inverse frame
field

To any wedge we can assign a Simple bivector

Σ = "(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

If one take a slice of this spin foam model we get a graph whose edges are pairs labelled by an
SO(4) connection Ge on one hand and a pair of Lie(SO(4)) valued fields Σe and Σ̃e related as
follows

Σe = −Ge · Σ̃e

are conjugate variables 
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get a graph whose edges are pairs labelled by an SO(4) connection Ge on one hand and a pair of
∈ Lie(SO(4)) valued fields Σe and Σ̃e related as follows
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where · denotes the SO(4) action.
Now we would like to impose the simplicity constraints. One first remark that a bivector Σ is

γ-simple that is is of the form

Σ = !(U ∧ Ũ) +
1
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(U ∧ Ũ)

if and only if

U I(Σ− γ ! Σ)IJ = 0 (18)

In the time gauge where U = U (0) with U (0) = (1, 0, 0, 0). This condition reads

Σ0i − γΣi = 0 Σi =
1
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boost rotation
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VIII. FORMULAE

∫
eI ∧ eJ ∧ F IJ =

∫
eI ∧ d2

AeI =
∫

dAeI ∧ dAeI ∼ 0

(Σ, A)

wIJΣIJ = (wi + γw0i)Σi = AiΣi

wi =
1
2
εijkw

jk

at the phase space level

Θ = Tr(Σ+dg+g−1
+ ) + Tr(Σ−dg−g−1

− ) (26)

becomes

Θ = j+Tr(Ndg+g−1
+ ) + j−Tr(Ndg−g−1

− )

A bivector is γ simple if

Σ = #(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

The condition for a bivector to be of this form is that

UI(Σ− γ # Σ)IJ = 0 (27)

In the time gauge where U = (1, 0, 0, 0) this reads

K = γJ

In self dual components this reads

Σ± = j±N j± = (1 ± γ)j (28)

where N is a unit vector. The condition that it comes from a simple bivector reads

u± · N = −ũ± · Ñ

In self dual component
Another route toward the theory of spin network is to try to get a discretisation of the dynamics

of GR.
In order to do so we introduce for every edge a connection SO(4) group element and a vector

U ∈ R4 that describe the normal to the three D volume dual to the edge. Densitised inverse frame
field

To any wedge we can assign a Simple bivector

Σ = #(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

relation with AB connection
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1
γ

(U ∧ Ũ)
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redefining

7

Note that always go to the time gauge by chosing a group element GU ∈ SO(4) such that

GU · U (0) = U

redefining the connection

Ĝ ≡ G−1
U GGŨ

The conditions now reads

Σ0i
e = γΣi

e Σe = −Ĝe · Σ̃e

ſ � � � � � � � � ÿ � �

If one think about a 4-vector as a Unitary matrix

U I → U = U01 + iU iσi

then SO(4) can be identify with SU(2)× SU(2) modulo Z2

(G · U)I → g+U(g−)−1

In this self dual formulation the condition that the bivector is simple is the condition that

Σi
± = (1 ± γ)Σi

In other words this reads

Σ± = j±N j± = (1 ± γ)j (20)

where N is a unit vector. This provides an embedding

ſ � � � �

at the phase space level

Θ = Tr(Σ+dg+g−1
+ ) + Tr(Σ−dg−g−1

− ) (21)

becomes

Θ = j+Tr(Ndg+g−1
+ ) + j−Tr(Ndg−g−1

− )

Given a bivector ΣIJ ∈ R4 ∧R4 we can construct its self dual and anti self dual components to be
vectors in R3 given by:

Σi
± ≡ [(# ± 1)Σ]oi = Σi ± Σ0i (22)

The main property of this decomposition is that it maps the SO(4) action onto an SU(2)× SU(2)
action that is

(G · Σ)± = g±Σ±(g±)−1

with

7

Note that always go to the time gauge by chosing a group element GU ∈ SO(4) such that

GU · U (0) = U

redefining the connection

Ĝ ≡ G−1
U GGŨ

The conditions now reads
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Ĝ ≡ G−1
U GGŨ
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The conditions now reads

Σ0i
e = γΣi

e Σe = −Ĝe · Σ̃e
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VIII. FORMULAE

∫
eI ∧ eJ ∧ F IJ =

∫
eI ∧ d2

AeI =
∫

dAeI ∧ dAeI ∼ 0

(Σ, A)

wIJΣIJ = (wi + γw0i)Σi = AiΣi

wi =
1
2
εijkw

jk

T ∗SU(2)

T ∗SO(4)

(G · Σ) = Σ̃

g± = neξ± ñ

at the phase space level

Θ = Tr(Σ+dg+g−1
+ ) + Tr(Σ−dg−g−1

− ) (26)

becomes

Θ = j+Tr(Ndg+g−1
+ ) + j−Tr(Ndg−g−1

− )

A bivector is γ simple if

Σ = #(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

The condition for a bivector to be of this form is that

UI(Σ− γ # Σ)IJ = 0 (27)

In the time gauge where U = (1, 0, 0, 0) this reads

K = γJ

In self dual components this reads

Σ± = j±N j± = (1 ± γ)j (28)

where N is a unit vector. The condition that it comes from a simple bivector reads

u± · N = −ũ± · Ñ
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The condition for a bivector to be of this form is that

UI(Σ− γ # Σ)IJ = 0 (27)

In the time gauge where U = (1, 0, 0, 0) this reads

K = γJ

In self dual components this reads

Σ± = j±N j± = (1 ± γ)j (28)

where N is a unit vector. The condition that it comes from a simple bivector reads

u± · N = −ũ± · Ñ
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From classical to quantum
So far we have focused on the classical aspects of the kinematical 
Hilbert space.

