UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Department of Physics
Physics 105A
Winter 2012
Prof. Gary Horowitz
TA William Kelly

ASSIGNMENT \#6

Due by Friday, February 24 at 5pm in box on first floor of Broida

1) An undamped oscillator is driven at its resonance frequency ω_{0} by a harmonic force $F=F_{0} \cos \omega_{0} t$. Initially, the oscillator is at rest at the origin.
(a) Find the general solution $x(t)$ to the equation of motion (ignoring the initial conditions). Hint: To find a particular solution of the inhomogeneous equation, try a solution of the form $x(t)=B t^{p} \sin \omega_{0} t$.
(b) Impose the initial condition and find the specific solution appropriate for this problem.
(c) Suppose the spring breaks if the force exceeds $5 F_{0}$. Derive an equation for the time t_{b} to reach the breaking point. (This equation can only be solved numerically, so you don't need to calculate t_{b} explicitly.)
2) Taylor, problem 5.43
3) Taylor, problem 5.47
4) Taylor, problem 6.1
5) Taylor, problem 6.5
