
Physics 123B: Final
Due March 16, 2015, 9:30AM

1. Imagine that electrons have spin S = 1 instead of S = 1/2, so that there are 3 possible spin
states for a single electron. Neglecting the Zeeman interaction, what would be the values of
the Hall conductivity, in units of e2/h, in the quantum Hall regime for a two-dimensional
electron gas? For graphene?

Without Zeeman interactions, all the spin states are degenerate, and so for a 2DEG the Landau
levels are three-fold degenerate. Hence the Hall conductivity is a multiple of 3 e2/h, starting
from zero corresponding to no filled Landau levels,i.e. σxy = 3ne2/h. In graphene, there is an
additional 2-fold valley degeneracy, so that the LLs are 6-fold degenerate. Taking into account
that the neutral system has σxy = 0 and that half of this LL gives rise to upward bending edge
states (and half downward bending edge states), we get that σxy = ±3e2/h,±9e2/h, · · · =
±(6n+ 3)e2/h.

2. We can expect that superfluidity breaks down if the phase gradient is too large. For
Helium, a reasonable guess would be that this occurs when the phase varies by 2π over
1Å, comparable to the inter-atomic distance. What is the “critical velocity”?

So the superfluid velocity is v = h̄/m∇θ, hence we estimate vc ≈ 2πh̄/(ma0) = h/(ma0),
where m = 6.65 × 10−27kg is the mass of the helium atom, h = 6.62 × 10−34Js, and
a0 = 1Å = 10−10m. So vc ≈ 1000m/s.

3. In class we explained why a flow of superfluid helium in an annular container can be almost
infinitely long-lived (“persistent”). What about the flow of superfluid helium in a bucket
without a hole in the middle? Is it also long-lived? How does it decay?

We do not expect it to be long-lived, because it can decay by simply moving the existing
vortices in the rotating liquid to the edge of the bucket and allowing them to “escape” out the
side of the container. There is no energy barrier for them to do this.
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Figure 1: Superconducting ring from problem 4.

4. Consider a thin superconducting ring (Fig. 1), for which the inner and outer radius differ
by much less than the penetration depth λ. Under this condition, the magnetic field is
constant in the material. Suppose a solenoid is introduced inside the ring. Using London
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theory, find and plot the minimum free energy of the superconductor, Fmin(Φ), as a function
of the flux Φ it produces. You should assume the field of the solenoid is confined well inside
the ring, so that no field penetrates the superconductor, and also that ns = ns. Take the
inner radius of the ring to be r, the outer to be r + d, and the height of the ring to be h.
Hint: your answer F (Φ) should have slope discontinuities.

Following the problem definition, we take B = 0 and ns = ns inside the superconductor.
The London free energy then depends upon the phase θ and in principle the vector potential
~A. Since the field itself is zero, ∇ × ~A = 0, but since there is non-zero flux inside, we have∮
~A · d~̀ = Φ, when integrating a loop enclosing the hole of the ring. This is satisfied by a

vector potential which is oriented in the azimuthal direction. Adopting cylindrical coordinates
r, φ, z, we have Aφ(r) = Φ/(2πr). We take r as approximately constant over the ring, since
d� r. Under these assumptions, we expect that the superconducting phase θ is a function of
the azimuthal angle φ only, and so ~∇θ = 1/r∂φθφ̂. Then the London free energy is

F =

∫
ring

[
ns
8m
|h̄∇θ + 2e ~A|2 + a(ns − ns)2 +

B2

2µ0

]
=

∫ h

0
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drr
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0
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8mr2

(h̄θ′(φ) + eΦ/π)2

≈ h2πh̄2ns
8m

d

r

(
θ′(φ) + eΦ/(πh̄)

)2
. (1)

Now we should minimize this over θ′(φ). If possible, we would like to choose θ′(φ) =
−eΦ/(πh̄), but this means θ(φ) = −eΦ/(πh̄)φ+θ(0), which in general is not allowed because
the condensate wavefunction must be single valued, so θ(φ+ 2π) must differ from θ(φ) by a
multiple of 2π. So the best we can do in general is to take θ(φ) = −nφ + θ(0), with some
integer n. Then the energy becomes

F =
h2πh̄2ns

8m

d

r

(
Φ

φ0
− n

)2

, (2)

where φ0 = πh̄/e is the superconducting flux quantum. We are free to choose n to minimize
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Figure 2: Free energy of the ring in Problem 4.

F, so the real answer is

F = F0 minn

(
Φ

φ0
− n

)2

. (3)

2



where F0 = hdπh̄2ns
4mr . This is clearly a periodic function of Φ with period φ0. It is equal to

zero when Φ/φ0 is an integer (and we should choose n equal to that integer), and is maximum
when Φ/φ0 is an half-integer, at which point the best n is degenerate: it can be either the
integer above or below this half-integer. So the result looks like a set of parabolas, attached
at the top.

