Phase transition

- A lot happens at T_{c}

- Both $m(T)$ and $X(T)$ are non-analytic at T_{c}
- This is actually a sign of a phase transition

Quantum treatment

- So far, we treated the ferromagnet in mean field theory
- This is approximate. Usually qualitatively correct but not even always that.
- We can do better for the Heisenberg ferromagnet
- Goal: find the actual ground state and excitations

Quantum treatment

- Hamiltonian

$$
H=-J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}
$$

$$
=-J \sum_{\langle i j\rangle}\left(S_{i}^{z} S_{j}^{z}+\frac{1}{2} S_{i}^{+} S_{j}^{-}+\frac{1}{2} S_{i}^{-} S_{j}^{+}\right)
$$

- Try the "obvious" ground state $|0\rangle=\prod_{i}\left|S_{i}^{z}=+S\right\rangle$

$$
H|0\rangle=-J \sum_{\langle i j\rangle} S^{2}|0\rangle=-N J S^{2} \frac{z}{2}|0\rangle
$$

Quantum treatment

- Is it the ground state?

$$
H=-J \sum_{\langle i j\rangle}\left[\left(\frac{\mathbf{S}_{i}+\mathbf{S}_{j}}{2}\right)^{2}-S(S+1)\right]
$$

- Since $0 \leq\left|S_{i}+S_{j}\right| \leq 2 S$ for two spins

$$
E \geq-J \sum_{\langle i j\rangle}\left[\frac{2 S(2 S+1)}{2}-S(S+1)\right]=-J S^{2} \frac{N z}{2}
$$

- Thus this is indeed a ground state!

Quantum treatment

- Excitations - lower the spin once

$$
|i\rangle=\frac{S_{i}^{-}}{\sqrt{2 S}} \prod_{j}\left|S_{j}^{z}=S\right\rangle=\left|S_{i}^{z}=S-1\right\rangle \prod_{j \neq i}\left|S_{j}^{z}=S\right\rangle
$$

Quantum treatment

- Hamiltonian

$$
H=-J \sum_{\langle i j\rangle}\left(S_{i}^{z} S_{j}^{z}+\frac{1}{2} S_{i}^{+} S_{j}^{-}+\frac{1}{2} S_{i}^{-} S_{j}^{+}\right) \equiv H_{z}+H_{ \pm}
$$

- zz terms

$$
H_{z}|i\rangle=\left(E_{0}-J z\left[S(S-1)-S^{2}\right]\right)|i\rangle=\left(E_{0}+J S z\right)|i\rangle
$$

Quantum treatment

- +- terms $\quad H_{ \pm}=-\frac{J}{2} \sum_{\langle j k\rangle}\left(S_{j}^{+} S_{k}^{-}+S_{j}^{-} S_{k}^{+}\right)$

$$
\begin{aligned}
H_{ \pm}|i\rangle & =-\frac{J}{2} \sum_{\langle j i\rangle} S_{j}^{-} S_{i}^{+}|i\rangle \\
& =-\frac{J}{2} 2 S \sum_{\langle j i\rangle}|j\rangle=-J S \sum_{\mu}|i+\mu\rangle
\end{aligned}
$$

Quantum treatment

- All together

$$
H|i\rangle=\left(E_{0}+J S z\right)|i\rangle-J S \sum_{\mu}|i+\mu\rangle
$$

- Looks like a hopping Hamiltonian
- Bloch:

$$
\begin{aligned}
& |\mathbf{k}\rangle=\frac{1}{\sqrt{N}} \sum_{i} e^{i \mathbf{k} \cdot \mathbf{r}_{i}}|i\rangle \\
& H|\mathbf{k}\rangle=\left(E_{0}+J S z-J S \sum_{\mu} e^{i \mathbf{k} \cdot \mathbf{e}_{\mu}}\right)|\mathbf{k}\rangle \\
& E_{0}+\epsilon(\mathbf{k})
\end{aligned}
$$

Quantum treatment

- These are "spin waves" or "magnons"

$$
\begin{aligned}
\epsilon(\mathbf{k}) & =J S z-J S \sum_{\mu} e^{i \mathbf{k} \cdot \mathbf{e}_{\mu}} \\
& =2 J S\left(d-\sum_{\alpha=1}^{d} \cos k_{\alpha} a\right) \\
& \approx J S a^{2} k^{2} \quad \text { quadratic for small } \mathbf{k}
\end{aligned}
$$

- Magnons are gapless

N2,

- Magnons are gapless
- Energy vanishes as $\mathrm{k} \rightarrow 0$
- This is because

$$
|\mathbf{k}=0\rangle \propto S_{\mathrm{TOT}}^{-}|0\rangle
$$

- This is an example of a "Goldstone mode"
- "Goldstone's theorem": if H has a continuous symmetry that is "broken" by the ground state, there will be a gapless mode

Magnons

- Spin wave/magnon can be regarded as a quantized precession wave of slightly tilted spins

- $\varepsilon \sim k^{2}$ behavior, a general property for ferromagnets, can be understood this way

Magnons

- Think of effective field due to other spins

$$
\mathbf{h}(\mathbf{r}) \approx c_{0} \mathbf{m}+c_{1} \nabla^{2} \mathbf{m}+\cdots
$$

- Local spins precess in this field

$$
\partial_{t} \mathbf{m}=\mathbf{h} \times \mathbf{m} \approx c_{1} \nabla^{2} \mathbf{m} \times \mathbf{m}
$$

Magnons

!

$\partial_{t} \mathbf{m}=\mathbf{h} \times \mathbf{m} \approx c_{1} \nabla^{2} \mathbf{m} \times \mathbf{m}$

$$
\begin{gathered}
\mathbf{m}=\left(m_{x}, m_{y}, \sqrt{m_{0}^{2}-m_{x}^{2}-m_{y}^{2}}\right) \approx\left(m_{x}, m_{y}, m_{0}\right) \\
\partial_{t}\binom{m_{x}}{m_{y}}=c_{1} m_{0}\left(\begin{array}{cc}
0 & -k^{2} \\
k^{2} & 0
\end{array}\right)\binom{m_{x}}{m_{y}} \\
\omega \quad \omega= \pm c_{1} m_{0} k^{2}
\end{gathered}
$$

Neutron scattering

- Neutron has a $\mathrm{S}=\mathrm{I} / 2$ similar to an electron, and its own dipole moment, which interacts with magnetic dipoles in materials

$$
H_{d-d}=-\frac{\mu_{0}}{4 \pi r^{3}}\left[3(\mathbf{m} \cdot \mathbf{r})\left(\mathbf{m}^{\prime} \cdot \mathbf{r}\right)-\mathbf{m} \cdot \mathbf{m}^{\prime}\right]
$$

- Consequently, a neutron can exchange energy and momentum with electronic spins

Neutron scattering

- Integrate over all energies: get total scattering
- tool for detecting magnetic ordering in solids
- Resolve both momentum and energy of neutrons: measure spin waves

example of spin waves in $\mathrm{Yb}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ (2012)

first measurement in an insulating FM:
CrBr_{3}, 1971

