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Lagrangians and Hamiltonians in Classical Field Theory

Lagrangian and Hamiltonian formulations of field

theories play a central role in their quantization.

However, it had been my view that their role in classical

field theory was not much more than that of a mnemonic

device to remember the field equations. When I wrote

my GR text, the discussion of the Lagrangian

(Einstein-Hilbert) and Hamiltonian (ADM) formulations

of general relativity was relegated to an appendix. My

views have changed dramatically in the past 20 years:

The existence of a Lagrangian or Hamiltonian provides

important auxiliary structure to a classical field theory,

which endows the theory with key properties.



Lagrangians and Hamiltonians in Particle Mechanics

Consider particle paths q(t). If L is a function of (q, q̇),

then we have the identity

δL = [
∂L

∂q
−

d

dt

∂L

∂q̇
]δq +

d

dt
[
∂L

∂q̇
δq]

holding at each time t. L is a Lagrangian for the system

if the equations of motion are

0 = E ≡
∂L

∂q
−

d

dt

∂L

∂q̇

The “boundary term”

Θ(q, q̇) ≡
∂L

∂q̇
δq = pδq



(with p ≡ ∂L/∂q̇) is usually discarded. However, by

taking a second, antisymmetrized variation of Θ and

evaluating at time t0, we obtain the quantity

Ω(q, δ1q, δ2q) = [δ1Θ(q, δ2q)− δ2Θ(q, δ1q)]|t0

= [δ1pδ2q − δ2pδ1q]|t0

Then Ω is independent of t0 provided that the varied

paths δ1q(t) and δ2q(t) satisfy the linearized equations of

motion about q(t). Ω is highly degenerate on the infinite

dimensional space of all paths F , but if we factor F by

the degeneracy subspaces of Ω, we obtain a finite

dimensional phase space Γ on which Ω is non-degenerate.

A Hamiltonian, H, is a function on Γ whose pullback to



F satisfies

δH = Ω(q; δq, q̇)

for all δq provided that q(t) satisfies the equations of

motion. This is equivalent to saying that the equations of

motion are

q̇ =
∂H

∂p
ṗ = −

∂H

∂q



Lagrangians and Hamiltonians in Classical Field Theory

Let φ denote the collection of dynamical fields. The

analog of F is the space of field configurations on

spacetime. For an n-dimensional spacetime, a Lagrangian

L is most naturally viewed as an n-form on spacetime

that is a function of φ and finitely many of its

derivatives. Variation of L yields

δL = Eδφ+ dΘ

where Θ is an (n− 1)-form on spacetime, locally

constructed from φ and δφ. The equations of motion are

then E = 0. The symplectic current ω is defined by



ω(φ, δ1φ, δ2φ) = δ1Θ(φ, δ2φ)− δ2Θ(φ, δ1φ)

and Ω is then defined by

Ω(φ, δ1φ, δ2φ) =

∫

C

ω(φ, δ1φ, δ2φ)

where C is a Cauchy surface. Phase space is constructed

by factoring field configuration space by the degeneracy

subspaces of Ω, and a Hamiltonian, Hξ, conjugate to a

vector field ξa on spacetime is a function on phase space

whose pullback to field configuration space satisfies

δHξ = Ω(φ; δφ,Lξφ)



Diffeomorphism Covariant Theories

A diffeomorphism covariant theory is one whose

Lagrangian is constructed entirely from dynamical fields,

i.e., there is no “background structure” in the theory

apart from the manifold structure of spacetime. For a

diffeomorphism covariant theory for which dynamical

fields, φ, are a metric gab and tensor fields ψ, the

Lagrangian takes the form

L = L
(

gab, Rbcde, ...,∇(a1
...∇am)Rbcde;ψ, ...,∇(a1

...∇al)ψ
)