What does it have to do with the quantum theory?

What does it have to do with the dynamics?

We would like to advocate that there is a way to relate efficiently 
the classical with the quantum.

The way to do so is by the choice of coherent states.
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A. From classical to quantum

So far we have focused on the classical aspect of the kinematical Hilbert space. At this stage
one might start to wonder what does it have to do with the quantum theory? The point of view
we would like to advocate is that there is a way to relate efficiently the classical with the quantum.
The way to do so is by the choice of coherent states.

The main lesson we can take from geometrical quantisation is that a coherent state is in fact an
holomorphic state, that is it is related to the choice of a complex structure on the classical phase
space. We can reverse the logic here and promote that quantisation is related very closely to the
choice of a complex structure on the phase space.

Let us see how this work in more details: We start from a finite dimensional phase space P ,
possessing a symplectic structure ω A closed invertible two form on P . And we select a complex struc-
ture J1 compatible with the symplectic potential. 2 This Choice of complex structure determines
a metric on P g(X, Y ) ≡ ω(J(X), Y ) which can be derived from a potential ω = ∂∂̄K. If this
metric is positive definite the potential is called a Kähler potential and the phase space is said to
be equipped with a Kähler structure. One then chose an holomorphic line bundle L over P, and for
practical purpose one also chose a trivialisation of this quantisation bundle. Once a trivialisation
is chosen, a state is represented by an holomorphic function 〈Ψ|z〉 on P and the completeness of
the coherent state basis is given by

〈Ψ|Ψ〉 =
∫

P
Pf(ω)e−

1
! K(z,z̄)〈Ψ|z〉〈z|Ψ〉 (1)

In this case we can define coherent states to be holomorphic states such that

〈w|z〉 ∼ e
1
! K(w̄,z)

The main example are C2 for which K = |z|2 and the two sphere. S2 is a complex manifold
CP1 = C2/C. Element of C2 are spinors |z〉 = (z0, z1), the norm of the spinor is denoted by

〈z|z〉 = |z0| + |z1|2

1

2 A complex structure is an endomorphism on the tangent bundle of P which squares to −1. The compatibility
condition is the condition that it leaves the symplectic structure invariant ω(J(X), J(Y )) = ω(X, Y ).In local
coordinates this means that locally there are complex coordinates zi and the complex structure is given by J(∂z) =
i∂z̄,J(∂z) = i∂z̄.
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If this metric is positive definite the potential is called a Kähler potential and the phase space
is said to be equipped with a Kähler structure. One then chose an holomorphic line bundle L
over P, and for practical purpose one also chose a trivialisation of this quantisation bundle. Once
a trivialisation is chosen, a state is represented by an holomorphic function 〈Ψ|z〉 on P and the
completeness of the coherent state basis is given by

〈Ψ|Ψ〉 =
∫

P
Pf(ω)e−

1
! K(z,z̄)〈Ψ|z〉〈z|Ψ〉 (1)

In this case we can define coherent states to be holomorphic states such that

〈w|z〉 ∼ e
1
! K(w̄,z)

1

2 A complex structure is an endomorphism on the tangent bundle of P which squares to −1. The compatibility
condition is the condition that it leaves the symplectic structure invariant ω(J(X), J(Y )) = ω(X, Y ).In local
coordinates this means that locally there are complex coordinates zi and the complex structure is given by

J(∂z) = i∂z J(∂z̄) = −i∂z̄

.

and for practical purpose a trivialisation of this line bundle

choice of coherent states = choice of complex structure
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The 2-sphere
2

The main example are C2 for which K = |z|2 and the two sphere. S2 is a complex manifold
CP1 = C2/C. Element of C2 are spinors

|z〉 =
(

z0

z1

)

, the norm of the spinor is denoted by

〈z|z〉 = |z0| + |z1|2

and the Kähler potential is K = j ln(〈z|z〉) where j is the radius of the sphere. The normalised
spinor can be labelled by an element of SU(2) and are denoted

|nz〉 =
|z〉√
〈z|z〉

= nz|0〉 |0〉 = (1, 0) (2)

and such normalised spinor determines a unit vector in R3

|nz〉〈nz| = (1 + Nz)/2 N = nτ3n
−1

. It is important to note that teh knowledge of N determine n only up to a phase. Coherent states
on the sphere are tensor product of normalised spinors |z〉⊗j such a spinor determine a unit vector
in R3

|z〉〈z| = (1 + N(z))/2

. The identity decomposition is given by

1j = dj

∫

S2
|z〉j〈z|j

Given a vertex we can define a coherent intertwinner by averaging over the group

|" , zi〉 =
∫

dg (g|z〉⊗j1 ⊗ · · · ⊗ g|z〉⊗jN )

These states satisfy the closure relation in the sense that
∑

i Xi|" , zi〉 = 0 but there label do not
necessarilly.

