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Horizons

An observer in a spacetime (M, gab) is represented by an

inextendible timelike curve γ. Let I−(γ) denote the

chronological past of γ. The future horizon, h+, of γ is

defined to be the boundary, İ−(γ) of I−(γ).
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Theorem: Each point p ∈ h+ lies on a null geodesic

segment contained entirely within h+ that is future



inextendible. Furthermore, the convergence of these null

geodesics that generate h+ cannot become infinite at a

point on h+.

Can similarly define a past horizon, h−. Can also define

h+ and h− for families of observers.
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Black Holes and Event Horizons

Consider an asymptotically flat spacetime (M, gab). (The

notion of asymptotic flatness can be defined precisely

using the notion of conformal null infinity.) Consider the

family of observers Γ who escape to arbitrarily large

distances at late times. If the past of these observers

I−(Γ) fails to be the entire spacetime, then a black hole

B ≡M − I−(Γ) is said to be present. The horizon, h+, of

these observers is called the future event horizon of the

black hole.

This definition allows “naked singularities” to be present.



Cosmic Censorship

A Cauchy surface, C, in a (time orientable) spacetime

(M, gab) is a set with the property that every

inextendible timelike curve in M intersects C in precisely

one point. (M, gab) is said to be globally hyperbolic if it

possesses a Cauchy surface C. This implies that M has

topology R × C.

An asymptotically flat spacetime (M, gab) possessing a

black hole is said to be predictable if there exists a region

of M containing the entire exterior region and the event

horizon, h+, that is globally hyperbolic. This expresses

the idea that no “naked singularities” are present.



Cosmic Censor Hypothesis: The maximal Cauchy

evolution—which is automatically globally hyperbolic—of

an asymptotically flat initial data set (with suitable

matter fields) generically yields an asymptotically flat

spacetime with complete null infinity.

The validity of the cosmic censor hypothesis would assure

that any observer who stays outside of black holes could

not be causally influenced by singularities.



Spacetime Diagram of Gravitational Collapse
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Spacetime Diagram of Gravitational Collapse

with Angular Directions Suppressed and Light

Cones “Straightened Out”
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Null Geodesics and the Raychauduri Equation

For a congruence of null geodesics with affine parameter

λ and null tangent ka, define the expansion, θ, by

θ = ∇ak
a

The area, A of an infinitesimal area element transported

along the null geodesics varies as

d(lnA)

dλ
= θ

For null geodesics that generate a null hypersurface (such

as the event horizon of a black hole), the twist, ωab,

vanishes. The Raychauduri equation—which is a direct



consequence of the geodesic deviation equation—then

yields
dθ

dλ
= −

1

2
θ2 − σabσ

ab −Rabk
akb

where σab is the shear of the congruence. Thus, provided

that Rabk
akb ≥ 0 (i.e., the null energy condition holds),

we have
dθ

dλ
≤ −

1

2
θ2

which implies
1

θ(λ)
≤

1

θ0

+
1

2
λ

Consequently, if θ0 < 0, then θ(λ1) = −∞ at some

λ1 < 2/|θ0| (provided that the geodesic can be extended

that far).



The Area Theorem

Any horizon h+, is generated by future inextendible null

geodesics; cannot have θ = −∞ at any point of h+.

Thus, if the horizon generators are complete, must have

θ ≥ 0. However, for a predictable black hole, can show

that θ ≥ 0 without having to assume that the generators

of the event horizon are future complete—by a clever

argument involving deforming the horizon outwards at a

point where θ < 0.

Let S1 be a Cauchy surface for the globally hyperbolic

region appearing in the definition of predictable black

hole. Let S2 be another Cauchy surface lying to the

future of S1. Since the generators of h+ are future



complete, all of the generators of h+ at S1 also are

present at S2. Since θ ≥ 0, it follows that the area carried

by the generators of h+ at S2 is greater or equal to

A[S1 ∩ h
+]. In addition, new horizon generators may be

present at S2. Thus, A[S2 ∩ h
+] ≥ A[S1 ∩ h

+], i.e., we

have the following theorem:

Area Theorem: For a predictable black hole with

Rabk
akb ≥ 0, the surface area A of the event horizon h+

never decreases with time.



Killing Vector Fields

An isometry is a diffeomorphism (“coordinate

transformation”) that leaves the metric, gab invariant. A

Killing vector field, ξa, is the infinitesimal generator of a

one-parameter group of isometries. It satisfies

0 = Lξgab = 2∇(aξb)

For a Killing field ξa, let Fab = ∇aξb = ∇[aξb]. Then ξa is

uniquely determined by its value and the value of Fab at

an aribitrarily chosen single point p.



