Superconductivity

- Discovered earlier (1911) than superfluidity due to higher T_c (Hg, 4.2K?)
- Many similar properties to superfluidity
 - zero resistance T<T_c
 - persistent currents
- Differences
 - Perfect diamagnetism: the Meissner effect
 - Energy gap for measurements involving single electrons, a SC often behaves like a semiconductor

Superconductivity

- Similarity to superfluidity suggests BEC
- But electrons are fermions!
- What happens is that electrons bind into Cooper pairs. A pair of fermions is a boson, so Cooper pairs can condense.
- Why should they bind? Electrons repel by Coulomb force! This is the question of the "mechanism" of superconductivity

Mechanisms

- There is no *one* mechanism
- BUT most superconductors arising from simple metals (i.e. which are simple metals above T_c) are understood from the BCS theory of pairing due to electron-phonon coupling
- Roughly, this arises because an electron distorts the lattice, and this distortion lasts a relatively long time, so that it can attract a second electron, even after the first has left
 - "Retardation": two electrons bind but do not occupy the same position at the same time, so their Coulomb repulsion is minimized.

London theory

 Once we accept that Cooper pairs form, we can study their condensation the same way we study BEC

$$\psi(r) = \sqrt{n_s^*(r)} e^{i\theta(r)}$$
 Pair wavefunction

- Similar to superfluid, $\mathbf{p} = \hbar \nabla \theta q \mathbf{A}$
 - The difference arises from the charge of Cooper pairs

London Theory

- This implies screening: check Maxwell eqns
- Pairs: n_s*=n_s/2, q=-2e, m*=2m
- Hence the current is

$$\mathbf{j} = -\frac{qn_s^*}{m*}\mathbf{p} = -\frac{\hbar n_s e}{2m} \left(\nabla\theta + \frac{2e}{\hbar}\mathbf{A}\right)$$

- This is often called the "London equation"
- Use with Maxwell equation to describe screening

London theory

• Maxwell

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$$
$$\nabla \times \nabla \times \mathbf{B} = \mu_0 \nabla \times \mathbf{j}$$
$$\mathbf{0} \leftarrow \nabla (\nabla \cdot \mathbf{B}) - \nabla^2 \mathbf{B} = \mu_0 \left(-\frac{n_s e^2}{m} \nabla \times \mathbf{A} \right)$$

$$\nabla^2 \mathbf{B} = \frac{1}{\lambda^2} \mathbf{B} \qquad \lambda = \left(\frac{m}{n_s e^2 \mu_0}\right)^{1/2}$$

These two equations describe screening

 λ is called London penetration depth

 $\lambda \sim 10-100$ nm typically

Meissner Effect

- The above argument suggests screening of magnetic fields is due to currents which flow because of infinite conductivity
- If there was "only" infinite conductivity, then we would expect that an applied field would not penetrate, but that if we *started* an experiment with a field applied, and then cooled a material from the normal to superconducting state, the field would remain
- This is in fact not true: magnetic fields are actively expelled from superconductors

Meissner effect

- Expulsion of an applied field occurs because in the superconducting state, the field *costs free energy*, i.e. is thermodynamically unfavorable
- Free energy

$$F = \int d^3r \left[n_s^* \frac{p^2}{2m^*} + a(n_s - n_s^{\text{eq}})^2 + \frac{B^2}{2\mu_0} \right]$$

Meissner Effect

$$F = \int d^3r \left[\frac{n_s}{8m} |\hbar \nabla \theta + 2e\mathbf{A}|^2 + a(n_s - n_s^{\text{eq}})^2 + \frac{B^2}{2\mu_0} \right]$$

gauge: we can always choose A to cancel $\nabla \theta$

$$F = \int d^3r \left[\frac{n_s e^2}{2m} |\mathbf{A}|^2 + a(n_s - n_s^{\text{eq}})^2 + \frac{|\mathbf{B}|^2}{2\mu_0} \right]$$

key point: if B≠0,A must vary linearly with r, which implies |A|² diverges. Superconducting kinetic energy becomes infinite!

$$F = \int d^3r \left[\frac{n_s e^2}{2m} |\mathbf{A}|^2 + a(n_s - n_s^{eq})^2 + \frac{|\mathbf{B}|^2}{2\mu_0}\right]$$

- Instead, superconducting state *expels* the field.
- Eventually, if a large enough field is applied to a superconductor, the superconductivity is destroyed