Landau levels

- Simplest case:"free" 2d electrons in a magnetic field (applies to electrons in a semiconductor 2DEG)
- Hamiltonian

$$
H=\frac{1}{2 m}(\mathbf{p}+e \mathbf{A})^{2}
$$

$$
\mathbf{A}=B y \hat{x}
$$

- Choose k_{x} eigenstate

$$
\psi(x, y)=e^{i k_{x} x} Y(y)
$$

Landau levels

- One obtains

$$
\frac{1}{2 m}\left(-\hbar^{2} \frac{d^{2}}{d y^{2}}+(e B)^{2}\left(y-\frac{\hbar k_{x}}{e B}\right)^{2}\right) Y=\epsilon Y
$$

- This is a Id simple harmonic oscillator with a frequency and center

$$
\omega_{c}=\frac{e B}{c} \quad y_{0}=\frac{\hbar k_{x}}{e B}=k_{x} \ell^{2} \quad \ell=\sqrt{\frac{\hbar}{e B}}
$$

cyclotron frequency

Landau levels

- Energy levels = Landau levels are

$$
\epsilon_{n}=\hbar \omega_{c}\left(n+\frac{1}{2}\right) \quad n=0,1,2, \cdots
$$

- Each is highly degenerate due to independence of energy on k_{x}
- How many?

Landau levels

- Degeneracy

$$
N=\frac{A}{2 \pi \ell^{2}}=A B \frac{e}{h}=\frac{\Phi}{\varphi}
$$

Flux quantum

$$
\varphi=h / e \approx 4 \times 10^{-15} T \cdot m^{2}
$$

- This is basically the number of minimal quantized cyclotron orbits which fit into the sample area

Dirac Landau Levels

- We saw that Schrödinger electrons form Landau levels with even spacing.
- It turns out Dirac electrons also form Landau levels but with different structure
- We can just follow the treatment in the graphene RMP

Dirac Landau levels

$$
\begin{gathered}
H=v \vec{\sigma} \cdot(\vec{p}+e \vec{A}) \\
=-i \hbar v \vec{\sigma} \cdot\left(\vec{\nabla}+i \frac{e}{\hbar} \vec{A}\right) \\
=\hbar v\left(\begin{array}{cc}
0 & -i \partial_{x}-\partial_{y}+\frac{e B}{\hbar} y \\
-i \partial_{x}+\partial_{y}+\frac{e B}{\hbar} y & 0
\end{array}\right) \\
H \psi=E \psi \quad \\
\psi(x, y)=e^{i k_{x} x} \phi(y) \\
\hbar v\left(\begin{array}{cc}
0 & k_{x}-\partial_{y}+\frac{e B}{\hbar} y \\
k_{x}+\partial_{y}+\frac{e B}{\hbar} y & 0
\end{array}\right) \phi(y)=E \phi(y)
\end{gathered}
$$

Dirac LLs

$$
\ell=\sqrt{\frac{\hbar}{e B}}
$$

$$
\begin{aligned}
& \left.\frac{\hbar v}{\ell}\binom{0}{k_{x} \ell+\partial_{y / \ell}+\left(\frac{e B}{\hbar} y \ell\right.} \begin{array}{c}
k_{x} \ell-\partial_{y / \ell}+\frac{e B}{\hbar} y \ell \\
0
\end{array}\right) \phi(y)=E \phi(y) \\
& \phi(y)=\Phi\left(y / \ell+k_{x} \ell\right) \quad \omega_{c}=\sqrt{2} v / \ell \\
& \hbar \omega_{c}\left(\begin{array}{cc}
0 & \frac{1}{\sqrt{2}}\left(-\partial_{\xi}+\xi\right) \\
\frac{1}{\sqrt{2}}\left(\partial_{\xi}+\xi\right) & 0
\end{array}\right) \Phi(\xi)=E \Phi(\xi)
\end{aligned}
$$

Dirac LLs

$$
\begin{array}{cll}
\hbar \omega_{c}\left(\begin{array}{cc}
0 & a^{\dagger} \\
a & 0
\end{array}\right) \Phi(\xi)=E \Phi(\xi) & a=\frac{1}{\sqrt{2}}\left(\partial_{\xi}+\xi\right) \\
{\left[a, a^{\dagger}\right]=1} & a^{\dagger}=\frac{1}{\sqrt{2}}\left(-\partial_{\xi}+\xi\right) \\
& N=a^{\dagger} a & \\
& N|n\rangle=n|n\rangle & a|0\rangle=0 \quad \text { etc. }
\end{array}
$$

$$
\Phi=\binom{|0\rangle}{ 0} \quad\left(\begin{array}{cc}
0 & a^{\dagger} \\
a & 0
\end{array}\right) \Phi=\binom{0}{a|0\rangle}=0
$$

Zero energy state: lives entirely on "A" sublattice

Dirac LLs

$\hbar \omega_{c}\left(\begin{array}{cc}0 & a^{\dagger} \\ a & 0\end{array}\right) \Phi(\xi)=E \Phi(\xi)$
More general state $\quad \Phi=\binom{|n\rangle}{ c|n-1\rangle}$

$$
\begin{aligned}
& \hbar \omega_{c}\binom{a^{\dagger} c|n-1\rangle}{ a|n\rangle}=E\binom{|n\rangle}{ c|n-1\rangle} \\
& \hbar \omega_{c}\binom{c \sqrt{n}|n\rangle}{\sqrt{n}|n-1\rangle}=E\binom{|n\rangle}{ c|n-1\rangle} \\
& c= \pm 1 \\
& E= \pm \hbar \omega_{c} \sqrt{n}
\end{aligned}
$$

Relativistic vs NR LL

A semiconductor 2DEG is formed by doping electrons into the conduction band.

Fermi in a

 semiconductor2DEG is usually \qquad
"high"
\qquad
\qquad
$\omega_{c} / 2$ \qquad
$\pi 7$

Fermi level is "in
0
\qquad
\qquad
\qquad
\qquad he middle" of Oth
LL in undoped grapheme

This is because there are a lot of electrons in graphene: 1 per C
atom, filling the
"negative" energy LIs

Edge states

- A simple way to understand the quantization of Hall effect, realized by Halperin
- Consider Hall bar

Edge states

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d y^{2}}+\frac{1}{2} m \omega_{c}^{2}\left(y-k_{x} \ell^{2}\right)^{2}+V(y)\right] Y=\epsilon Y
$$

If $\mathrm{V}(\mathrm{y})$ is slowly varying, then we can approximate

$$
\begin{gathered}
V(y) \approx V\left(k_{x} \ell^{2}\right) \\
\epsilon_{n} \approx \hbar \omega_{c}\left(n+\frac{1}{2}\right)+V\left(k_{x} \ell^{2}\right)
\end{gathered}
$$

Edge states

$\epsilon_{n} \approx \hbar \omega_{c}\left(n+\frac{1}{2}\right)+V\left(k_{x} \ell^{2}\right)$

Low energy states at the edges of the system

Edge states

$\epsilon_{n} \approx \hbar \omega_{c}\left(n+\frac{1}{2}\right)+V\left(k_{x} \ell^{2}\right)$

- Near the edge, we can linearize the energy

$$
k_{x}= \pm K_{n}+q_{x} \quad \epsilon_{n} \approx \epsilon_{F} \pm v_{n} q_{x}
$$

- This describes "right and left-moving chiral fermions" = edge states

Edge states

- Corresponds to semi-classical "skipping orbits"