The rest is a note to people who started by setting θ = 0 by a “gauge choice”. This is
not allowed in the present problem. The reason is that to do this, one really must make a
gauge transformation ~A→ ~A− ~∇χ, where in the interior of the superconductor, ~∇χ = h̄

2e
~∇θ.

However, if θ winds around the ring, then so must χ, and there is no function χ which is
non-singular everywhere in the space inside the ring. Equivalently, ~∇χ would have to diverge
somewhere inside the ring. You can also see that this is not allowed because making this
“gauge” transformation will change a physical quantity, the flux Φ =

∮
~A · d~̀ through the

loop, so it cannot be “pure gauge”.

The problem is tricky because you got used to the idea of flux quantization in a supercon-
ductor. But really this only holds for magnetic fields which are entirely surrounded by a thick
superconductor whose width is large compared to λ. Otherwise it is not possible for enough
screening currents to form to reach the quantized flux. By assuming d � λ in this problem,
there is no quantization. Rather there is a small tendency of the free energy to prefer values
of the flux which correspond to the quantized values that would be reached for a thick ring.

5. As the magnetic field is increased within the vortex lattice phase of a type II supercon-
ductor, does the spacing between vortices increase or decrease, and why?

The spacing decreases as field is increased. The flux per vortex is fixed, so more vortices must
enter a given area to accomodate the increasing flux.

6. Find the S, L, and J quantum numbers for Os3+, Os4+, and Os5+ ions in free space,
assuming that the first electrons Os loses when it is ionized are its two 6s ones.

The electronic configuration of neutral Os is [Xe]4f145d66s2. Losing two electrons, one obtains
that Os2+ has 6 5d electrons. So Os3+, Os4+ and Os5+ have 5,4, and 3 outer d electrons,
respectively.

In the case of Os3+ with 5 d electrons, the d shell is half filled. This leads via Hund’s rule I to
total spin S=5/2. Then L=0 since all states have one electron, and hence J=S=5/2.

In the case of Os4+ with 4 d electrons, we obtain S=2. We fill 4 orbitals, leading to L=2.
Since the shell is less than half-filled, we should minimize J and so J=0.

In the case of Os5+ with 3 d electrons, we obtain S=3/2. We fill 3 orbitals, leading to
L=2+1+0=3. Since the shell is less than half-filled, we should minimize J and so J=3-
3/2=3/2.

7. Consider the S = 1/2 quantum Ising model in a transverse field, defined by

H = −J
∑
〈ij〉

Szi S
z
j − h⊥

∑
i

Sxi . (4)

Assume that the lattice consists of all identical sites, with z nearest-neighbors per site.
Note that, unlike in the Heisenberg model, only the z components of spins couple between
nearest-neighbor sites. Here ~Si is the usual spin-1/2 operator with ~S2

i = S(S + 1) = 3/4
with S = 1/2, the eigenvalues of Szi = ±1/2, etc. (we set h̄ = 1).
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(a) Apply the mean-field approximation to decouple the first term to obtain a set of spins
in an effective field ~heff = (hxeff , 0, h

z
eff). Find hzeff in terms of the Ising magnetization

m ≡ 〈Szi 〉.
To carry out the MF approximation, we decouple the J term just as we did in class. So
we replace

H → −J
∑
〈ij〉

[
〈Szi 〉Szj + Szi 〈Szj 〉 − 〈Szi 〉〈Szj 〉

]
− h⊥

∑
i

Sxi .

=
∑
i

[−JzmSzi − h⊥Sxi ]

≡ −
∑
i

~heff · ~Si, (5)

where we dropped a constant in the third line. Comparing, we have

hzeff = Jzm. (6)

(b) At zero temperature, you can assume each spin is aligned fully by its effective field.
Using this assumption, find the self-consistent equation for m.

The ground state of the −~heff · ~Si term is just the state where each spin is polarized into
its maximal “length” eigenstate of 1/2 along the ĥeff axis. In other words, we choose
a new quantization axis for spin along this effective field. Then then expectation of the
components normal to this axis is zero, and along the field it is 1/2. Thus

〈~Si〉 =
1

2
ĥeff =

~heff

2|heff |
. (7)

Writing out the z component, we have

m = 〈Szi 〉 =
hzeff

2
√

(hxeff)2 + (hzeff)2
=

Jzm

2
√
h2
⊥ + (Jzm)2

. (8)

The equality between the left hand side and the right hand side of this equation is the
self-consistent condition.

(c) Solve the above equation to find m(h⊥). What is the critical field hc⊥ above which
m = 0? This is a quantum critical point.

We can just solve this by dividing both sides by m, which is ok if m 6= 0, and then obtain√
h2
⊥ + (Jzm)2 =

Jz

2
. (9)

Squaring both sides and solving gives

m = ±1

2

√
1−

(
2h⊥
Jz

)2

. (10)

This solution works for field h⊥ small enough that the argument of the square root is
positive. Beyond that, we must have m = 0. So we have hx⊥ = Jz/2.
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8. Consider the “frustrated ferromagnetic chain”, described by the Hamiltonian

H =
∞∑

i=−∞

[
−J1

~Si · ~Si+1 + J2
~Si · ~Si+2

]
. (11)

Here ~Si are spin-1/2 spins, and J1, J2 > 0. For small enough J2, the ground state is
ferromagnetic.

