
Homework 2 - Solutions

Carbon Nanotubes

Part 4)

We can write the wavefunction of the graphene sheet within the tight-binding model in the usual way

 (~R) =  ̄e

i

~

k·~R (1)

Then, to impose periodic boundary condition we want to ensure that our wavefunction satisfies the
constraint

 (~R+ ~

W ) =  (~R) (2)

That is, the winding vector ~W is a vector which wraps completely around the periodic axis of the carbon
nanotube so that when we move from a site ~R by the vector ~W , we end up at the same site ~R. So then, we
write

 (~R+ ~

W ) (~R) (3)
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k·~R (4)
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W ) = ~

k · ~R+ 2⇡` ` 2 Z (5)

) ~

k · ~W = 2⇡` ` 2 Z (6)

Then, enforcing the periodic boundary conditions of the carbon nanotube means the our reciprocal lattice
vectors ~k must satisfy the condition ~k · ~W = 2⇡`.

Part 5)

a) The 2d honeycomb lattice of graphene has the same lattice structure as the hexagonal lattice, but with
a two atom basis. The lattice is bipartite, so it can be split into A and B sublattices, with each sublattice
forming a hexagonal lattice. The three unit vectors which point between the two sublattices are given by:

~e1 = a(
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,
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) (7)

Then, the primitive basis vectors are given by the two vectors ~a1 and ~a2

~a1 = ~e1 � ~e3 =
p
3a(1, 0) (8)

~a2 = ~23 � ~e2 =
p
3a(�1

2
,

p
3

2
) (9)

Then, we can find our reciprocal space basis vectors by finding the vectors which satisfy the relationship

~a

i

·~b
j

= 2⇡�
i,j

(10)

These vectors are

~
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Using these vectors we can draw the 1st Brillouin zone by bisecting the vectors {±~b1,±~b2,±(~b1 � ~

b2}

Now, in class it was seen that the two sublattice structure of graphene leads to an energy dispersion of
the type

"±(k) = "0 ± |f(k)| with f(k) = ��
3X

i=1
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Using our values of e1, e2 and e3 above, setting the lattice constant a = 1, gives
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Clearly, the energy given above is split into two bands, one each for the plus and minus values of |f(k)|.
Now, the graphene lattice has two atoms per primitive unit cell, since the honeycomb lattice contains a two
lattice basis. This tells us that the first energy band is completely filled while the second band is empty.
Then, the Fermi energy is the energy which splits the two bands, which occurs when |f(k)| = 0. To find
when f(k) = 0, we must set the real and imaginary parts of the r.h.s. of Eq. (16) to zero and solve. This is
done in the lecture notes and the result is the two equations
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subbing in our solutions for k
y

gives ±1 + 2 cos(
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Therefore, this gives six points where f(k) = 0 so that "(k) = "

F
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To verify that these points lie on the corners of the first Brillouin zone, note that the corners of the 1st
B.Z., are at the points {± 2

3 (2
~

b1 �~b2),± 2
3 (
~

b1 +~b2),± 2
3 (2
~

b2 �~b1)} . That is, the corners of the B.Z. lie two

thirds the way to the second nearest neighbor lattice points. Plugging in the values of ~b1 and ~b2 shows that
the six Fermi points given above coincide with the corners of the 1st B.Z.

b)

The lines given in part 4 are the values of ~k which satisfy the equation ~k · ~W = 2⇡` for any integer `.

For the winding vector (m,n) = (3, 3), we have ~
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We can plot these lines within the first B.Z. (for all values of ` such that the lines fall within the B.Z.)
and find that the allowed k-points fall along the lines in the figure below:

2

Note: this solution is written for the *first* version of the homework.  The solution 
for the corrected homework (with definition of m,n changed) is easier.  It is left 
as an exercise.



For the winding vector (m,n) = (�2, 2), we have ~

W = 2~a2 = (�
p
3, 3) Then
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Again, plotting these lines for di↵erent ` within the first B.Z. looks like:

Part 6)
For the (m,n) = (3, 3) tube, the allowed k

y

wavevectors for a given k

x

must obey the restriction k

y

=
�
p
3k

x

+4⇡`/9. These lines fall within the first B.Z. for ` 2 {0,±1,±2,±3}. The energy is found by taking
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the absolute value of Eq. (16) to get

"(k) = ±|f(k)| =

s

1 + 4 cos(
p
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/2)
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◆
(26)

Subbing in our equation for k
y

and plotting in Mathematica gives

The two dispersion bands at individual points. Therefore, the (3,3) nanotube is metallic.

