Meissher effect

® TJo estimate the critical field, we need to

compare the Gibbs free energy
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® |n the SC state, ns=n®9, A=B=0
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® |n the normal state, ns=0, B=LioH
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® Equality Gs.=G, defines the critical field Hc



Meissher effect

Hc(T)

critical field increases for
T<T,, because energy

normal difference between N
and SCing state grows
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T

This describes so-called “type |’ superconductors

Some superconductors are “type II” and have a different phase diagram



Vortices

® |n the previous, we assumed that the
system had to be uniform and
homogeneous

® |t turns out that sometimes a non-uniform
state is favored -- a collection of vortices

® Vortices are like those in superfluid helium,
except that the “fluid” that is flowing is
charged



Vortices
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around a single vortex

0 — 04 27

® Free energy!
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® Minimized for A = 2—V9 B=0 ns=n
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Vortices
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® This implies flux quantization

® Note that it is quantized in units of half the flux
quantum we saw in the IQHE

® This is directly related to the fact that Cooper
bairs are condensed.



Vortices

® Apparent contradiction:

® This would seem to imply that

® We can have A ~ VO only far from the vortex
core

® So in reality the magnetic field is spread out

® And in addition ns = 0 at the vortex core



Vortices

® Flux is spread out over radius A

® Condensed is depleted over radius &, called the
coherence length

type | type I



Type | versus type |l

type | type |l

SC w/ flux
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inside core: flux clumps additional flux costs more
together and enters energy.

system all at once



Hc(T)

SC

Phase diagrams

normal

Type |

H

Heo(T)

vortex
lattice normal

Type
A/E>1/V2



Quasiparticles

In superfluid He, it is the elementary boson - the
helium atom - which condenses.

But in a superconductor, only pairs condense. We
can still ask about individual unpaired electrons

These are still fermions, and so are obviously not
condensed

In fact, since they are bound, it costs a hon-zero
energy to “break” a pair and create such
“quasiparticles”. This is called the gap.



Quasiparticles

® Many experiments probe individual
quasiparticles:

® Tunneling
® Photoemission
® Thermal conductivity

® Optics



Tunneling

® Measures available density of states for
quasiparticles




Specific heat

® Typically activated, ~ e&KT
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Thermal conductivity

® Superconductors become thermally insulating.
Note contrast to superfluids which have
ballistic heat conduction. Due to fact that
normal electrons diffuse instead of convecting

Figure 34.2 .
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BCS theory

Bardeen, Cooper, Schrieffer, 1957

® For conventional superconductors, there is a
quantitative theory of the mechanism, which
describes how electrons pair and describes the
quasiparticles

® This relies on the fact that E>>Ar in those
materials, which means the pairs are “large” and
highly overlapping

® This enables construction of a “mean field theory” -
we will see an example of this later when we discuss

magnetism



BCS theory

® Because £>> Ar, you cannot really think of
Cooper pairs are tightly bound molecules

® |nstead, onset of superconductivity is not
so much BEC of Cooper pairs, but rather
the point at which the pairs themselves

form
® BCS theory predicts A(0) = 1.764kT,

® as well as T dependence of gap, etc.



Josephson effects

® Occurs whenever two superconductors are
connected by a “weak link”, a narrow non-
superconducting region
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Josephson effects

® Josephson (1962): It is possible for a supercurrent
to flow across the normal region - the “junction” -
by tunneling

® |t is surprising this was noticed so late in the
history of superconductivity

® One of the rare theory-led discoveries (like Tls!)

® Josephson used microscopic BCS theory to derive
this, but the effect is very general and can be
understood without BCS theory.



Free energy

® |f electrons can move across the barrier
(even a little), then they can transmit phase
information from one SC to another

® Free energy will depend upon the phase
difference

F="F+F —E; cos(6; — 0)



Free energy

This is not “gauge invariant” - it depends on
how we choose our vector and scalar
potentials for electromagnetism

The gauge-invariant free energy is

F;=—FEjcos(6; — 92——/ A - dl)

= v: gauge-invariant phase difference



Josephson relation

® Josephson realized there is a relation
between the phase and the voltage

0,0; — —% - 2—;% (¢ = scalar potential)
Oy = 2—;( / Ot A - dr
Oy = 2—; 1 (—Vyp —0;A) -

= 2 2 OE -dr = V



Current

® Consider work done by small change of

phase: .

dF = IVdt =1—d
® But 2¢"

dF = d(—FEjcosvy) = Ejsin~vydy

= S111

® Hence a constant phase can produce a
supercurrent, with zero voltage, for I<I,

with critical current 7 2el g
©  h




Size of critical current

® The amount of current a J] can carry is
obviously dependent upon the junction

® Natural to expect that I is correlated with
the conductance G in the normal state

® Ambegaokar/Baratoff formula (BCS
theory):

TA A
ICRn — 2_6 tanh <2]€—T>

dimensions make sense!



Consequences

® /ero-bias (dissipationless) current

® AC Josephson effect: a voltage induces an
oscillating current

Josephson frequency

2€Vt
h

I(t) = I.sin



RCS] model

® A simple model for the IV curve of a |

. V aVv h dy
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RCS] model

Same equation as a pendulum or particle in
a tilted washboard potential

d?~y 1 dy 2el. . 2el

a2 Troa T e M T ne

<lc: constant phase:V=0

>|.: pendulum spins: non-zero average
voltage



RCS] model

1 2el,
® Consider over-damped limit 7~ > e
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RCS] model

1 2el,
® Consider over-damped limit 7~ > e
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V = R\/I? — I2 dV/dl large: high sensitivity

thermal
fluctuations

Ic I

static tilted pendulum
pendulum spins




SQUIDs

® SQUID = Superconducting QUantum
Interference Device.

® Many kinds of SQUIDs. Here just consider
DC-SQUID, a sensitive magnetometer
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dc SQUID
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in SC, current is
negligible, since only
small currents can

cross barriers.
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dc SQUID
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dc SQUID
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© Do

typically operate slightly above the max critical
current, where voltage then varies rapidly with flux



