Lecture #8: Laurent Series Examples

1. \(f(z) = \frac{1}{z-1} \)
 Expand around \(z = 1 \):
 \(f = \frac{1}{z-1} \)
 (Done)

2. \(f(z) = \frac{1}{2z-1} = \frac{1}{2} \left(\frac{1}{z-1/2} \right) \)
 \(C_{-1} = \frac{1}{2} \)

3. \(f(z) = \frac{1}{z^{1/2}} \)
 \(\partial \chi \)
 \(2\pi \)

\[f(z) = \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{1}{z} \right)^n \]

\[f(z) = \frac{1}{z-1} = \frac{1}{z} - \frac{1}{z-1} + \sum_{n=2}^{\infty} \frac{1}{n!} \left(\frac{1}{z} \right)^n \]

\[f(z) = \frac{1}{z} - \frac{1}{z} \left(\frac{1}{z-1} \right) + \sum_{n=2}^{\infty} \frac{1}{n!} \left(\frac{1}{z} \right)^n \]

\[\int_{C} f(z) \, dz = 2\pi i \sum_{n=-1}^{\infty} C_n = 2\pi i \left(\frac{1}{2} \right) \]

\[C_{-1} = \frac{1}{2} \]

\[C_n = -\left(\frac{1}{2} \right)^{n+1} \]

\[C_0 = -\frac{\pi}{2} \left(\frac{\pi}{2} \right) = +\frac{\pi}{4} \]

\[\sum_{n=2}^{\infty} \frac{1}{n!} \left(\frac{1}{z} \right)^n \]

Note: We used the Taylor's series for \(\frac{1}{1+z} \) which converges

for \(\left| z - \frac{1}{2} \right| < 2 \)

i.e., "outside the poles"

One can also find a different Laurent series \(\sum_{n=0}^{\infty} (z-1)^n \)

(i.e., expanded about \(z=1 \)) which converges for \(\left| z - 1 \right| > 2 \)

i.e., "outside both poles". The terms in the series change when \(\left| z - 1 \right| = \text{distance from } \frac{1}{2} \) to a singularity
\[
\frac{1}{z-\alpha} = \frac{1}{z+\alpha} = \frac{1}{z-\alpha} \left(\frac{1}{z-\alpha} + \frac{1}{z-\alpha} \right) \\
= \frac{1}{(z-\alpha)^2} \left(\frac{1}{z-\alpha} \right) = \frac{1}{(z-\alpha)^2} \sum_{n=0}^{\infty} (-2\alpha)^n (z-\alpha)^n \\
= \sum_{n=0}^{\infty} (-2\alpha)^n (z-\alpha)^n \\
= \sum_{n=0}^{\infty} \frac{(-2\alpha)^n}{(z-\alpha)^{n+2}} \\
\]

\[e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!} (\frac{1}{z})^n = \sum_{n=0}^{\infty} \frac{z^n}{n!} \]

Note: In no case did I actually find the Laurent series via the integral formulas above. [You can do that, but it is usually hard...]

This case where \(C_n \to 0 \) for all \(n \geq 0 \) is called an "essential singularity".

\[e^{1/z} \] expanded about \(z = 0 \)?

How to begin...

Require single-valued analytic function, so must introduce branch cut. Ex.

\[e^{1/z} \]

Oops! Due to branch cut there is no circle centered on \(z = 0 \) on which \(f(z) \) is analytic \(\Rightarrow \) no Laurent series.