
Meissner effect
• To estimate the critical field, we need to 

compare the Gibbs free energy

• In the SC state, ns=nseq, A=B=0

• In the normal state, ns=0, B=μ0H

• Equality Gsc=Gn defines the critical field Hc
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This describes so-called “type I” superconductors
Some superconductors are “type II” and have a different phase diagram

critical field increases for 
T<Tc, because energy 
difference between N 
and SCing state grows



Vortices

• In the previous, we assumed that the 
system had to be uniform and 
homogeneous

• It turns out that sometimes a non-uniform 
state is favored -- a collection of vortices

• Vortices are like those in superfluid helium, 
except that the “fluid” that is flowing is 
charged



Vortices

• Free energy?

• Minimized for 
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Vortices
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• This implies flux quantization

• Note that it is quantized in units of half the flux 
quantum we saw in the IQHE

• This is directly related to the fact that Cooper 
pairs are condensed.  



Vortices

• Apparent contradiction:

• This would seem to imply that 

• We can have A ~ ∇θ only far from the vortex 
core

• So in reality the magnetic field is spread out

• And in addition ns → 0 at the vortex core
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Vortices
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• Flux is spread out over radius λ
• Condensed is depleted over radius ξ, called the 

coherence length

ξ >> λ ξ << λ
type I type II



Type I versus type II
type I
normal SC w/ flux

type II
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system all at once

additional flux costs more 
energy.
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Quasiparticles
• In superfluid He, it is the elementary boson - the 

helium atom - which condenses.

• But in a superconductor, only pairs condense.  We 
can still ask about individual unpaired electrons

• These are still fermions, and so are obviously not 
condensed

• In fact, since they are bound, it costs a non-zero 
energy to “break” a pair and create such 
“quasiparticles”.  This is called the gap.



Quasiparticles

• Many experiments probe individual 
quasiparticles:

• Tunneling

• Photoemission

• Thermal conductivity

• Optics

• ...



Tunneling

• Measures available density of states for 
quasiparticles



Specific heat

• Typically activated, ~ e-Δ/kT



Thermal conductivity

• Superconductors become thermally insulating.  
Note contrast to superfluids which have 
ballistic heat conduction.  Due to fact that 
normal electrons diffuse instead of convecting



BCS theory
• For conventional superconductors, there is a 

quantitative theory of the mechanism, which 
describes how electrons pair and describes the 
quasiparticles

• This relies on the fact that ξ>>λF in those 
materials, which means the pairs are “large” and 
highly overlapping

• This enables construction of a “mean field theory” - 
we will see an example of this later when we discuss 
magnetism

Bardeen, Cooper, Schrieffer, 1957



BCS theory

• Because ξ>> λF, you cannot really think of 
Cooper pairs are tightly bound molecules

• Instead, onset of superconductivity is not 
so much BEC of Cooper pairs, but rather 
the point at which the pairs themselves 
form

• BCS theory predicts

• as well as T dependence of gap, etc.

�(0) = 1.764kTc



Josephson effects

• Occurs whenever two superconductors are 
connected by a “weak link”, a narrow non-
superconducting region
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Josephson effects

• Josephson (1962): It is possible for a supercurrent 
to flow across the normal region - the “junction” - 
by tunneling

• It is surprising this was noticed so late in the 
history of superconductivity

• One of the rare theory-led discoveries (like TIs!)

• Josephson used microscopic BCS theory to derive 
this, but the effect is very general and can be 
understood without BCS theory.



Free energy

• If electrons can move across the barrier 
(even a little), then they can transmit phase 
information from one SC to another

• Free energy will depend upon the phase 
difference
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Free energy

• This is not “gauge invariant” - it depends on 
how we choose our vector and scalar 
potentials for electromagnetism

• The gauge-invariant free energy is
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Josephson relation

• Josephson realized there is a relation 
between the phase and the voltage
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Current

• Consider work done by small change of 
phase:

• But

• Hence a constant phase can produce a 
supercurrent, with zero voltage, for I<Ic, 
with critical current
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Size of critical current

• The amount of current a JJ can carry is 
obviously dependent upon the junction

• Natural to expect that Ic is correlated with 
the conductance G in the normal state

• Ambegaokar/Baratoff formula (BCS 
theory):
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Consequences

• Zero-bias (dissipationless) current

• AC Josephson effect: a voltage induces an 
oscillating current
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RCSJ model

• A simple model for the IV curve of a JJ
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RCSJ model

• Same equation as a pendulum or particle in 
a tilted washboard potential

• I<Ic: constant phase: V=0

• I>Ic: pendulum spins: non-zero average 
voltage
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RCSJ model

• Consider over-damped limit
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RCSJ model

• Consider over-damped limit
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SQUIDs

• SQUID = Superconducting QUantum 
Interference Device.

• Many kinds of SQUIDs.  Here just consider 
DC-SQUID, a sensitive magnetometer
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dc SQUID
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in SC, current is 
negligible, since only 
small currents can 

cross barriers.
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dc SQUID

I I

1

2

Φ
A B

�1 � �2 = 2⇡

✓
�

'0

◆

I = Ic sin �1 + Ic sin �2 = 2Ic cos

✓
�1 � �2

2

◆
sin

✓
�1 + �2

2

◆

= 2Ic cos

✓
⇥�

⇤0

◆
sin

✓
�1 + �2

2

◆

I
max

= 2Ic

����cos
✓
��

⇥
0

◆����
-3 -2 -1 1 2 3

Imax

Φ/φ0



dc SQUID
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typically operate slightly above the max critical 
current, where voltage then varies rapidly with flux


