
Landau levels

• Simplest case: “free” 2d electrons in a 
magnetic field (applies to electrons in a 
semiconductor 2DEG)

• Hamiltonian

• Choose kx eigenstate
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Landau levels

• One obtains

• This is a 1d simple harmonic oscillator with 
a frequency and center
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Landau levels

• Energy levels = Landau levels are 

• Each is highly degenerate due to 
independence of energy on kx

• How many?
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Landau levels

• Degeneracy

• Flux quantum

• This is basically the number of minimal 
quantized cyclotron orbits which fit into 
the sample area
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Dirac Landau Levels

• We saw that Schrödinger electrons form 
Landau levels with even spacing.

• It turns out Dirac electrons also form 
Landau levels but with different structure

• We can just follow the treatment in the 
graphene RMP



Dirac Landau levels
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Dirac LLs
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Dirac LLs
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Dirac LLs
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Relativistic vs NR LLs
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Fermi level is “in 
the middle” of 0th 

LL in undoped 
graphene

This is because there 
are a lot of electrons in 
graphene: 1 per C 
atom, filling the 
“negative” energy LLs

Fermi in a 
semiconductor 
2DEG is usually 

“high”

A semiconductor 2DEG 
is formed by doping 
electrons into the 
conduction band.  



Edge states
• A simple way to understand the 

quantization of Hall effect, realized by 
Halperin

• Consider Hall bar
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Edge states
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If V(y) is slowly varying, then we can approximate
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Edge states
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Low energy states at the edges of the system
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Edge states

kx• Near the edge, we can linearize the energy

• This describes “right and left-moving chiral 
fermions” = edge states
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Edge states

• Corresponds to semi-classical “skipping 
orbits”


