SO(4) BF

In the first order formulation of gravity.VWe can write gravity as a
constraint SO(4) BF theory.

BF theory is a topological field theory which depends on a group G.

It depends on a choice of a Lie algebra valued 2-form field Y. and a
Lie algebra valued connection A.

S = /TT(Z A F(A))

The eom implies that the connection is flat

dsaX =0  F(A)=0
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if one reduces to the gauge group to be SO(4) (Riemannian gravity)
we can obtain gravity by imposing the simplicity constraints

It says that the two form field is not arbitrary but can be written as a
wedge product

o ) 3 g duality

1
2
7 does not affect the dynamics of GR

/GIAGJ/\FIJ:/GI/\dAe —/dAel/\dAelrvO
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(32, A) are conjugate variables

At the discrete level we can describe the phase space of SO(4) BF
theory in terms of a product of TA*SO(4)

To each edge of the boundary graph we assign
Ye 2o € Lie(SO(4)) 38 >,

Ge c SO(4)

~

with relation Yie = — G - Dl
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simplicity constraints:
A bivector is-simple that is is of the form

1

ff Z:*(UM?HV

(UAU)

UI(Z—’Y*Z)]J:O

In the time gauge U =U with U® = (1,0,0, 0)

this reads |

k
210; — Y 2i = i = gt

relation with AB connection
ZU]JZIJ — (wi -+ vai)Zi = AZZZ
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simplicity constraints:
o impose the simplicity condition in SO(4) BF theory one assign to
every vertex a unit vector [/, € R* and impose the condition

~o

Uy (B —v*Xe)g =0  Te=—-G. %,
redefining G = G(_JlGGﬁ with Gy -UO® =y

we can go to the the time gauge

where the simplicity conditions reads

SIS SLANED SIS A 3 8
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One can think about a 4-vector as a Unitary matrix

U' —U=U"1+iU'o;
This gives the identification  SO(4) = SU(2) x SU(2)

(G-U) — g4U(g-)""

Given a bivector X!/ ¢ R* AR* we can construct
its self dual and anti self dual components to be vectors in R

¥ =[x )X =2 £ 5

this decomposition is that it maps the SO(4) action onto an
SU(2)*SU(2) action

(G- X)x = g+Xs(g+)™
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Eé_ — [(* T 1)2]“ — Ei T ZOi

In this self dual formulation the condition that the bivector is simple
is the condition that

¥y = (1£7)%

In other words this reads

E:: — j::N j:: — (1 ’y)j

N is a unit vector

It provides an embedding
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Z:: — j::N j:: — (1 L /Y)j

N is a unit vector

It provides an embedding T*SU(2) into T°50(4)

(G-2)=% — gr=ne a'

2 twisting angles

T —& 4D dihedral angle
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From classical to quantum

So far we have focused on the classical aspects of the kinematical
Hilbert space.
What does it have to do with the quantum theory!?

What does it have to do with the dynamics!?

We would like to advocate that there is a way to relate efficiently
the classical with the quantum.
The way to do so is by the choice of coherent states.
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Geometrical quantisation

Main lesson from geometrical quantisation:
A coherent state is in fact an holomorphic state, related to the
choice of a complex structure on the classical phase space.

finite dimensional phase space P with

symplectic structure ) closed invertible two form on P

we select a complex structure J:TP—TP J*=—1
compatible with the symplectic potential. w(J(X),J(Y)) = w(X,Y)
determines a metric on g(X,Y) = w(J(X),Y)

in coordinates J(9.) = id. J(0z) = —i0:
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Geometrical quantisation

These conditic.m imply that the metric can be D — ang
derived from a potential

If metric is positive-definite the potential is called a Kahler potential

One then chose an holomorphic line bundle L over P
and for practical purpose a trivialisation of this line bundle

—— a state is represented by an holomorphic function <\IJ|Z>

L K (w,z2)