Thanks to the Guillemin-Sternberg theorem we can in fact restrict to configurations that do
satisfy the closure relation and label the vertex states by framed polytopes:

1! =
∫

P!

µ!(zi)|" , zi〉〈" , zi| (3)

suppose we denote the Kahler potential associated with the product of spheres of radius ji by

K! (zi) =
∑

i

(2ji + 1) ln(〈zi|zi〉)

The prefactor is given by

µ! ∼
∫

SL(2,C)
dg eK! (g|zi〉)−K! (|zi〉)Pf(ω)(gzi) (4)
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. The identity decomposition is given by

1j = dj

∫

S2
|z〉j〈z|j = dj

∫

S2
dn(|n〉〈n|)⊗j

These states represent states of minimal uncertainty picked around the classical vector

X = jN = jnτ3n
−1 = −〈j, n|Ĵ |j, n〉⊗j |j, n〉 = |n〉⊗j

around the

dj = 2j + 1
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i

jiNi &= 0
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VIII. FORMULAE

∫
eI ∧ eJ ∧ F IJ =

∫
eI ∧ d2

AeI =
∫

dAeI ∧ dAeI ∼ 0

(Σ, A)

wIJΣIJ = (wi + γw0i)Σi = AiΣi

wi =
1
2
εijkw

jk

T ∗SU(2)

T ∗SO(4)

(G · Σ) = Σ̃

g± = neξ± ñ−1

ξ+ − ξ−

C K = |z|2

at the phase space level

Θ = Tr(Σ+dg+g−1
+ ) + Tr(Σ−dg−g−1

− ) (26)

becomes

Θ = j+Tr(Ndg+g−1
+ ) + j−Tr(Ndg−g−1

− )

A bivector is γ simple if

Σ = $(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

The condition for a bivector to be of this form is that

UI(Σ− γ $ Σ)IJ = 0 (27)

In the time gauge where U = (1, 0, 0, 0) this reads

K = γJ

2
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CP1 = C2/ C. Element of C2 are spinors

|z〉 =
(

z0

z1

)

, the norm of the spinor is denoted by

〈z|z〉 = |z0| + |z1|2

and the Kähler potential is K= jln(〈z|z〉) where jis the radius of the sphere. The normalised
spinor can be labelled by an element of SU(2) and are denoted

|nz〉 =
|z〉√
〈z|z〉

= nz|0〉 |0〉 =
(

1
0

)
(2)

and such normalised spinor determines a unit vector in R3

|n〉〈n| = (1 + N)/ 2 |nz〉〈nz| = (1 + Nz)/ 2 N= nσ3n−1

. It is important to note that the knowledge of Ndetermine nonly up to a phase. Coherent states
on the sphere are tensor product of normalised spinors |z〉⊗j such a spinor determine a unit vector
in R3

|z〉〈z| = (1 + N(z))/ 2

. The identity decomposition is given by

1j = dj

∫

S2
|z〉j〈z|j = dj

∫

S2
dn(|n〉〈n|)⊗j

These states represent states of minimal uncertainty picked around the classical vector

X= jN = jnτ3n−1 = −〈j, n|Ĵ|j, n〉⊗j |j, n〉 = |n〉⊗j

around the

dj = 2j+ 1

Given a vertex carrying spins j1 , · · · jN we can define a coherent intertwinner by averaging over
the group

|# , ni〉 ≡
∫

SU(2)
dg(g|n1〉⊗j1 ⊗ · · ·⊗g|nN 〉⊗jN )

These states satisfy the closure relation in the sense that
∑

i Ĵi|# , ni〉 = 0 but their label do not
necessarily

∑

i

jiNi &= 0

.
Thanks to the Guillemin-Sternberg theorem

P//G = P∗/ GC
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∫

P!

µ!(zi)|" , zi〉〈" , zi| (3)

suppose we denote the Kahler potential associated with the product of spheres of radius ji by

K! (zi) =
∑

i

(2ji + 1) ln(〈zi|zi〉)

The prefactor is given by

µ! ∼
∫

SL(2,C)
dg eK! (g|zi〉)−K! (|zi〉)Pf(ω)(gzi) (4)
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P! = {ni|
∑

i

jiNi = 0} Ni = niτ3n
−1
i

suppose we denote the Kahler potential associated with the product of spheres of radius ji by

K! (zi) =
∑

i

(2ji + 1) ln(〈zi|zi〉)

The prefactor is given by

µ! ∼
∫

SL(2,C)
dg eK! (g|zi〉)−K! (|zi〉)Pf(ω)(gzi) (4)

III. SO(4) STATES

Now that we have an understanding of SU(2)coherent states we can extend our construction to
SO(4) simple coherent states. We have seen that at the classical level a simple bivector Σ = (U∧Ũ)
with Immirzi parameter γ is given by a pair

Σ =( j+u+Nu−1
+ , j−u−Nu−1

− ), j± = (γ ± 1)j, U = u+u−1
− (5)

