
Problem 2 - Cuprate Fermi Surface

(a) Show/ argue that the energy band is described by the function "(k) = �2�(cos k
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Following the arguments from class we can write the discrete Schrdinger equation for the tight binding

model as
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Then, assuming that  
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, Eq. (10) gives
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Where to get to the last line I canceled out the terms
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(b) Suppose the Fermi energy (with the above definition of the zero of energy) is zero.

What is the density of electrons, per site?

Set the unimportant constant "

0

= 0 in the equation above. Then, we want the find the surface in the

first B.Z. where "(k) = "

F

= 0, when �

0
= 0.
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We can easily calculate the area enclosed by this Fermi surface.
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Now, using the formula
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Therefore, there number density N/V = 1, so that there is one electron per site on the lattice.
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(c) Take � = 1 and �

0
= �0.1. Sketch the Fermi surfaces for Fermi energies corresponding

to 0, -0.2, -0.4, -0.6. Lowering the Fermi energy corresponds to “hole doping”

(i) (ii)

(iii) (iv)

The Fermi surface in the first Brillouin zone corresponding to Fermi energies (i) " = 0, (ii) " = �0.2,

(iii) " = �0.4 and (iv) " = �0.6
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