UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Department of Physics
Physics 105A
Winter 2012
Prof. Gary Horowitz
TA William Kelly

ASSIGNMENT \#1

Due by Friday, January 13 at 5 pm in box on first floor of Broida

1) Taylor, problem 1.19.
2) Taylor, problem 1.39. Hint: For the last part, it is useful to use the half angle formulas

$$
\cos (\alpha / 2)=\sqrt{\frac{1+\cos \alpha}{2}}, \quad \sin (\alpha / 2)=\sqrt{\frac{1-\cos \alpha}{2}}
$$

3) A projectile of mass m is fired from the origin with velocity $\mathbf{v}=\left(v_{o x}, v_{o y}\right)$ at time $t=0$. At the same time, a target of mass M is released from rest at the point $\left(X_{0}, Y_{0}\right)$. Assuming a (uniform) gravitational force in the y direction and neglecting air resistance, at what angle θ should the projectile be aimed to hit the target?