Σu = (u+, u−)(j+N, j−N), j± = (γ ± 1)j, U = u+u−1
− (6)

Therefore at the quantum level we can represent a simple bivector by a states Σ ∈ Vj+ ⊗ Vj− . We
chose a spinor z〉 such that (1 + N)/2 = |z〉〈z| and define the simple SO(4) state by

|Σ〉 = |z〉⊗j+ ⊗ |z〉⊗j− , Σu = (u+ ⊗ u−) · |Σ〉 (7)

This provides for us an ambedding of

|z〉⊗j → |z〉⊗γ+ ⊗ |z〉γ− (8)

IV. BF AMPLITUDE

Now that we have an understanding of the classical theory we can finally write down the
amplitudes. Such amplitudes for BF theory can be written in terms of can be written in terms of
a spin foam model. To any face of the 2D complex we assign a spin jf and to any wedge w = (abc)
where a, b, c are three vertices we assign the two vectors: N b

ac and N c
ba and to The amplitude can

be written as a product of amplitude for every vertex

=
∑

jf

djf

∫ ∏

w=(aij)

djwdnw

∏

a

Aa(ja
ij , n

a
ij) (9)

where

Av(jij , nij) =
∏

i<j

djij

∫

SU(2)

∏

i

dgi

∏

i<j

〈nij |g−1
i gj |nji〉jij (10)

Proof: after integrating over the na
ij we obtain a product over each face f = a1 · · · an of the type

χjf (ga1a2 · · · gana1) ga1a2 = ga1
a2

(ga2
a1

)−1

and still satisfy the unity decomposition
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and the Kähler potential is K = j ln(〈z|z〉) where j is the radius of the sphere. The normalised
spinor can be labelled by an element of SU(2) and are denoted
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and such normalised spinor determines a unit vector in R3
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around the
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1! =
∫

P!

µ! (ni)|" , ni〉〈" , ni| (3)

integration over framed polytopes

The prefactor is
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III. SO(4) STATES

Now that we have an understanding of SU(2)coherent states we can extend our construction to
SO(4) simple coherent states. We have seen that at the classical level a simple bivector Σ = (U∧Ũ)
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and still satisfy the unity decomposition

2

The main example are C2 for which K = |z|2 and the two sphere. S2 is a complex manifold
CP1 = C2/C. Element of C2 are spinors

|z〉 =
(

z0

z1

)

, the norm of the spinor is denoted by

〈z|z〉 = |z0| + |z1|2

and the Kähler potential is K = j ln(〈z|z〉) where j is the radius of the sphere. The normalised
spinor can be labelled by an element of SU(2) and are denoted

|nz〉 =
|z〉√
〈z|z〉

= nz|0〉 |0〉 =
(

1
0

)
(2)

and such normalised spinor determines a unit vector in R3

|n〉〈n| = (1 + N)/2 |nz〉〈nz| = (1 + Nz)/2 N = nτ3n
−1

. It is important to note that the knowledge of N determine n only up to a phase. Coherent states
on the sphere are tensor product of normalised spinors |z〉⊗j such a spinor determine a unit vector
in R3

|z〉〈z| = (1 + N(z))/2

. The identity decomposition is given by

1j = dj

∫

S2
|z〉j〈z|j = dj

∫

S2
dn(|n〉〈n|)⊗j

These states represent states of minimal uncertainty picked around the classical vector

X = jN = jnτ3n
−1 = −〈j, n|Ĵ |j, n〉⊗j |j, n〉 = |n〉⊗j

around the

dj = 2j + 1

Given a vertex carrying spins j1, · · · jN we can define a coherent intertwinner by averaging over
the group

|" , zi〉 ≡
∫

SU(2)
dg (g|n1〉⊗j1 ⊗ · · ·⊗ g|nN 〉⊗jN )

These states satisfy the closure relation in the sense that
∑

i Ĵi|" , ni〉 = 0 but their label do not
necessarily

∑

i

jiNi &= 0

.
Thanks to the Guillemin-Sternberg theorem we can in fact restrict to configurations that do

satisfy the closure relation and label the vertex states by framed polytopes:

1! =
∫

P!

µ! (ni)|" , ni〉〈" , ni| (3)

integration over framed polytopes

It follows from the Guillemin-Sternberg isomorphism
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. It is important to note that the knowledge of N determine n only up to a phase. Coherent states
on the sphere are tensor product of normalised spinors |z〉⊗j such a spinor determine a unit vector
in R3

|z〉〈z| = (1 + N(z))/2

. The identity decomposition is given by

1j = dj

∫

S2
|z〉j〈z|j = dj

∫

S2
dn(|n〉〈n|)⊗j

These states represent states of minimal uncertainty picked around the classical vector

X = jN = jnτ3n
−1 = −〈j, n|Ĵ |j, n〉⊗j |j, n〉 = |n〉⊗j

around the

dj = 2j + 1

Given a vertex carrying spins j1, · · · jN we can define a coherent intertwinner by averaging over
the group

|" , ni〉 ≡
∫

SU(2)
dg (g|n1〉⊗j1 ⊗ · · ·⊗ g|nN 〉⊗jN )