The completeness of the coherent state basis (w]2) ~ eh

(|0 = /P Pr(w)e FK G2 (0]2) (2] W)

choice of coherent states = choice of complex structure
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The 2-sphere

simplest example: C K = |z[*
S?  is a complex manifold CP, = C%/C
Element of (C?are spinors z) = ( <0 ) (212) = | 20| + |21
21

normalised spinor can be labelled by su(2) elements

ng) = ’<ZZ>’Z> — 1,0} 0) = (é)

normalised spinor determines a unit vector in

n)y(n|=(1+N)/2 N= ra;n’

N determine 7 only up to a phase
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The identity decomposition is given by

l; = j/SQ dn(|n)(n|)®’ d; =25+ 1

These states represent states of minimal uncertainty picked around
the classical vector

X = )N = jnrgn !
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Intertwinner

Given a vertex carrying spins  J1,° - JN

we can define a coherent intertwinner by averaging over the group

7ons) = / 49 (9In)® @ - - - @ glny)®N)
SU(2)

These states satisfy the closure relation > . J;|7,n;) = 0

However their label do not necessarily ZjiNZ- + 0
i
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Intertwinner

Hopefully Quantisation commute with reduction [Q,R]=0

We can restrict the label of the coherent state to be in the
Polyhedral space |
Py ={ni| > jiN; = 0}

and still satisfy the unity decomposition

= [ uslna)l7n) 7o
Fy

The prefactor is ,Uj ~ / dg er(gm)Pf(W) (gnz) ~ ij
SL(2,C)

K5 (|z;)) = 2(2]'2- + 1) In((z;|2;)) Kahler potential

(
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Intertwinner

Hopefully Quantisation commute with reduction [Q,R]=0

We can restrict the label of the coherent state to be in the
Polyhedral space |
Py ={ni| > jiN; = 0}

and still satisfy the unity decomposition

= [ uslna)l7n) 7o
Fy

It follows from the Guillemin-Sternberg isomorphism

P//G = P*/G"

The coherent spin network states are labelleb by twisted geometries

Wednesday, June 30, 2010



SO(4) states

we can extend our construction to SO(4) simple coherent states.

at the classical level a simple bivector

. 1 .
Z:*(U/\U)%—;(U/\U)

is given by a pair

S = (ws,u-)(j4 N, j_N)

U =u,u”? J£ = (1 £7);

satisfying the condition us Nu?
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SO(4) states

we can extend our construction to SO(4) simple coherent states.

at the quantum level a simple bivector is repesented by a map
Yy Vi = Vi, ®V,

)® = [0+ © )4~

L J+

I+t J-

14} .
—

with  j_+j_ =25 J+—J-=27)

~

wiNuil = ao Na7!
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BF amplitudes

we can finally write down the amplitudes

For SU(2) BF theory the quantum amplitudes can be written in terms
of a spin foam model.

To any face of the 2D complex we assign a spin

to any wedge w = (taj) where ¢ ; ? i
are three vertices we assign the two vectors [ 5
N¢, E
we also assign a group element per edge 7 5
Any slicing inherites a spin and 2 @ N /

vector per edge
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BF amplitudes

The amplitude can be written as a product of amplitude for every
vertex

Zs(T, j,n Zdjf/ [T didn, [T Autifny

=(aij)
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BF amplitudes

Proof: after integrating over 1., we obtain a product over each face
of the type

X]f (galan S ga”na’l) daiao: — gg,; (gg?)—l

The sum over |

The amplitude is the projection over flat connection
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Gravity amplitudes

According to our analysis the 4d Riemannian gravity amplitude is
obtained by imposing the simplicity constraints of the SO(4) BF
theory

after imposition of the simplicity constralnts
the vertex amplitude is

ASY) (jija nij) = Ay (%sz'j, nij)Av(W—jzj, nij)
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Gravity amplitudes