Noether Current and Noether Charge

For a diffeomorphism covariant theory, every vector field

ξa on spacetime generates a local symmetry. We associate

to each ξa and each field configuration, φ (not required,

at this stage, to be a solution of the equations of motion),

a Noether current (n− 1)-form, Jξ, defined by

Jξ = Θ(φ,Lξφ)− ξ · L

A simple calculation yields

dJξ = −ELξφ

which shows Jξ is closed (for all ξa) when the equations

of motion are satisfied. It can then be shown that for all



ξa and all φ (not required to be a solution to the

equations of motion), we can write Jξ as

Jξ = ξaCa + dQξ

where Ca = 0 are the constraint equations of the theory

and Qξ is an (n− 2)-form locally constructed out of the

dynamical fields φ, the vector field ξa, and finitely many

of their derivatives. It can be shown that Qξ can always

be expressed in the form

Qξ = Wc(φ)ξc + Xcd(φ)∇[cξd] + Y(φ,Lξφ) + dZ(φ, ξ)

Furthermore, there is some “gauge freedom” in the

choice of Qξ arising from (i) the freedom to add an exact

form to the Lagrangian, (ii) the freedom to add an exact



form to Θ, and (iii) the freedom to add an exact form to

Qξ. Using this freedom, we may choose Qξ to take the

form

Qξ = Wc(φ)ξc + Xcd(φ)∇[cξd]

where

(Xcd)c3...cn
= −Eabcd

R ǫabc3...cn

where Eabcd
R = 0 are the equations of motion that would

result from pretending that Rabcd were an independent

dynamical field in the Lagrangian L.



Hamiltonians

Let φ be any solution of the equations of motion, and let

δφ be any variation of the dynamical fields (not

necessarily satisfying the linearized equations of motion)

about φ. Let ξa be an arbitrary, fixed vector field. We

then have

δJξ = δΘ(φ,Lξφ)− ξ · δL

= δΘ(φ,Lξφ)− ξ · dΘ(φ, δφ)

= δΘ(φ,Lξφ)−LξΘ(φ, δφ) + d(ξ ·Θ(φ, δφ))

On the other hand, we have

δΘ(φ,Lξφ)− LξΘ(φ, δφ) = ω(φ, δφ,Lξφ)



We therefore obtain

ω(φ, δφ,Lξφ) = δJξ − d(ξ ·Θ)

Replacing Jξ by ξaCa + dQξ and integrating over a

Cauchy surface C, we obtain

Ω(φ, δφ,Lξφ) =

∫

C

[ξaδCa + δdQξ − d(ξ ·Θ)]

=

∫

C

ξaδCa +

∫

∂C

[δQξ − ξ ·Θ)]

The (n− 1)-form Θ cannot be written as the variation

of a quantity locally and covariantly constructed out of

the dynamical fields (unless ω = 0). However, it is

possible that for the class of spacetimes being considered,



we can find a (not necessarily diffeomorphism covariant)

(n− 1)-form, B, such that

δ

∫

∂C

ξ ·B =

∫

∂C

ξ ·Θ

A Hamiltonian for the dynamics generated by ξa exist

on this class of spacetimes if and only if such a B exists.

This Hamiltonian is then given by

Hξ =

∫

C

ξaCa +

∫

∂C

[Qξ − ξ ·B]

Note that “on shell”, i.e., when the field equations are

satisfied, we have Ca = 0 so the Hamiltonian is purely a

“surface term”.



Energy and Angular Momentum

If a Hamiltonian conjugate to a time translation ξa = ta

exists, we define the energy, E of a solution φ = (gab, ψ)

by

E ≡ Ht =

∫

∂C

(Qt − t ·B)

Similarly, if a Hamiltonian, Hϕ, conjugate to a rotation

ξa = ϕa exists, we define the angular momentum, J of a

solution by

J ≡ −Hϕ = −

∫

∂C

[Qϕ − ϕ ·B]

If ϕa is tangent to C, the last term vanishes, and we



obtain simply

J = −

∫

∂C

Qϕ



Energy and Angular Momentum in General Relativity:

ADM vs Komar

In general relativity in 4 dimensions, the Einstein-Hilbert

Lagrangian is

Labcd =
1

16π
ǫabcdR

This yields the symplectic potential 3-form

Θabc = ǫdabc

1

16π
gdegfh (∇fδgeh −∇eδgfh) .