These states satisfy the closure relation in the sense that
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i Ĵi|" , ni〉 = 0 but their label do not
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jiNi &= 0

.
Thanks to the Guillemin-Sternberg theorem

P//G = P ∗/GC

The coherent spin network states are labelleb by twisted geometries
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Rotation mapping the reference vector to U

satisfying the condition

5

In the time gauge where U = (1, 0, 0, 0) this reads

K = γJ

In self dual components this reads

Σ± = j±N j± = (1± γ)j (14)

where N is a unit vector. The condition that it comes from a simple bivector reads

u± ·N = −ũ± · Ñ

In self dual component

VII. REST

In this section we focus on the formulation of Euclidean or Lorentzian gravity in terms of an
SU(2) connection. We will discuss later the formulation of Lorentzian gravity with the introduction
of the immirzi parameter and we will notice a fundamental difference between the two.

The phase space of Euclidean gravity can be expressed in terms of an SU(2) connection Ai
a and

a frame field ei
a, both being SU(2) valued one for field living on a 3dimensional manifold M . The

SU(2) connection is a combination of the spin connection Γi
a and the extrinsic curvature tensor

Ki
a:

Ai
a = Γi

a + γKi
a. (15)

where γ is the Immirzi parameter. The symplectic potential for this phase space that comes from
the first order formulation of gravity is given by:

Θ =
1
2

∫

M
εijk(ei ∧ ej ∧ δAk) =

∫

M
Ea

k δAk
a (16)

where we have introduced the densitised vector field Ea
k which is the variable canonically conjugated

to Ai
a. Its relation to the frame field being

Ea
i =

1
2
εabcεijk ej

be
k
c , ei

a =
1√

det(E)
εijkεabcE

b
jE

c
k. (17)

On this canonical phase space which is just the cotangent bundle of the space of connection T ∗A we
need to perform several Hamiltonian reductions. Let us recall that we can perform an hamiltonian
reduction of a phase space P by a group of transformation G if the infinitesimal group action is
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P//G ≡ H−1(0)/G. (18)
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δXEa

i = [Ea, X]i whose hamiltonian is given by the Gauss constraints
∫
M XiGi with

Gi = εabcεijk ej
a∇be

k
c = ∇aE

a
i . (19)
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we can in fact restrict to configurations that do satisfy the closure relation and label the vertex
states by framed polytopes:

1! =
∫

P!

µ! (ni)|! , ni〉〈! , ni| (3)

P! = {ni|
∑
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jiNi = 0} Ni = niτ3n
−1
i

suppose we denote the Kahler potential associated with the product of spheres of radius ji by

K! (|zi〉) =
∑

i

(2ji + 1) ln(〈zi|zi〉)

The prefactor is given by

µ! ∼
∫

SL(2,C)
dg eK! (gni)Pf(ω)(gni) ∼ Pf(ωP!
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III. SO(4) STATES

Now that we have an understanding of SU(2)coherent states we can extend our construction
to SO(4) simple coherent states. We have seen that at the classical level a simple bivector

Σ = %(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

with Immirzi parameter γ is given by a pair

Σ =( j+u+Nu−1
+ , j−u−Nu−1

− ), j± = (γ ± 1)j, U = u+u−1
− (5)

Σu = (u+, u−)(j+N, j−N), j± = (γ ± 1)j, U = u+u−1
− (6)

u±Nu−1
± = ũ±Ñ ũ−1

±

Therefore at the quantum level we can represent a simple bivector by a map from a states

Σγ : Vj → Vj+ ⊗ Vj−

given by

Σγ(|n〉⊗j) = |n〉⊗j → |n〉⊗j+ ⊗ |n〉⊗j−

with

j+ + j− = 2j j+ − j− = 2γj

In an arbitrary frame this is given by

(7)

We chose a spinor z〉 such that (1 + N)/2 = |z〉〈z| and define the simple SO(4) state by

|Σ〉 = |z〉⊗j+ ⊗ |z〉⊗j− , Σu = (u+ ⊗ u−) · |Σ〉 (8)

This provides for us an embedding of

|z〉⊗j → |z〉⊗γ+ ⊗ |z〉γ− (9)
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1
γ

(U ∧ Ũ)
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with Immirzi parameter γ is given by a pair

Σ =( j+u+Nu−1
+ , j−u−Nu−1

− ), j± = (γ ± 1)j, U = u+u−1
− (5)

Σu = (u+, u−)(j+N, j−N), j± = (γ ± 1)j, U = u+u−1
− (6)

u±Nu−1
± = ũ±Ñ ũ−1
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IV. BF AMPLITUDE

Now that we have an understanding of the classical theory we can finally write down the
amplitudes. Such amplitudes for BF theory can be written in terms of can be written in terms of
a spin foam model. To any face of the 2D complex we assign a spin jf and to any wedge w = (abc)
where a, b, c are three vertices we assign the two vectors: N b

ac and N c
ba and to The amplitude can

be written as a product of amplitude for every vertex

w = (abc) a b c jf

=
∑

jf

djf

∫ ∏

w=(aij)

djwdnw

∏

a

Aa(ja
ij , n

a
ij) (10)

where

Av(jij , nij) =
∏

i<j

djij

∫

SU(2)

∏

i

dgi

∏

i<j

〈nij |g−1
i gj |nji〉jij (11)

Proof: after integrating over the na
ij we obtain a product over each face f = a1 · · · an of the type

χjf (ga1a2 · · · gana1) ga1a2 = ga1
a2

(ga2
a1

)−1

The sum over jf impose the flatness of the discrete connection.