What does this have to do with gravity?
We look at the behavior of the amplitude in the semi-classical limit
Since the area are given by the spins in unit of the Planck lenght
Ap = ylpjy

The semi-classical limit for fixed area corresponds to the limit where
all the spins uniformely go to infinity.
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semi-classical limit

Lets assume that the 2d complex is 5 valent. Each
edge of the spin foam corresponds then to a tetrahedra

..-n.
»

-
-m -
- R .
Y S
. S
’, S
’ .
. .
B .
’ .
’

Lets look at the amplitude where we integrate out
everythlng but the splns

7]7 / H danA ]z]7 Z] Aa(jz‘;avn?j)

=(aij)

We need to compute the asymptotic of the vertex amplitude

oG mas) / Hdgjdgz TT(nis1(a) g InjiY

1<J

i (nigl(g;) " g5 Ingi)’

We assume non degeneracy by restricting the integration to the
sector where det(U;) # 0 U = ()1 ()

Wednesday, June 30, 2010



semi-classical limit

Lets assume that the 2d complex is 5 valent. Each
edge of the spin foam correspond then to a tetrahedra

il
»

-
-m -
- R .
Y S
. S
. S
’ .
. .
B .
’ .
’

Lets look at the amplitude where we integrate out
everythlng but the splns

7]7 / H danA ]z]7 Z] (]z;a?n?j)

=(aij)

The main result: If there exists a set of edge length of the
triangulation dual to spin foam such that  j, = A(¢,)

Then Z is asymptotic to the exponential of the Regge action

Z(I',j,n) ~ e?Sle) 4 cc

If there is not Z is exponentially suppressed
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. + PR
vlJig» Mij) /SU(2 dedgz | [(nisl ()~ g i) (nijl (977 ) g Imge)?

1<

First we can restrict the boundary labels to satisfy the
closure condition

> jiiNij =0
j
Second the amplitude is exponentially supressed unless

(nijlg; ~gjlngi) = 1

i-e unless g]_-_|njz'> — e2 Vi Aij)95_|”ij>

The closure condition and this condition imply that the variation
of the phase of the weight is stationary

therefore
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: _ T —N—1 — y
Ay (Jig» nij) = /S . Hdgz+ dg; | [(nisl(i) " g5 Inga) s (gl (977) g5 Inga)

1<J
By the stationary phase approximation the amplitude is given by
the evaluation of the weight on the solutions of

_A’Lj)

g; |nig) = ez ERi) g n )

Due to non degeneracy condition there are 2 solutions g; = ?

+ + —\—1 , .
or 9 =Y where U; = U;r(uz )”" normal of the geo 4-simplex 7;;

Thus Av(jz’j; nz’j) ~ 622’9’ JijVij (eZij YJijAij 4 627;3- ’sz‘jAz'j)
A;; is in fact the dihedral angle

Z vy = 0 () Vij define a flat connection and is therefore pure gauge
wC f
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A;; is in fact the dihedral angle

Ui-Uj="1Tr (U?(U{)_l i
—\—1, — ~1
= (nij|(uy )" g (u)) ",
— 3t (| ()
= il 4 c.c

(]

uflniy) = e
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Conclusion

We have seen that the SU(2) spin network Hilbert space
associated with a graph is a universal object that appears in
many geometrical instances

In the quantization of LQG

In the quantization of discrete twisted geometry

In the spin foam quantization of Plebanski theory (constraint BF)

This leads to a simple proposal for the quantum dynamics

which is purely algebraic in nature and has beautiful semi-
classical property

This can be extended to Lorentzian case
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Conclusion

here are still many open problems
Some technical some more fundamental :

Insertion of a cosmological constant

Asymptotic boundary condition (Link with S-matrix, AdS/CFT)

Time evolution, coupling to matter ...

Link with the Hamiltonian formulation
Summation over spines, is GFT proposal correct?

Prove that the amplitude respect spacetime diffeomorphism

So far this is a model not a full theory...
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