
Dirac electrons
So we learned that electrons are described by a 2d 
Dirac equation

Can we see this in experiments? YES

• ARPES
• STM
• Conductivity
• “Klein tunneling”
• Landau levels

Will probably not talk 
about conductivity as it 
is a bit more subtle and 
we don’t have so much 
time.

vqµ�
µ = ✏ v ≅106 m/s = c/300
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Figure 1 The band structure of graphene. a, The experimental energy distribution of states as a function of momentum along principal directions, together with a
single-orbital model (solid lines) given by equation (1). b, Constant-energy map of the states at binding energy corresponding to ED together with the Brillouin zone boundary
(dashed line). The orthogonal double arrows indicate the two directions over which the data in Fig. 2 were acquired. c,d, Constant-energy maps at EF (=ED +0.45) (c) and
ED −1 eV (d). The faint replica bands correspond to the 6
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3 satellite peaks in low-energy electron diffraction9.
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Figure 2 The band structure of graphene near the Fermi level. a–d, Experimental energy bands along a line through the K point parallel to the !M direction (along the
vertical double arrow in Fig. 1b) as a function of progressively increased doping by potassium adsorption. The dashed lines are an extrapolation of the lower bands (below
ED), which are observed not to pass through the upper bands (above ED), suggesting the kinked shape of the bands around ED. The electron density (per cm2) is indicated in
each panel. e–h, Band maps for similar dopings acquired in an orthogonal direction through the K point (horizontal double arrow in Fig. 1b), for which one of the bands is
suppressed. The nonlinear, or ‘kinked’, dispersion of the bands together with linewidth variations (corresponding to real and imaginary parts of the self-energy Σ ) are clearly
visible in the fitted peak positions (dotted lines). The kinks, marked by arrows, occur at a fixed energy of 200 meV and near ED, the latter varying with doping. i, The
simulated spectral function, calculated using only the bare band (yellow dotted line) and ImΣ derived from the data in panel h.

overlap. Even there, we see no indication of interactions between
the graphene and substrate band structures in Fig. 1.

Such interactions are not expected considering the proposed
van der Waals bonding between graphene and SiC (ref. 9). Recent
experiments have shown that the SiC layer immediately below the
graphene is itself a carbon-rich layer, with an in-plane, graphene-
like network of sp2-derived σ-bands, but without graphene-like π-
bands23. The absence of states at the Fermi level suggests that the
pz orbitals are saturated, presumably owing to bonding with the
substrate as well as bonding within the C-rich interface layer. This
C-rich layer is a perfect template for van der Waals bonding to
the overlying graphene because it offers no pz orbitals for bonding
to the graphene. The photon-energy dependence of the π-band
intensities, absent for m = 1 films, but clearly observed for m ≥ 2,
confirms this lack of hybridization (T.O., A.B., J.L.McC., T.S., K.H.,
E.R., manuscript in preparation).

The only effect of the interface on the measurements is through
the nearly incommensurate (6

√
3 × 6

√
3)R30◦ symmetry of the

interface C-rich layer with respect to SiC. This interface induces
diffraction of the primary bands, resulting in the observed weak
satellite bands, similar to the satellite spots seen in low-energy
electron diffraction9.

Despite the overall good agreement between equation (1) and
the data in Fig. 1, profound deviations are observed when we
examine the region around EF and ED in more detail. Figure 2a
shows a magnified view of the bands measured along a line
(the vertical double arrow in Fig. 1b) through the K point. The
predicted, or ‘bare’ bands in this direction are nearly perfectly
linear and mirror symmetric with respect to the K point according
to equation (1), similar to the H point of bulk graphite21,22. The
actual bands deviate from this prediction in two significant ways.
First, at a binding energy h̄ωph ∼ 200 meV below EF, we observe
a sharpening of the bands accompanied by a slight kink in the
bands’ dispersions. We attribute this feature to renormalization
of the electron bands near EF by coupling to phonons24, as
discussed later.
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solid line is a plot of the energy 
we calculated in class!

