Fermi surfaces

® | want to talk about Fermi surfaces
® Every metal has one’, and they are all
unique

® We're going to lead into talking about an
exceptional case between a metal and an
insulator, where there is no Fermi surface:

graphene

*Well, almost. Except for effects of randomness of atomic positions.



Fermi surfaces

Key result of band theory: electrons occupy quantum
states described by continuous crystal momentum
and discrete “band index” quantum numbers

Energies of each band are smooth functions of quasi-
momentum, &n(k)

Fermi statistics: states below Er are occupied, others
empty

Condition &n(k)=Er generally describes a surface
(when it has solutions). This is the Fermi surface.



Why Fermi surfaces!?

® Any time we weakly perturb a system, we excite mainly low energy
excitations

® in metals, the characteristic energy scale is Er ~ eV, so most
perturbations are weak

® |n a metal, the low energy excitations are adding or removing
electrons near the Fermi energy (or moving them from below to
above).

® |In some cases, one can think of the excitation as a deformation of
the surface (c.f. displacement in E field)

® |t is remarkable that this geometric object in reciprocal space becomes
essential to the physics of something as simple as a piece of metal!

® manifests both wavelike nature of electrons and quantum
statistics!



Whence Fermi surfafes

® They are determined by the bands, i.e. solving
En(k)zEF .

® Can try to understand via:

® Nearly free electron theory

Pretty sure you covered
these two in 123A

® Tight binding Z
® ab initio electronic structure

® measurement



Tight binding method

® The opposite limit from NFEA - assume the ionic
potential strongly confines electrons

® only a small number of atomic orbitals are
important

® We can try to construct Bloch states from these
orbitals only

® conceptually similar to making “bonding” and
“anti-bonding” orbitals on molecules

e but with 1023 atoms instead of 2!



Tight Binding

® Write the wavefunction as a superposition

r) = r— R
W(r) ;Wx <

amplitude orbital of atom at R

® Amplitudes obey “discrete Schrodinger
eq Uatlon” “¥” hereis t” in many texits,

including Simon
7/

FI@DR = €QVR — ZWR,R/!DR' = €YR

atomic R"  “hopping” amplitude -
energy decays rapidly with distance



Tight binding

Often we assume just nearest-neighbor
hopping

Example: one dimensional chain

A

wa — EOwaz — ’y(wac—ka + wac—a) — 6%:
Solve it? ¢, = e'*®
e(k) = eg — 2y cos ka

Easily generalized to 2d and 3d lattices (see
Kittel)



2d hexagonal lattice

o

coVr—7 Y, Yr = €r

(R',R)




2d hexagonal lattice

o

3

«0Vr =7 ) (YRta, + YR-a,) = VR
i1




2d hexagonal lattice

® Spectrum:

3
e(k) = €g —ZVZcosk-ai

1=1
® Primitive vectors: (1,0) (=3, %) (-3, — 3
® Energy:
e(k) =€y — 2y (cosk + 2 cos £ cos fk )



2d hexagonal lattice

e(k) = €9 — 27 (COS kz + 2 cos 2 cos

k, |
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n.b. Prof. Andrea Young
new faculty!

Single layers of honeycomb lattice of carbon

First systematically exfoliated and studied by A. Geim +
K. Novoseloyv, 2004.

Nobel prize, 201 |

Interesting because it intrinsically has a point Fermi
surface



electronic properties?
Carbon has Z=6, (He) 2s%2p? = (He) sp?TT

| 71 = p* electron per C atom not tied up
in covalent sp? bonds

Can treat this via tight-binding model



Graphene

ei are replaced by §; in many
articles (e.g. Leggett notes).
Also lattice can be rotated from

7

Bipartite: A sites hop to B
sites, and vice versa

3
H¢R=€Q¢R—WZ¢R+67;:€¢R Re A

3
Hyp = €r —7 ) VR e, = €PR ReB
1=1



