UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Department of Physics

Physics 105A Prof. Gary Horowitz Winter 2012 TA William Kelly

ASSIGNMENT #5

Due by Friday, February 10 at 5pm in box on first floor of Broida

- 1) Taylor, problem 4.35.
- 2) Taylor, problem 4.36
- 3) Taylor, problem 4.53
- 4.) Consider an elastic collision between an incoming particle with mass m_1 and a particle at rest with mass m_2 . Show that the angle θ between the two outgoing particles is less than $\pi/2$ if $m_1 > m_2$, but greater than $\pi/2$ if $m_1 < m_2$. Hint: Work in the lab frame and derive a formula for $\vec{v}_1 \cdot \vec{v}_2$ where \vec{v}_i is the final velocity of the i^{th} particle.
- 5) A weakly damped harmonic oscillator ($\beta \ll \omega_0$) of mass *m* is stretched a distance $x = A_0$ at t = 0 and then released. Find its energy as a function of time. Only keep terms to first order in β/ω_0 .