Bostwick et al, 2006



STM
An STM measures the “local” density of states

Current is proportional to the number of 
states in the sample between EF and EF + eV
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STM
DOS of graphene

# of states with energy between 0 and E?

kF = ✏F /v

N(✏) = 2⇥ ⇡k2F
(2⇡)2

=
k2F
2⇡

=
✏2

2⇡v2

DOS (per unit area)

g(✏) = 2⇥
����
dN

d✏

���� =
2|✏|
⇡v2

Rep. Prog. Phys. 75 (2012) 056501 E Y Andrei et al

Figure 13. Identifying a decoupled graphene layer. (a) Atomic resolution topography in region C of figure 12(a) shows a triangular lattice.
(b) STS in zero field and at T = 4.2 K in region C. (c) Finite field spectra (B = 3 T) in region C shows no LL peak sequence. (d) Atomic
resolution topography in region G shows the honeycomb structure. (b) STS in zero field and at T = 4.2 K shows the ‘V-shaped’ DOS that
vanishes at the DP expected for massless Dirac fermions. The Fermi energy is taken to be at zero. (c) LLs are clearly seen in region G.
Spectra at T = 4.2 K and B = 4 T . (ac modulation: 2 mV, junction resistance ∼6 G!).

where ED is the energy at the DP. The N = 0 level is
a consequence of the chirality of the Dirac fermions and
does not exist in any other known 2D electron system. This
field-independent state at the DP together with a square-root
dependence on both field and level index are the hallmarks
of massless Dirac fermions. They are the criterion that is
used for identifying graphene electronically decoupled from
the environment or for determining the degree of coupling
between coupled layers, as discussed below.

The field dependence of the STS spectra in region G,
shown in figure 14, exhibits an unevenly spaced sequence of
peaks flanking symmetrically, in the electron and hole sectors,
a peak at the DP. All the peaks, except the one at the DP, which
is identified with the N = 0 LLs, fan out to higher energies
with increasing field. The peak heights increase with field
consistent with the increasing degeneracy of the LLs. To verify
that the sequence is consistent with massless Dirac fermions we
plot the peak positions as a function of the reduced parameter
(|N |B)1/2 as shown in figure 14(b). This scaling procedure
collapses all the data unto a straight line. Comparing with
equation (9), the slope of the line gives a direct measure of
the Fermi velocity, vF = 0.79 × 106 m s−1. This value is
∼20% below that expected from single particle calculations
and, as discussed later, the reduction can be attributed to e–ph
interactions.

We conclude that the flake marked as region G is
electronically decoupled from the substrate.

LL spectroscopy. The technique described above, also
known as LL spectroscopy, was developed by Li et al [65, 66]
to probe the electronic properties of graphene on graphite.
They showed that LL spectroscopy can be used to obtain

information about the intrinsic properties of graphene: the
Fermi velocity, the quasiparticle lifetime, the e–ph coupling
and the degree of coupling to the substrate. LL spectroscopy
is a powerful technique which gives access to the electronic
properties of Dirac fermions when they define the surface
electronic properties of a material and when it is possible to
tunnel into the surface states. The technique was adopted and
successfully implemented to probe massless Dirac fermions
in other systems including graphene on SiO2 [120], epitaxial
graphene on SiC [150], graphene on Pt [151] and topological
insulators [152, 153].

An alternative method of accessing the LLs is to probe the
allowed optical transitions between the LLs using cyclotron
resonance measurements. This was demonstrated in early
experiments on SiO2 [154, 155], epitaxial graphene [156] and
more recently on graphite [157].

Finding graphene on graphite. The flake in region G of
figure 12 exhibits all the characteristics of intrinsic graphene—
honeycomb crystal structure, a V-shaped DOS which vanishes
at the DP, an LL sequence which displays the characteristic
square root dependence on field and level index, and contains
an N = 0 level. One can use these criteria to develop a
recipe for finding decoupled graphene flakes on graphite. For
a successful search one needs the following. (1) STM with
a coarse motor that allows scanning large areas in search of
stacking faults or atomic steps. Decoupled graphene is usually
found covering such faults as shown in figure 12. (2) A
fine motor to zoom into subatomic length scales after having
identified a region of interest. If the atomic resolution image in
this region shows a honeycomb structure as in figure 13(d) one
continues to the next step. (3) STS. If the region is completely
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Klein “tunneling”
Dirac electrons can pass through a barrier without 

any reflection It is not really tunneling as 
what happens is they turn 
from electrons into holes 

!K!k" =
1
#2

$ 1
±ei"k

% . !24"

We further assume that the scattering does not mix the
momenta around K and K! points. In Fig. 6, we depict
the scattering process due to the square barrier of width
D.