The corresponding Noether current and Noether charge

are

(Jξ)abc =
1

8π
ǫdabc∇e

(

∇[eξd]
)

,



and

(Qξ)ab = −
1

16π
ǫabcd∇

cξd.

For asymptotically flat spacetimes, the formula for

angular momentum conjugate to an asymptotic rotation

ϕa is

J =
1

16π

∫

∞

ǫabcd∇
cϕd

This agrees with the ADM expression, and when ϕa is a

Killing vector field, it agrees with the Komar formula.

For an asymptotic time translation ta, a Hamiltonian, Ht,

exists with

taBabc = −
1

16π
ǫ̃bc

(

(∂rgtt − ∂tgrt) + rkhij(∂ihkj − ∂khij)
)



The corresponding Hamiltonian

Ht =

∫

C

taCa +
1

16π

∫

∞

dSrkhij(∂ihkj − ∂khij)

is precisely the ADM Hamiltonian, and the surface term

is the ADM mass,

MADM =
1

16π

∫

∞

dSrkhij(∂ihkj − ∂khij)

By contrast, if ta is a Killing field, the Komar expression

MKomar = −
1

8π

∫

∞

ǫabcd∇
ctd

happens to give the correct (ADM) answer, but this is

merely a fluke.



The First Law of Black Hole Mechanics

Return to a general, diffeomorphism covariant theory, and

recall that for any solution φ, any δφ (not necessarily a

solution of the linearized equations) and any ξa, we have

Ω(φ, δφ,Lξφ) =

∫

C

ξaδCa +

∫

∂C

[δQξ − ξ ·Θ)]

Now suppose that φ is a stationary black hole with a

Killing horizon with bifurcation surface Σ. Let ξa denote

the horizon Killing field, so that ξa|Σ = 0 and

ξa = ta + ΩHϕ
a

Then Lξφ = 0. Let δφ satisfy the linearized equations,

so δCa = 0. Let C be a hypersurface extending from Σ to



infinity.

0 =

∫

∞

[δQξ − ξ ·Θ)]−

∫

Σ

δQξ

Thus, we obtain

δ

∫

Σ

Qξ = δE − ΩHδJ

Furthermore, from the formula for Qξ and the properties

of Killing horizons, one can show that

δ

∫

Σ

Qξ =
κ

2π
δS

where S is defined by

S = 2π

∫

Σ

Xcdǫcd



where ǫcd denotes the binormal to Σ. Thus, we have

shown that the first law of black hole mechanics

κ

2π
δS = δE − ΩHδJ

holds in an arbitrary diffeomorphism covariant theory of

gravity, and we have obtained an explicit formula for

black hole entropy S.



Black Holes and Thermodynamics

Stationary black hole ↔ Body in thermal equilibrium

Just as bodies in thermal equilibrium are normally

characterized by a small number of “state parameters”

(such as E and V ) a stationary black hole is uniquely

characterized by M,J,Q.

0th Law

Black holes: The surface gravity, κ, is constant over the

horizon of a stationary black hole.

Thermodynamics: The temperature, T , is constant over a

body in thermal equilibrium.



1st Law

Black holes:

δM =
1

8π
κδA+ ΩHδJ + ΦHδQ

Thermodynamics:

δE = TδS − PδV

2nd Law

Black holes:

δA ≥ 0

Thermodynamics:

δS ≥ 0



Analogous Quantities

M ↔ E ← But M really is E!

1
2π
κ ↔ T

1
4
A ↔ S