For the (m,n) = (2,�2) tube, the allowed k

x

wavevectors are given by k

x

=
p
3k

y

� 2⇡`/
p
3. Subbing

this into the equation for energy and plotting "(k) as a function of k
y

gives:

Here, the upper and lower band never touch, and so the (2,�2) carbon nanotube is insulating according
to band theory.
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part 7)

For a general winding vector (m,n), the vector ~

W has the form

~

W = (m+ n)~a1 + n~a2 =
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3(m+ n� n

2
,
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3n

2
) =
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2
,

p
3n

2
) (27)

The only allowed wavevectors in reciprical space, ~k, are those which satisfy the condition condition
~

k · ~W = 2⇡`. Note, that there are only two independent corners of the Brillouin zone, those at wavevectors
(�2⇡
3
p
3
,

2⇡
3 ) and ( 2⇡

3
p
3
,

2⇡
3 ). The other four corners of the B.Z. are translations of these corners by some

combination of basis vectors, so that if ~k · ~W = 2⇡` for one of these two corners, then veck

0 · ~W will also
equal 2⇡` for the other four corners of the B.Z. (since ~b

i

· ~a
j

= 2⇡�
i,j

and ~

W = (m+ n)~a1 + n~a2).

Then, for the corner point ~k = (�2⇡
3
p
3
,

2⇡
3 ) we have

~

k · ~W = 2⇡` (28)
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2
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3
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6
+

n

2
= ` (30)

) �2m� n+ 3n = 6` (31)

) (n�m) = 3` (32)

And, for the corner point ~k = ( 2⇡
3
p
3
,

2⇡
3 ) we have

~

k · ~W = 2⇡` (33)

)
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3(
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3
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3
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p
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2
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) m

3
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n

6
+

n

2
= ` (35)

) 2mn+ 3n = 6` (36)

) (2n+m) = 3` (37)

But, now notice that these are actually the same condition. Start with

2n+m = 3` (38)

) 3n� n+m = 3` (39)

) �n+m = 3(`� n) (40)

) n�m = 3`0 where `0 = (n� `) is an arbitrary integer (41)

Therefore, in order for an allowed wavevector for a nanotube cylinder with ~

W given by (m,n), to lie on
a Brillouin zone corners, (m,n) must satisfy the conditions

2n+m = 3`0 (42)

It is obvious that the tubes satisfying this condition are metallic as we have already shown in part 5)
that the corners of the Brillouin zone correspond to the points where f(k) = 0. Since graphene has a two
particle basis, this implies that the primitive unit cell contains two atoms and so the first Brillouin zone is
exactly filled with two particles per state. This means that the first band is exactly filled and the second
band is empty. Since the energy dispersion is given by the relation

"(k) = "0 ± |f(k)| (43)
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Then, the system is metallic if and only if an allowed k vector lies on the point where f(k) = 0. So then,
any nanotube where the Brillouin zone corners are allowed wavevectors contains a point where |f(k)| = 0
and so is metallic.

part 8)

Now, we have

f(k) = �
✓
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0
X

vert.e
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e
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◆
(44)

Both the armchair and the zig-zag tubes di↵erentiate between the ~e1 and ~e2/~e3 bonds (since the vector
W is either parallel or perpendicular to the ~e1 bond in these cases. The band structure of the nanotubes is
then given by

" = "0 ± |f(k)|
(45)

To solve for the points when f(k) = 0, let’s let’s assume that the vertical ~e
i

bond with hopping t

0 is the
bond e2 = (0, a). This will make solving for f(k) = 0 convenient and ocne we find these points we can rotate
our axes so that ~e1 ! ~e2. Using this choice we can write
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Im[f(k)] = 0 ) sin(�3

2
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y

) = 0 (48)

Re[f(k)] = 0 ) t
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The solutions to Eq. (48) are

k

y

= 0,±2⇡

3
(50)

We can sub this into Eq. (49) to get:
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◆
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Eq.’s (50) and (54) give us the Dirac points for our modified Hamiltonian, when e2 has hopping t

0. To find
the solution when bond ~e1 has hopping t

0 we want to rotate our axes, so that what we defined as k
y

above

becomes ~e1 = 1
2kx +

p
3
2 k

y

. That is we want to rotate our axes clockwise by angle ⇡/6, to let
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Then in our new basis, our Dirac points given by (50) and (54) must satisfy:
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Solving this system of equations for k
x

and k

y

gives
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Now, recall that for the (3, 3) armchair nanotube, our wavevectors k
x

, k
y

had to satisfy the requirement

k
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4⇡`
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Subbing Eq. (58) into this condition gives
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For ` = 0 this is exactly the k

y

coordinate of the Dirac point we just found above. Therefore, for
the armchair nanotube, the Dirac points alway fall along one of the quatized wavevectors. Therefore, the
modifications of the hopping term doesn’t a↵ect the metalicity of the nanotube in this case.

Now, for the(�2, 2) zig-zag nanotube, our wavevectors had to satisfy the condition
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Subbing in Eq. (58) and (59) gives

1p
3
cos�1

✓
�t

0

2t

◆
= �

p
3 cos�1

✓
�t

0

2t

◆
� 2⇡`

3
(64)
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Therefore, the allowed wavevectors of the zig-zag nanotube will not in general cross the Dirac points
unless the hopping parameters satisfy the above condition. If the above condition is satisfied by the specific
values of t and t

0 then the system will be metalic, otherwise it will be insulating. For ` = 1, the condition
above is t0 ⇡ 1.2t must be satisfied for the nanotube to be metallic.
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