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Course Organization

• Grading: HW 30%, Mid-term 30%, Final 40%

• Office hours

• Thurs, 2:30-4:00, Kohn 2315 (KITP)



Review questions 1
• What is a crystal?

• A: a periodic arrangement of atoms

• How do we describe this structure 
mathematically?

• A: through Bravais lattice (primitive vectors) + 
Basis; symmetry; unit cell

• How do we study structure experimentally?

• A: x-rays; neutrons; AFM/STM...



Review Questions 2

• What does (elastic) x-ray scattering measure?

• A: reciprocal lattice.  define it.

• What are phonons?

• A: normal modes of small oscillations of atoms

• What are acoustic and optical phonons?  How 
many branches of each are there in NaCl?

• A: acoustic modes have ω ~ k; 3 of each per 
unit cell.



Review Questions 3
• How does the phonon heat capacity depend on T at 

low and high T, i.e. what is the power law?

• A: C ~ T3 at low T, C = const. at high T.

• What is the characteristic temperature separating 
these two limits called?

• A: DeBye temperature

• Give an example of another physical property phonons 
contribute to

• A: thermal conductivity, sound, thermal expansion



Review Questions 4
• In the free electron model, what is the Fermi energy, and what is a 

typical value for it in a metal?

• A: EF separates occupied and empy states.  It is of order a few eV 
= 104-105 K

• What is the temperature dependence of the electronic heat capacity 
at low T?

• A: it is linear in T

• Which of the electronic or phononic contribution to the heat 
capacity of a metal is typically larger at room temperature?  Why?

• A: phonons.  Because all the phonon entropy is released over the 
DeBye temperature, while the electron entropy is released over 
the Fermi energy, and EF >> kTD



Review Questions 5
• What is the “Drude model”/Ohm’s law expression for the 

conductivity of the free electron gas?

• A: σ = n e2 τ/m, where τ is a collision time/relaxation time

• What determines the collision time at room temperature and at 
low temperature?

• A: usually phonons at room temperature, and impurities at 
low temperature.

• What is the Hall coefficient, and what does it measure, in the 
free electron model?

• A: it is the ratio of the hall resistivity to magnetic field, and it 
measures -1/(the density of electrons)



Review Questions 6
• Is the electronic or phononic contribution to thermal conductivity usually 

more important in metals at room temperature?

• A: electronic.  This might be surprising since the phonon heat capacity 
dominates.  But there is an extra factor of velocity v in the thermal 
conductivity, K = C v l, and vF >> vsound.

• What is the form of the wavefunction of an electron in an ideal periodic solid?

• A: It has the Bloch form of a plane-wave times a periodic function

• What is the crystal momentum, and how is it different from the true 
momentum?

• A: The crystal momentum is defined as hbar times the wavevector 
appearing in the Bloch form.  It is different from the true momentum 
because the electron scatters off of the lattice, and therefore is in a 
superposition state of many momenta which differ by reciprocal lattice 
vectors.  So the crystal momentum is only defined up to a Bragg 
momentum



Review Questions 7
• What is an energy band?

• A: Electronic states have energies εn(k) which are periodic in wavevector/
crystal momentum and have discrete n.  Each such function is a band, and 
spans a finite range of energy.

• How many orbitals are there in a band?

• A: Each band contains 2 orbitals (including electron spin) per primitive unit 
cell of the lattice.  Equivalently, there is one crystal momentum per p.u.c.

• Both Francium and Radium (atomic number 87 and 88, respectively) have 
b.c.c. crystal structures in elemental form.  Can you say whether either one is 
metallic?

• A: Fr must be metallic in b.c.c. form, since it has an odd number of 
electrons per atom and bcc is a Bravais lattice with one atom per p.u.c.  
(Here we assume it does not become magnetic).  In fact radium is also 
metallic, though it does not need to be.



Review Questions 8 
• How do you distinguish metals and insulators according to 

band theory?