Bifurcate Killing Horizons

2-dimensions: Suppose a Killing field ξa vanishes at a

point p. Then ξa is determined by Fab at p. In

2-dimensions, Fab =∝ ǫab, so ξa is unique up to scaling

If gab is Riemannian, the orbits of the isometries

generated by ξa must be closed and, near p, the orbit

structure is like a rotation in flat space:

.
p

Similarly, if gab is Lorentzian, the isometries must carry



the null geodesics through p into themselves and, near p,

the orbit structure is like a Lorentz boost in

2-dimensional Minkowski spacetime:

. p

4-dimensions: Similar results to the 2-dimensional case

hold if ξa vanishes on a 2-dimensional surface Σ. In

particular, if gab is Lorentzian and Σ is spacelike, then,

near Σ, the orbit structure of ξa will look like a Lorentz

boost in 4-dimensional Minkowski spacetime. The pair of



intersecting (at Σ) null surfaces hA and hB generated by

the null geodesics orthogonal to Σ is called a

bifurcate Killing horizon.
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It follows that ξa is normal to both hA and hB. More

generally, any null surface h having the property that a

Killing field is normal to it is called a Killing horizon.



Surface Gravity and the Zeroth Law

Let h be a Killing horizon associated with Killing field

ξa. Let U denote an affine parameterization of the null

geodesic generators of h and let ka denote the

corresponding tangent. Since ξa is normal to h, we have

ξa = fka

where f = ∂U/∂u where u denotes the Killing parameter

along the null generators of h. Define the surface gravity,

κ, of h by

κ = ξa∇a ln f = ∂ ln f/∂u

Equivalently, we have ξb∇bξ
a = κξa on h. It follows

immediately that κ is constant along each generator of h.



Consequently, the relationship between affine parameter

U and Killing parameter u on an arbitrary Killing

horizon is given by

U = exp(κu)

Can also show that

κ = lim
h

(V a)

where V ≡ [−ξaξa]
1/2 is the “redshift factor” and a is the

proper acceleration of observers following orbits of ξa.

In general, κ can vary from generator to generator of h.

However, we have the following three theorems:

Zeroth Law (1st version): Let h be a (connected) Killing



horizon in a spacetime in which Einstein’s equation holds

with matter satisfying the dominant energy condition.

Then κ is constant on h.

Zeroth Law (2nd version): Let h be a (connected) Killing

horizon. Suppose that either (i) ξa is hypersurface

orthogonal (static case) or (ii) there exists a second

Killing field ψa which commutes with ξa and satisfies

∇a(ψ
bωb) = 0 on h, where ωa is the twist of ξa

(stationary-axisymmetric case with “t-φ reflection

symmetry”). Then κ is constant on h.

Zeroth Law (3rd version): Let hA and hB be the two null

surfaces comprising a (connected) bifurcate Killing

horizon. Then κ is constant on hA and hB.



Constancy of κ and Bifurcate Killing Horizons

As just stated, κ is constant over a bifurcate Killing

horizon. Conversely, it can be shown that if κ is constant

and non-zero over a Killing horizon h, then h can be

extended locally (if necessary) so that it is one of the null

surfaces (i.e., hA or hB) of a bifurcate Killing horizon.

In view of the first version of the 0th law, we see that

apart from “degenerate horizons” (i.e., horizons with

κ = 0), bifurcate horizons should be the only types of

Killing horizons relevant to general relativity.



Event Horizons and Killing Horizons

Hawking Rigidity Theorem: Let (M, gab) be a stationary,

asymptotically flat solution of Einstein’s equation (with

matter satisfying suitable hyperbolic equations) that

contains a black hole. Then the event horizon, h+, of the

black hole is a Killing horizon.

The stationary Killing field, ξa, must be tangent to h+. If

ξa is normal to h+ (so that h+ is a Killing horizon of ξa),

then it can be shown that ξa is hypersurface orhogonal,

i.e., the spacetime is static. If ξa is not normal to h+,

then there must exist another Killing field, χa , that is

normal to the horizon. It can then be further shown that

there is a linear combination, ψa, of ξa and χa whose



orbits are spacelike and closed, i.e., the spacetime is

axisymmetric. Thus, a stationary black hole must be

static or axisymmetric.

We can choose the normalization of χa so that

χa = ξa + Ωψa

where Ω is a constant, called the

angular velocity of the horizon.



Idealized (“Analytically Continued”) Black Hole

“Equilibrium State”
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A Close Analog: Lorentz Boosts in Minkowski Spacetime

horizon of accelerated
observers

null plane: past

orbits of

symmetry
boost

Lorentz

horizon of accelerated
observers

null plane: future

Note: For a black hole with M ∼ 109M⊙, the curvature

at the horizon of the black hole is smaller than the

curvature in this room! An observer falling into such a

black hole would hardly be able to tell from local

measurements that he/she is not in Minkowski spacetime.



Summary

• If cosmic censorship holds, then—starting with

nonsingular initial conditions—gravitational collapse

will result in a predictable black hole.

• The surface area of the event horizon of a black hole

will be non-decreasing with time (2nd law).

It is natural to expect that, once formed, a black hole

will quickly asymptotically approach a stationary

(“equilibrium”) final state. The event horizon of this

stationary final state black hole:

• will be a Killing horizon

• will have constant surface gravity, κ (0th law)



• if κ 6= 0, will have bifurcate Killing horizon structure


