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1 Ch. 2, §4, p. 51, 13

Figure 1: (z,y) = (0,-1),—i,(r,0) = (1,37/2),exp(3mi/2) = cos(37/2) + isin(3mw/2)

2 Ch. 2, §5A, p. 52, 6

N\ 2 N 2 N\ 2
Sl I Y () | (2.1)
1—14 1—1 1474 4

Y




3 Ch. 2, §5B, p. 53, 25
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4 Ch. 2, §5C, p. 53, 28
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5 Ch. 2, §5D, p. 54, 50

We want to find all 2,y € R such that |z+iy| = y —ix. Note that the left hand side is a positive real
number, so the right hand side must also be a positive real number. Thus, 0 = Im(y —iz) = —x
so = 0. This reduces the equation to |iy| = y, which holds for y > 0.

6 Ch. 2, §7, p. 59, 12
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The disc of convergence is when p < 1, so |z/4] < 1 = |z| < 4.
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7 Ch. 2, §9, p. 64, 25
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8 Ch. 2, §10, p. 67, 32

The three cube roots of 1 are e?2™/3 n = 0,1,2. n = 0 gives the root €®® = 1. n = 1 gives the root

w = e2™/3 and n = 2 gives w? = */3. Also, note that (w?)? = e57/3 = £27/3 = (.

9 Ch. 2, §12, p. 71, 27

sin(4 4 3i) = sin(4)cos(3¢) + cos(4) sin(37) = sin(4) cosh(3) + i cos(4) sinh(3) (9.1)

= R(sin(4 + 37)) = sin(4)cosh(3) = —7.619 (9.2)
S(sin(4 + 3i)) = cos(4)sinh(3) = —6.548 (9.3)
|sin(4 + 3i)] = \/sin2 (4) cosh?(3) + cos?(4) sinh?(3) = 10.046 (9.4)



10 Ch. 2, §14, p. 74, 24

a.) (=)= = ()5 = -5 = —4

But (—i)2 = e(2+iin(=i) = A (B +2ming) _ 95 Haming =5 —2mn1 _ omi—F =201 where ny € 7
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Note that N = 0 gives the result of the first formula.

But, it = ¢iln(i) = il +2min1) — =527 where n, € Z

Thus, [,Lz]z _ [e—%—%nu]i _ ei(—%—??’l’nl-'rQﬂ'i’ﬂg) _ e—%—?ﬂinl—%rng _ e—%—?ﬂng — _je—2™2 where
ng € 7

Note that this is the same general formula as part (a) and the two sections of part (b) agree
when noy = 0.

11 Ch. 2, §15, p. 76, 18

Suppose 3z such that tanh z = +1.

R (11.1)
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= (1F1ef—(1+1)e =0 (11.3)
=e*=0 or e*=0 (11.4)

But from eq. 11.1, e* = e®(cos(y) + isin(y)) which is never zero. Thus, Az such that tanh z = +1.



