Physics 123B: Homework 5
due February 27, 4pm to Amanda Jones in Kohn Hall 1220 or by email to Prof. Balents

1. Flux quantum: Suppose experimentalists measure the magnetic flux of vortices in a new superconducting material. They find this flux is equal to $\pm h / 4 e$. What does this imply about the nature of superconductivity in this material?
This means that instead of Cooper pairs, the superconductor consists of a condensate of "quartets" of four electrons.

Homework 5 - Solutions

Problem 2 - Fraunhofer Pattern

To start, we note that we write $\gamma(x)$ as

$$
\begin{equation*}
\gamma(x)=\nabla \theta-\frac{2 e}{\hbar} \int_{1}^{2} \vec{A} \cdot d \vec{\ell} \tag{1}
\end{equation*}
$$

In our case $\nabla \theta=\mathrm{const}$ and $\vec{A}=-B x \hat{z}$. Thus

$$
\begin{align*}
\gamma(x)=\nabla \theta-\frac{2 e}{\hbar} \int_{0}^{d}(-B x) d z & =\nabla \theta-\frac{2 B e d}{\hbar} x \tag{2}\\
& =\nabla \theta-\frac{2 \pi B d}{\varphi_{0}} x \tag{3}
\end{align*}
$$

Where $\varphi_{0}=\frac{h}{2 e}$
The total flux through the josephson junction is

$$
\begin{align*}
\Phi & =\oint \vec{A} \cdot d \vec{\ell} \tag{4}\\
& =\int_{0}^{d} A_{z}\left(x=L_{x}\right) d z+\int_{d}^{0} A_{z}(x=0) d z \tag{5}\\
& =-B L_{x}(d)+0 \tag{6}\\
\Rightarrow \quad \Phi & =-B L_{x} d \tag{7}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\gamma(x)=\Delta \theta+\frac{2 \pi \Phi}{L_{x} \varphi_{0}} x \tag{8}
\end{equation*}
$$

Now, we have that the total current is given by

$$
\begin{align*}
I & =\int_{0}^{L_{x}} j_{c} \sin (\gamma(x)) \tag{9}\\
& =\int_{0}^{L_{x}} j_{c} \sin \left(\Delta \theta+\frac{2 \pi \Phi}{L_{x} \varphi} x\right) d x \\
& =-j_{c} \frac{L_{x} \varphi_{0}}{2 \pi \Phi}\left[\cos \left(\Delta \theta+\frac{2 \pi \Phi}{L_{x} \varphi} x\right)\right]_{0}^{L_{x}} \tag{10}\\
& =j_{c} \frac{L_{x}}{2 \pi} \frac{\varphi_{0}}{\Phi}\left(\cos (\Delta \theta)-\cos \left(\Delta \theta+\frac{2 \pi \Phi}{\varphi_{0}}\right)\right) \tag{11}
\end{align*}
$$

Now we write:

$$
\begin{align*}
\cos (\Delta \theta)-\cos (\Delta \theta+a) & =\cos (\Delta \theta)-\cos (\Delta \theta) \cos (a)+\sin (\Delta \theta) \sin (a) \tag{13}\\
& =\cos (\Delta \theta)[1-\cos (a)]+\sin (\Delta \theta) \sin (a) \tag{14}\\
& =\cos (\Delta \theta)\left[2 \sin ^{2}(a / 2)\right]+2 \sin (\Delta \theta) \sin (a / 2) \cos (a / 2) \tag{15}\\
& =2 \sin (a / 2)[\cos (\Delta \theta) \sin (a / 2)+\sin (\Delta \theta) \cos (a / 2)] \tag{16}\\
& =2 \sin (a / 2)[\sin (\Delta \theta+a / 2] \tag{17}
\end{align*}
$$

Therefore, using this identity in our equation for current gives

$$
\begin{equation*}
I=j_{c} \frac{L_{x}}{\pi} \frac{\varphi_{0}}{\Phi} \sin \left(\frac{\pi \Phi}{\varphi_{0}}\right) \sin \left(\Delta \theta+\frac{\pi \Phi}{\varphi_{0}}\right) \tag{18}
\end{equation*}
$$

Therefore, clearly the max current is:

$$
\begin{equation*}
j_{c} \frac{L_{x}}{\pi} \frac{\varphi_{0}}{\Phi} \sin \left(\frac{\pi \Phi}{\varphi_{0}}\right) \tag{19}
\end{equation*}
$$

Problem 3-Hund's Rule

For an ion which has 4 electrons in its d shell, Hund's first rule tell's us that we want to maximize the total spin. Sine the d shell has orbital quantum number $\ell \in\{-2,2\}$, there are five possible angular momentum state we can put the electron in. Then we can safely put all 4 electrons in the spin up $s=+1 / 2$ states so that total spin is $S=2$.

Hund's second rule states that we want to maximize total angular momentum L_{z}. Each electron can have $m_{\ell} \in\{-2, \ldots, 2\}$. Pauli's exclusion principle states states that we can only have one spin up electron for each value of m_{ℓ} so that the maximum total L^{z} that we can assign to the group of 4 electrons $m_{\ell}=2,1,0,-1$. Then the overall angular momentum is $L=2+1+0+(-1)=2$. Finally, the d shell can hold 10 electrons, so it is less than half filled, so that Hund's third rule states that $J=|L-S|=|2-2|=0$.

Therefore $S=2, L=2$ and $J=0$. Or in spectroscopic notation

$$
{ }^{2 S+1} L_{J}={ }^{5} P_{0}
$$

(Where P represents the $L=2$ state in this notation).

Now, if we instead consider an ion with $2 f$ electrons in its outer shell, in this case each angular quantum number can take on any value from $\ell=\{-3, \ldots, 3\}$, so that the shell can hold 14 possible electrons. Then, Hund's first rule implies that all electrons are spin up $s=+1 / 2$ so that $S=3 / 2$.
Hund's seeond rule says we want to assign the angular numbers $m_{\ell}=3,2$ and 1 to our three electrons so that the total angular momentum is $L=3+2+1=6$.

Once again, our outer shell is less than half full so that Hund's third rule states that $J=|L-S|=\left|6-\frac{3}{2}\right|=\frac{9}{2}$
Therefore our ground state would be the state with $S=\frac{3}{2}, L=6$ and $J=\frac{9}{2}$
In spectroscopic notation (noting that $L=6$ is represented by a capital I), this groundstate is denoted by

$$
{ }^{2 S+1} L_{J}={ }^{4} I_{9 / 2}
$$