• A:  a metal has partially filled bands, and an insulator has 
all bands either filled or empty

• What is the Fermi surface?

• A: it is the boundary between occupied and unoccupied 
Bloch states in a metal, which forms a surface in 
momentum space

• What is the Fermi surface of a free electron gas?

• A: a sphere



Review Questions 9

• What is a semiconductor?

• A: it is a material which is an insulator at T=0 with a relatively 
small (usually <2eV) band gap.

• What is a direct and indirect gap?

• A: a direct gap is the minimum energy needed to go from the 
valence to conduction band conserving k.  An indirect gap is a 
smaller energy transition which does not conserve k.

• How can the gap be measured?

• A: optics can measure both direct and indirect gap.  
Activation energy of the conductivity can measure the gap.  



Review Questions 10

• What are electrons and holes in semiconductors, and 
what does their effective mass mean?

• A: They are occupied or empty states at the 
bottom of the conduction or top of the valence 
band, respectively.  The effective mass is the inverse 
of the band curvature at its minimum/maximum.

• Are effective masses in semiconductors smaller or 
larger than the electron mass, usually?

• A: usually smaller.  



Review Questions 11
• What are donors and acceptors?

• A: They are impurity atoms in a semiconductor which tend to 
ionize, forming a charged ionic center and an oppositely 
charged “doped” electron or hole.

• How does the binding energy and Bohr radius of a donor depend 
on effective mass and dielectric constant?

• A: The binding energy is E = Ry (m*/m) 1/(ε2), and the radius is 
a = aB ε (m/m*)

• What measurements determine the sign and density of charge 
carriers?

• A: Hall effect, and thermopower



Fermi surfaces 

• I want to talk about Fermi surfaces

• Every metal has one*, and they are all 
unique

• We’re going to lead into talking about an 
exceptional case between a metal and an 
insulator, where there is no Fermi surface: 
graphene

* Well, almost.  Except for effects of randomness of atomic positions.



Fermi surfaces

• Key result of band theory: electrons occupy quantum 
states described by continuous crystal momentum 
and discrete “band index” quantum numbers

• Energies of each band are smooth functions of quasi-
momentum, εn(k)

• Fermi statistics: states below EF are occupied, others 
empty

• Condition εn(k)=EF generally describes a surface 
(when it has solutions).  This is the Fermi surface.



Why Fermi surfaces?
• Any time we weakly perturb a system, we excite mainly low energy 

excitations

• in metals, the characteristic energy scale is EF ~ eV, so most 
perturbations are weak

• In a metal, the low energy excitations are adding or removing 
electrons near the Fermi energy (or moving them from below to 
above).

• In some cases, one can think of the excitation as a deformation of 
the surface (c.f. displacement in E field)

• It is remarkable that this geometric object in reciprocal space becomes 
essential to the physics of something as simple as a piece of metal!

• manifests both wavelike nature of electrons and quantum 
statistics!



Whence Fermi surfafes

• They are determined by the bands, i.e. solving 
εn(k)=EF .

• Can try to understand via:

• Nearly free electron theory

• Tight binding

• ab initio electronic structure

• measurement

Pretty sure you covered 
these two in 123A



Tight binding method
• The opposite limit from NFEA - assume the ionic 

potential strongly confines electrons

• only a small number of atomic orbitals are 
important

• We can try to construct Bloch states from these 
orbitals only

• conceptually similar to making “bonding” and 
“anti-bonding” orbitals on molecules

• but with 1023 atoms instead of 2!



Tight Binding

• Write the wavefunction as a superposition

• Amplitudes obey “discrete Schrodinger 
equation”
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Tight binding

• Often we assume just nearest-neighbor 
hopping

• Example: one dimensional chain

• Solve it?

• Easily generalized to 2d and 3d lattices (see 
Kittel)  
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2d hexagonal lattice
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2d hexagonal lattice

• Spectrum:

• Primitive vectors: 

• Energy: 
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