∑

jf

djf χjf (G) = δ(G)

(ga1
an−1

)−1ga1
a2

(ga2
a1

)−1 · · · ga1
a2

V. GRAVITY AMPLITUDE

The 4d Riemannian gravity amplitude is obtained by imposing the simplicity constraints of the
SO(4) BF theory, and the vertex amplitude is given by

A(γ)
v (jij , nij) = Av(γ+jij , nij)Av(γ−jij , nij) (12)

Note that this provides a purely algebraic definition of the gravity amplitude

VI. SELF DUAL

Given a bivector ΣIJ ∈ R4 ∧ R4 we can construct its self dual and anti self dual components

Σi
± ≡ [($ ± 1)Σ]oi =

1
2
εi
jkΣ

jk ± Σ0i (13)

A bivector is γ simple if

Σ = $(U ∧ Ũ) +
1
γ

(U ∧ Ũ)

4

IV. BF AMPLITUDE

Now that we have an understanding of the classical theory we can finally write down the
amplitudes. Such amplitudes for BF theory can be written in terms of can be written in terms of
a spin foam model. To any face of the 2D complex we assign a spin jf and to any wedge w = (abc)
where a, b, c are three vertices we assign the two vectors: N b

ac and N c
ba and to The amplitude can

be written as a product of amplitude for every vertex

w = (abc) a b c jf

=
∑

jf

djf

∫ ∏

w=(aij)

djwdnw

∏

a

Aa(ja
ij , n

a
ij) (10)

where

Av(jij , nij) =
∏

i<j

djij

∫

SU(2)

∏

i

dgi

∏

i<j

〈nij |g−1
i gj |nji〉jij (11)

Proof: after integrating over the na
ij we obtain a product over each face f = a1 · · · an of the type

χjf (ga1a2 · · · gana1) ga1a2 = ga1
a2

(ga2
a1

)−1

The sum over jf impose the flatness of the discrete connection.

∑

jf

djf χjf (G) = δ(G)

(ga1
an−1

)−1ga1
a2

(ga2
a1

)−1 · · · ga1
a2

V. GRAVITY AMPLITUDE

The 4d Riemannian gravity amplitude is obtained by imposing the simplicity constraints of the
SO(4) BF theory, and the vertex amplitude is given by

A(γ)
v (jij , nij) = Av(γ+jij , nij)Av(γ−jij , nij) (12)

Note that this provides a purely algebraic definition of the gravity amplitude

VI. SELF DUAL

Given a bivector ΣIJ ∈ R4 ∧ R4 we can construct its self dual and anti self dual components

Σi
± ≡ [($ ± 1)Σ]oi =

1
2
εi
jkΣ

jk ± Σ0i (13)

A bivector is γ simple if

Σ = $(U ∧ Ũ) +
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The amplitude

ZS(Γ, j, n) ≡
∫ ∏

w=(aij)

dnw

∏

a

Aa(j+a
ij , na

ij)Aa(j−a
ij , na

ij)

Aγ
v(jij , nij) =

∫

SU(2)

∏

ε=±1

∏

i

dgε
i

∏

i<j

〈nij |(gε
i )
−1gε

j |nji〉j
ε
ij (13)

We also suppose that the integration over g±i is restrict to be non degenerate

det(Ui) $= 0 Ui = (g+
i )−1(g−i )−1 (14)

Then the main result is that the amplitude is asymptotic to the exponential of the Regge action

Z(Γ, j, n) ∼ eiS(#e) + c.c (15)

S(!e) =
∑

v

∑

f⊂v

AfΘf

dihedral angle. The main result is that if there exists a set of edge lenght on the triangulation dual
to the spin foam such that jf = Af (!e) then the amplitude is asymptotic to the exponential of the
Regge action which is the discrete gravity action.

A. asymptotic

Due to our previous result we can restrict the integration over n to an integration over geomet-
rical tetrahedra. We therefore need to compute the asymptotic of the vertex amplitude.

