
Physics 101 Homework 1 Solutions

Michael Gary, modified by Michael Johnson, rechecked by Jason Kaufman

January 9, 2013

1 Ch. 2, §4, p. 51, 13
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Figure 1: (x, y) = (0,−1),−i, (r, θ) = (1, 3π/2), exp(3πi/2) = cos(3π/2) + isin(3π/2)
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3 Ch. 2, §5B, p. 53, 25
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z1 − z2 = x1 + iy1 − x2 − iy2 = x1 − iy1 − x2 + iy2 = x1 + iy1 − x2 + iy2 = z̄1 − z̄2 (3.3)

4 Ch. 2, §5C, p. 53, 28
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5 Ch. 2, §5D, p. 54, 50

We want to find all x, y ∈ R such that |x+iy| = y−ix. Note that the left hand side is a positive real
number, so the right hand side must also be a positive real number. Thus, 0 = Im(y − ix) = −x
so x = 0. This reduces the equation to |iy| = y, which holds for y ≥ 0.

6 Ch. 2, §7, p. 59, 12
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The disc of convergence is when ρ < 1, so |z/4| < 1 ⇒ |z| < 4.
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8 Ch. 2, §10, p. 67, 32

The three cube roots of 1 are ei2πn/3, n = 0, 1, 2. n = 0 gives the root ei0 = 1. n = 1 gives the root
ω = e2πi/3, and n = 2 gives ω2 = e4πi/3. Also, note that (ω2)2 = e8πi/3 = e2πi/3 = ω.

9 Ch. 2, §12, p. 71, 27

sin(4 + 3i) = sin(4) cos(3i) + cos(4) sin(3i) = sin(4) cosh(3) + i cos(4) sinh(3) (9.1)

⇒ ℜ(sin(4 + 3i)) = sin(4) cosh(3) = −7.619 (9.2)

ℑ(sin(4 + 3i)) = cos(4) sinh(3) = −6.548 (9.3)

| sin(4 + 3i)| =

√

sin2(4) cosh2(3) + cos2(4) sinh2(3) = 10.046 (9.4)
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10 Ch. 2, §14, p. 74, 24

a.) (−i)(2+i)(2−i) = (−i)5 = −i5 = −i

But (−i)2+i = e(2+i)ln(−i) = e(2+i)( 3πi
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Note that N = 0 gives the result of the first formula.
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But, ii = eiln(i) = ei(
πi

2
+2πin1) = e−

π

2
−2πn1 where n1 ∈ Z

Thus, [ii]i = [e−
π

2
−2πn1 ]i = ei(−

π

2
−2πn1+2πin2) = e−

πi

2
−2πin1−2πn2 = e−

πi

2
−2πn2 = −ie−2πn2 where
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Note that this is the same general formula as part (a) and the two sections of part (b) agree
when n2 = 0.

11 Ch. 2, §15, p. 76, 18

Suppose ∃z such that tanh z = ±1.

ez − e−z

ez + e−z
= ±1 (11.1)

⇒ ez − e−z = ±ez ± e−z (11.2)

⇒ (1 ∓ 1)ez − (1± 1)e−z = 0 (11.3)

⇒ ez = 0 or e−z = 0 (11.4)

But from eq. 11.1, ez = ex(cos(y) + isin(y)) which is never zero. Thus, 6 ∃z such that tanh z = ±1.
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