
Fermi surfaces 

• I want to talk about Fermi surfaces

• Every metal has one*, and they are all 
unique

• We’re going to lead into talking about an 
exceptional case between a metal and an 
insulator, where there is no Fermi surface: 
graphene

* Well, almost.  Except for effects of randomness of atomic positions.



Fermi surfaces

• Key result of band theory: electrons occupy quantum 
states described by continuous crystal momentum 
and discrete “band index” quantum numbers

• Energies of each band are smooth functions of quasi-
momentum, εn(k)

• Fermi statistics: states below EF are occupied, others 
empty

• Condition εn(k)=EF generally describes a surface 
(when it has solutions).  This is the Fermi surface.



Why Fermi surfaces?
• Any time we weakly perturb a system, we excite mainly low energy 

excitations

• in metals, the characteristic energy scale is EF ~ eV, so most 
perturbations are weak

• In a metal, the low energy excitations are adding or removing 
electrons near the Fermi energy (or moving them from below to 
above).

• In some cases, one can think of the excitation as a deformation of 
the surface (c.f. displacement in E field)

• It is remarkable that this geometric object in reciprocal space becomes 
essential to the physics of something as simple as a piece of metal!

• manifests both wavelike nature of electrons and quantum 
statistics!



Whence Fermi surfafes

• They are determined by the bands, i.e. solving 
εn(k)=EF .

• Can try to understand via:

• Nearly free electron theory

• Tight binding

• ab initio electronic structure

• measurement

Pretty sure you covered 
these two in 123A



Tight binding method
• The opposite limit from NFEA - assume the ionic 

potential strongly confines electrons

• only a small number of atomic orbitals are 
important

• We can try to construct Bloch states from these 
orbitals only

• conceptually similar to making “bonding” and 
“anti-bonding” orbitals on molecules

• but with 1023 atoms instead of 2!



Tight Binding

• Write the wavefunction as a superposition

• Amplitudes obey “discrete Schrodinger 
equation”
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Tight binding

• Often we assume just nearest-neighbor 
hopping

• Example: one dimensional chain

• Solve it?

• Easily generalized to 2d and 3d lattices (see 
Kittel)  
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2d hexagonal lattice
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2d hexagonal lattice

• Spectrum:

• Primitive vectors: 

• Energy: 
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2d hexagonal lattice
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Graphene

• Single layers of honeycomb lattice of carbon

• First systematically exfoliated and studied by A. Geim + 
K. Novoselov, 2004.

• Nobel prize, 2011

• Interesting because it intrinsically has a point Fermi 
surface

n.b. Prof. Andrea Young 
new faculty!



Graphene

• electronic properties?

• Carbon has Z=6, (He) 2s2 2p2 = (He) sp2π

• 1 π = pz electron per C atom not tied up 
in covalent sp2 bonds

• Can treat this via tight-binding model



Graphene
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ei are replaced by δi in many 
articles (e.g. Leggett notes).  
Also lattice can be rotated from 