Av(jij , nij) =
∫

SU(2)

∏

i

dg+
i dg−i

∏

i<j

〈nij |(g+
i )−1g+

j |nji〉j
+
ij 〈nij |(g−i )−1g−j |nji〉j

−
ij (16)

First we can restrict the boundary labels to satisfy the closure condition
∑

j

jijNij = 0 Nij = nijτ3n
−1
ij

Second since 〈nij |g−1
i gj |nji〉 ≤ 1 it is clear that the amplitude is exponentially supressed unless

〈nij |g−1
i gj |nji〉 = 1 that is unless

g±j |nji〉 = e
i
2 (νij±∆ij)g±i |nij〉

Moreover it is easy to see that the closure condition and this condition imply that the variation of
the phase of the weight is stationary. So there is no other condition to impose. Due to the non
degeneracy condition there are two solutions to this equation Either g±i = u±i where Ui = u+

i (u−i )−1

label the normal of a 4-simplex determined by jij of given or g±i = u∓i . In the first case the onshell
evaluation gives after applying the stationnary phase approximation

Av(jij , nij) ∼ e
P

ij jijνij
(
eγjij∆ij + eγjij∆ij

)
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The 4d Riemannian gravity amplitude is obtained by imposing the simplicity constraints of the
SO(4) BF theory. Since SO(4) = SU(2) × SU(2) the vertex amplitude for SO(4) !"is obtained
by and the vertex amplitude is given by

 (γ)
v ( i˿j ' iͯj) =  v(γ+ i˿j ' iͯj) v(γ− i˿j ' iͯj) (12)

and
γ+

γ−
=

1 + γ

1− γ

Note that this provides a purely algebraic definition of the gravity amplitude.
One may ask now, what does this have to do with gravity. In order to investigate this question

we look at the behavior of the amplitude in the semi-classical limit. Since the area are given by
the spins in unit of the plnack lenght,  f = γ$2

P f˿ the semi-classical limit for fixed area correspond
to the limit where all the spins uniformely go to infinity.

f˿ . . 1 f˿ − f˿ ′

f˿
→ 0
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4

IV. BF AMPLITUDE

Now that we have an understanding of the classical theory we can finally write down the
amplitudes. Such amplitudes for BF theory can be written in terms of can be written in terms of
a spin foam model. To any face of the 2D complex we assign a spin jf and to any wedge w = (iaj)
where i, a, j are three vertices we assign the two vectors: Na

ij and Na
ji and to The amplitude can

be written as a product of amplitude for every vertex

w = (iaj) i a j jf

=
∑

jf

djf

∫ ∏

w=(aij)

djwdnw

∏

a

Aa(ja
ij , n

a
ij) (10)

where

Av(jij , nij) =
∫

SU(2)

∏

i

dgi

∏

i<j

〈nij |g−1
i gj |nji〉jij (11)

Proof: after integrating over the na
ij we obtain a product over each face f = a1 · · · an of the type

χjf (ga1a2 · · · gana1) ga1a2 = ga1
a2

(ga2
a1

)−1

The sum over jf impose the flatness of the discrete connection.

∑

jf

djf χjf (G) = δ(G)

(ga1
an−1

)−1ga1
a2

(ga2
a1

)−1 · · · ga1
a2

V. GRAVITY AMPLITUDE

The 4d Riemannian gravity amplitude is obtained by imposing the simplicity constraints of the
SO(4) BF theory. Since SO(4) = SU(2) × SU(2) the vertex amplitude for SO(4) BF is obtained
by and the vertex amplitude is given by

A(γ)
v (jij , nij) = Av(γ+jij , nij)Av(γ−jij , nij) (12)

and

γ+

γ−
=

1 + γ

1− γ

Note that this provides a purely algebraic definition of the gravity amplitude

Wednesday, June 30, 2010



Gravity amplitudes

What does this have to do with gravity?

We look at the behavior of the amplitude in the semi-classical limit

Since the area are given by the spins in unit of the Planck lenght

The semi-classical limit for fixed area corresponds to the limit where 
all the spins uniformely go to infinity.
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djf χjf (G) = δ(G)

(ga1
an−1

)−1ga1
a2

(ga2
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V. GRAVITY AMPLITUDE

The 4d Riemannian gravity amplitude is obtained by imposing the simplicity constraints of the
SO(4) BF theory. Since SO(4) = SU(2) × SU(2) the vertex amplitude for SO(4) BF is obtained
by and the vertex amplitude is given by

A(γ)
v (jij , nij) = Av(γ+jij , nij)Av(γ−jij , nij) (12)

and

γ+

γ−
=

1 + γ

1− γ

Note that this provides a purely algebraic definition of the gravity amplitude.
One may ask now, what does this have to do with gravity. In order to investigate this question

we look at the behavior of the amplitude in the semi-classical limit. Since the area are given by
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P jf the semi-classical limit for fixed area correspond
to the limit where all the spins uniformely go to infinity.

jf >> 1
jf − jf ′

jf
→ 0
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In self dual component

5

The amplitude

ZS(Γ, j, n) ≡
∫ ∏

w=(aij)

dnw

∏

a

Aa(j+a
ij , na

ij)Aa(j−a
ij , na

ij)

The main result is that if there exists a set of edge lenght on the triangulation dual to the spin
foam such that jf = Af (!e) then the amplitude is asymptotic to the exponential of the Regge
action which is the discrete gravity action.

Due to our previous result we can restrict the integration over n to an integration over geomet-
rical tetrahedra. We therefore need to compute the asymptotic of the vertex amplitude.