The wave function in the different regions can be writ-
ten in terms of incident and reflected waves. In region I,
we have
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1
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$ 1
sei# %ei!kxx+kyy" +

r
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$ 1
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with #=arctan!ky /kx", kx=kF cos #, ky=kF sin #, and kF
the Fermi momentum. In region II, we have
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with "=arctan!ky /qx" and

qx = #!V0 − E"2/!vF
2" − ky
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and finally in region III we have a transmitted wave only,

!III!r" =
t

#2
$ 1

sei# %ei!kxx+kyy", !28"

with s=sgn!E" and s!=sgn!E−V0". The coefficients r, a,
b, and t are determined from the continuity of the wave
function, which implies that the wave function has to
obey the conditions !I!x=0,y"=!II!x=0,y" and !II!x
=D ,y"=!III!x=D ,y". Unlike the Schrödinger equation,
we only need to match the wave function but not its
derivative. The transmission through the barrier is ob-
tained from T!#"= tt* and has the form

T!#" =
cos2 " cos2 #

&cos!Dqx"cos # cos "'2 + sin2!Dqx"!1 − ss! sin # sin ""2 . !29"

This expression does not take into account a contribu-
tion from evanescent waves in region II, which is usually
negligible, unless the chemical potential in region II is at
the Dirac energy !see Sec. IV.A".

Note that T!#"=T!−#", and for values of Dqx satisfy-
ing the relation Dqx=n$, with n an integer, the barrier
becomes completely transparent since T!#"=1, indepen-
dent of the value of #. Also, for normal incidence !#
→0 and "→0" and any value of Dqx, one obtains T!0"
=1, and the barrier is again totally transparent. This re-
sult is a manifestation of the Klein paradox !Calogeracos
and Dombey, 1999; Itzykson and Zuber, 2006" and does
not occur for nonrelativistic electrons. In this latter case
and for normal incidence, the transmission is always
smaller than 1. In the limit (V0 ( % (E(, Eq. !29" has the
following asymptotic form:

T!#" )
cos2 #

1 − cos2!Dqx"sin2 #
. !30"

In Fig. 7, we show the angular dependence of T!#" for
two different values of the potential V0; it is clear that
there are several directions for which the transmission is

1. Similar calculations were done for a graphene bilayer
!Katsnelson et al., 2006" with the absence of tunneling in
the forward !ky=0" direction its most distinctive behav-
ior.

The simplest example of a potential barrier is a square
potential discussed previously. When intervalley scatter-
ing and the lack of symmetry between sublattices are
neglected, a potential barrier shows no reflection for
electrons incident in the normal direction !Katsnelson et
al., 2006". Even when the barrier separates regions
where the Fermi surface is electronlike on one side and
holelike on the other, a normally incident electron con-
tinues propagating as a hole with 100% efficiency. This
phenomenon is another manifestation of the chirality of
the Dirac electrons within each valley, which prevents
backscattering in general. The transmission and reflec-
tion probabilities of electrons at different angles depend
on the potential profile along the barrier. A slowly vary-
ing barrier is more efficient in reflecting electrons at
nonzero incident angles !Cheianov and Fal’ko, 2006".

Electrons moving through a barrier separating p- and
n-doped graphene, a p-n junction, are transmitted as
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FIG. 6. !Color online" Klein tunneling in graphene. Top: sche-
matic of the scattering of Dirac electrons by a square potential.
Bottom: definition of the angles # and " used in the scattering
formalism in regions I, II, and III.
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Just solve Dirac equation for a potential barrier

• In each region solution is a free plane wave
• Match wavefunction at both interfaces x=0,D



Dirac equation
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Scattering problem
Take for simplicity “normal incidence” ky=0
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Scattering problem
Matching 1 + r = a+ b

1� r = �a+ b

aeiqxD + be�iq
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D

Solve a = r
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)D

a = r = 0

NO reflection.  Perfect 
transmission.

You can find general 
solution away from 
Normal incidence in the 
Castro Neto review article



Landau levels
Landau levels are a general phenomena 

for electrons in magnetic fields

~dk
dt

= �evn(k)⇥B

Which implies k ·B = const

✏n(k) = const

So electrons just circle in constant energy 
contours in k space

electron interferes with itself 
and orbit becomes quantized

This works differently 
for ordinary 
“Schrödinger” and Dirac 
electrons