(a) Assuming a ferromagnetic state, calculate the spin wave spectrum of the model.

Following the treatment in class, we can consider the set of spin-flip states |i〉, where the
spin on site i is down while all others are up. As before, let us break up H = Hz +H±.
Acting with Hz, we have

Hz|i〉 =

[
E0 + 2× J1 ×

1

2
− 2× J2 ×

1

2

]
|i〉, (12)

where one factor of 2 comes from site i interacting with sites to its left and right, and
the factor of 1/2 comes from the fact that the SzSz product on each bond is changed
from +1/4 to -1/4.

Now we consider the raising and lowering terms:

H±|i〉 = −J1

2
(|i+ 1〉+ |i− 1〉) +

J2

2
(|i+ 2〉+ |i− 2〉) . (13)

Note the sign change and that the spin flip “walks” one step to the right or left with J1,
and two steps to right or left with J2. Putting it together, we have that

H|i〉 = (E0 + J1 − J2)|i〉 − J1

2
(|i+ 1〉+ |i− 1〉) +

J2

2
(|i+ 2〉+ |i− 2〉) . (14)

Now we seek an eigenstate by writing |k〉 = 1√
N

∑
i e
ikna|n〉 , where a is a lattice spacing

(you could perfectly well take a = 1 to make things simpler) . Plugging this in and
cancelling exponentials, one gets that

H|k〉 = (E0 + J1 − J2 − J1 cos ka+ J2 cos 2ka)|k〉 ≡ (E0 + ε(k))|k〉, (15)

where the excitation energy or dispersion relation is

ε(k) = J1 − J2 − J1 cos ka+ J2 cos 2ka. (16)

Note that an important check is that, by Goldstone’s theorem, this must go to zero as
k → 0. Indeed it does!

(b) In this way, determine the maximum value of J2 for which the ferromagnetic state can
be the ground state. At this critical value, J2 = Jmax

2 , how does the energy depend
upon k for small k?

So we need to ask what is the condition that ε(k) ≥ 0? We can check this by rewriting
cos 2ka = 2 cos2 ka− 1 to give

ε(k) = J1 − 2J2 − J1 cos ka+ 2J2 cos2 ka. (17)

We can seek the minimum of this by differentiating with respect to k and setting the
answer to zero. This gives either k = 0 or cos ka = J1/(4J2). The latter can be satisfied
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only when J2 ≥ J1/4. So when J2 < J1/4, k = 0 is definitely the minimum energy, and
we saw already that ε(0) = 0. So the ferromagnetic state is stable when J2 < J1/4. What
happens when J2 > J1/4? Well, then we can find the energy when cos ka = J1/(4J2),

which is ε = J1 − 2J2 −
J2
1

8J2
. This is negative when J2 > J1/4, so we find, finally that

min
k
ε(k) =

{
0 J2 < J1/4

J1 − 2J2 −
J2
1

8J2
< 0 J2 > J1/4.

(18)

Hence we find that

Jmax
2 =

J1

4
. (19)

Now we can Taylor expand around k = 0. This gives

ε(k) ≈|k|�1 (
J1

2
− 2J2)(ka)2 + (−J1

24
+

2J2

3
)(ka)4. (20)

The first term becomes negative when J2 > J1/4, as expected. Moreover, setting J2 =
J1/4 in Eq. (20), we see that at this point,

ε(J2 = J1/4) ≈ J1

8
(ka)4, (21)

varying as the fourth power rather than the square of k.

(c) Now add a magnetic field, H → H−h
∑

i S
z
i . A sufficiently large h > hc > 0 stabilizes

the ferromagnetic state even when J2 > Jmax
2 . Find hc from the condition that the

spin wave energies are positive.

We need to a priori repeat the analysis in part (a). The additional term just adds to Hz.
Relative to the ferromagnetic (all up) state, this term just adds the energy h to state |i〉,
since a single spin is flipped from up to down. So we have the energy

ε(k, h) = h+ J1 − J2 − J1 cos ka+ J2 cos 2ka. (22)

When J2 < J1/4, we saw that the minimum energy was zero without the field, so the
minimum energy with the field is just h, which is always positive, so the ferromagnetic
state is always stable, i.e. hc = 0 for J2 < J1/4.

Now if J2 > J1/4, we the minimum of ε(k, 0) is negative, and given in Eq. (18). So the
field must balance this. We ε(k, h) > 0 or h > −ε(k, 0) for all k, hence

h > hc = −
(
J1 − 2J2 −

J2
1

8J2

)
= 2J2 − J1 +

J2
1

8J2
. (23)
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Figure 3: Critical field to stabilize the ferromagnetic state in problem 8c
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