Av(jij , nij) =
∫

SU(2)

∏

i

dg+
i dg−i

∏

i<j

〈nij |(g+
i )−1g+

j |nji〉j
+
ij 〈nij |(g−i )−1g−j |nji〉j

−
ij (13)

Aγ
v(jij , nij) =

∫

SU(2)

∏

ε=±1

∏

i

dgε
i

∏

i<j

〈nij |(gε
i )
−1gε

j |nji〉j
ε
ij (14)

We also suppose that the integration over g±i is restrict to be non degenerate

det(Ui) $= 0 Ui = (g+
i )−1(g−i )−1 (15)

Then the main result is that the amplitude is asymptotic to the exponential of the Regge action

Z(Γ, j, n) ∼ eiS(#e) + c.c (16)

S(!e) =
∑

v

∑

f⊂v

AfΘf

dihedral angle.

VI. SELF DUAL

Given a bivector ΣIJ ∈ R4 ∧ R4 we can construct its self dual and anti self dual components

Σi
± ≡ [(" ± 1)Σ]oi =

1
2
εi
jkΣ

jk ± Σ0i (17)

A bivector is γ simple if

Σ = "(U ∧ Ũ) +
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A. asymptotic

Due to our previous result we can restrict the integration over n to an integration over geomet-
rical tetrahedra. We therefore need to compute the asymptotic of the vertex amplitude.
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Moreover it is easy to see that the closure condition and this condition imply that the variation of
the phase of the weight is stationary. So there is no other condition to impose. Due to the non
degeneracy condition there are two solutions to this equation Either g±i = u±i where Ui = u+

i (u−i )−1

label the normal of a 4-simplex of given or g±i = u∓i . In the first case the onshell evaluation gives
after applying the stationnary phase approximation
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�
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eγjij∆ij + eγjij∆ij

)

What we are left to show is two fold: First one need to see that ∆ij is in fact the dihedral angle
of the geometrical 4-simplex and second we are going to see that for internal faces the sum

∑

w⊂f

νw = 0 (π)

after integration over nij

This shows that the angle ν define a flat connection and is therefore pure gauge, it can be
eliminated out.
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What we are left to show is two fold: First one need to see that ∆ij is in fact the dihedral angle
of the geometrical 4-simplex and second we are going to see that for internal faces the sum

∑

w⊂f

νw = 0 (π)

after integration over nij

This shows that the angle ν define a flat connection and is therefore pure gauge, it can be
eliminated out.

6

What we are left to show is two fold: First one need to see that ∆ij is in fact the dihedral angle
of the geometrical 4-simplex and second we are going to see that for internal faces the sum

∑

w⊂f

νw = 0 (π)

after integration over nij

Ui · Uj = Tr
(
u+

i (u−i )−1u−j (u+
j )−1

)
= Tr

(
(u−i )−1u−j (u+

j )−1u+
i

)
(17)

=
1
2
〈nij |(u−i )−1u−j (u+

j )−1u+
i |nij〉+ c.c (18)

=
1
2
e

i
2 (νij+∆ij)〈nij |(u−i )−1u−j |nji〉+ c.c (19)

=
1
2
ei∆ij + c.c (20)

This shows that the angle ν define a flat connection and is therefore pure gauge, it can be
eliminated out.

VI. SO(4) BF AND SIMPLICITY

In the first order formulation of gravity. We can write gravity as a constraint SO(4) BF theory.
BF theory is a topological field theory which depends on a group G. It depends on a choice of

a Lie algebra valued 2-form field B and a Lie algebra valued connection A. And the action of the
theory is simply given by

S =
∫

Tr(Σ ∧ F (A))

The equation of motions are trivial in the sense that it implies that the connection is flat, if one
varies Σ.

dAΣ =0 F (A) = 0

Now if one reduces to the gauge group being SO(4) (for the case of Riemannian gravity) we can
obtain gravity by imposing the ſ � � � � � � � ɏ ʯ � � � ſ ɏ ÿ � � � ɏ ſthat says that the two form field is not
arbitrary but can be written as a wedge product:

ΣIJ =
(

#(e ∧ e) +
1
γ

e ∧ e

)IJ

(21)

Here

#ΣIJ ≡ 1
2
εIJKLΣKL

Now we now that the discrete phase space of BF theory is essentially going to be given by the
tensor product of the cotangent bundle of ∈ SO(4). If one take a slice of this spin foam model we
get a graph whose edges are pairs labelled by an SO(4) connection Ge on one hand and a pair of
∈ Lie(SO(4)) valued fields Σe and Σ̃e related as follows

Σe = −Ge · Σ̃e
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We have seen that the SU(2) spin network Hilbert space 
associated with a graph is a universal object that appears in 

many geometrical instances

In the quantization of LQG

In the quantization of discrete twisted geometry

In the spin foam quantization of Plebanski theory (constraint BF)

This leads to  a simple proposal for the quantum dynamics

which is purely algebraic in nature and  has beautiful semi-
classical property 

Conclusion

This can be extended to Lorentzian case
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There are still many open problems

Some technical some more fundamental :

Insertion of a cosmological constant

Link with the Hamiltonian formulation 

Summation over spines, is GFT proposal correct?

Conclusion

Asymptotic boundary condition (Link with S-matrix, AdS/CFT) 

Time evolution, coupling to matter ...

Prove that the amplitude respect spacetime diffeomorphism

So far this is a model not a full theory...
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