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WHY??



Robustness

• Why does disorder not mess it up more?

• Answer: this is due to the macroscopic 
separation of protected chiral edge states

• Two ingredients:

• Scattering at a single edge does not affect 
it

• Scattering between edges is exponentially 
suppressed



Single edge

• Scattering at one edge is ineffective because 
electrons are chiral: they cannot turn 
around!

electron just picks up a phase shift
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Robustness

• To backscatter, electron must transit across 
the sample to the opposite edge.  How 
does this happen?

• Think about bulk states with disorder

F = �rU(r)

k ⇡ m

e
F⇥Bhigh field

describes center of mass 
drift of small cyclotron 

orbits - along 
equipotentials
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Robustness

• Bulk orbits k ⇡ m

e
F⇥B

Note: near edge where force is normal to boundary, 
this just gives the edge state



Robustness

• In real samples, disorder is important, and 
splits the degeneracy of the bulk LL states

• BUT...it cannot “back-scatter” from one 
edge to another - “protected” edge state

Edge states: smooth potential
!!

!
equipotential line
Transition from N=3 to N= 2 edge states 

velocity

7

In the center of a Hall 
plateau, it looks like this

Electrons need to quantum 
tunnel from one localized state 
to another to cross the sample 

and backscatter
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somewhere here an edge state 
“peels off” from boundary and 

crosses the bulk



Robustness

• Quantum picture

it turns out truly delocalized 
states occur only at one 

energy...this is NOT obvious

consequently, IQHE “steps” in 
Hall conductance are expected 
to be infinitely sharp at T=0, for 

a large sample



IQHE phases
• Actually, the states with different integer quantum Hall 

conductivity are different phases of matter at T=0: they are sharply 
and qualitatively distinguished from one another by σxy

• This means that to pass from one IQHE state to another 
requires a quantum phase transition: this corresponds to the point 
at which the edge state delocalizes and “percolates” through the 
bulk

• However, unlike most phases of matter, IQHE states break no 
symmetry

• They are distinguished not by symmetry but by 
“topology” (actually the Hall conductivity can be related to 
topology...a bit of a long story)



Graphene IQHE

holding for a graphene stripe with a zigzag !z=1" and
armchair !z=−1" edges oriented along the x direction.
Fourier transforming along the x direction gives

H = − t #
k,n,!

$ei"!#/#0"n$!1+z"/2%a!
†!k,n"b!!k,n"

+ e−i"!#/#0"neikaa!
†!k,n"b!„k,n − !1 − z"/2…

+ ei"!#/#0"n$!z−1"/2%a!
†!k,n"b!!k,n − z" + H.c.% .

We now consider the case of zigzag edges. The eigen-
problem can be rewritten in terms of Harper’s equations
!Harper, 1955", and for zigzag edges we obtain !Rammal,
1985"
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where the coefficients %!k ,n" and &!k ,n" show up in
Hamiltonian’s eigenfunction *'!k"+ written in terms of
lattice-position-state states as

*'!k"+ = #
n,!

$%!k,n"*a ;k,n,!+ + &!k,n"*b ;k,n,!+% .

!116"

Equations !114" and !115" hold in the bulk. Considering
that the zigzag ribbon has N unit cells along its width,
from n=0 to n=N−1, the boundary conditions at the
edges are obtained from Eqs. !114" and !115", and read
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(&!k,0" , !117"
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Similar equations hold for a graphene ribbon with arm-
chair edges.

In Fig. 21, we show 14 energy levels, around zero en-
ergy, for both the zigzag and armchair cases. The forma-
tion of the Landau levels is signaled by the presence of
flat energy bands, following the bulk energy spectrum.
From Fig. 21, it is straightforward to obtain the value of
the Hall conductivity in the quantum Hall effect regime.
We assume that the chemical potential is in between two
Landau levels at positive energies, shown by the dashed
line in Fig. 21. The Landau level structure shows two
zero-energy modes; one of them is electronlike !hole-
like", since close to the edge of the sample its energy is
shifted upwards !downwards". The other Landau levels
are doubly degenerate. The determination of the values
for the Hall conductivity is done by counting how many
energy levels !of electronlike nature" are below the
chemical potential. This counting produces the value
2N+1, with N=0,1 ,2 , . . . !for the case of Fig. 21 one has

FIG. 20. !Color online" Quantum Hall effect in graphene as a
function of charge-carrier concentration. The peak at n=0
shows that in high magnetic fields there appears a Landau level
at zero energy where no states exist in zero field. The field
draws electronic states for this level from both conduction and
valence bands. The dashed lines indicate plateaus in !xy de-
scribed by Eq. !111". Adapted from Novoselov, Geim, Moro-
zov, et al., 2005.
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FIG. 21. !Color online" Fourteen energy levels of tight-binding
electrons in graphene in the presence of a magnetic flux #
=#0 /701, for a finite stripe with N=200 unit cells. The bottom
panels are zoom-in images of the top ones. The dashed line
represents the chemical potential $.
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What first experiments saw...



Relativistic vs NR LLs
E

0
Fermi level is “in 

the middle” of 0th 
LL in undoped 

graphene

• We expect σxy to 
change by ±e2/h for 
each filled Landau level
• Each Landau level is 
4-fold degenerate
• 2 (spin) * 2 (K,K’)

Consistent with 
observations, but zero 

is not fixed



Relativistic vs NR LLs
E

0
Fermi level is “in 

the middle” of 0th 
LL in undoped 

graphene

• Guess: when EF=0, 
there are equal 
numbers of holes and 
electrons: σxy =0

Then we get the 
observed sequence
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Edge state picture
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Spin Filtered Edge States and Quantum Hall Effect in Graphene

Dmitry A. Abanin, Patrick A. Lee, Leonid S. Levitov
Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139

Electron edge states in graphene in the Quantum Hall effect regime can carry both charge and
spin. We show that spin splitting of the zeroth Landau level gives rise to counterpropagating modes
with opposite spin polarization. These chiral spin modes lead to a rich variety of spin current states,
depending on the spin flip rate. A method to control the latter locally is proposed. We estimate
Zeeman spin splitting enhanced by exchange, and obtain a spin gap of a few hundred Kelvin.

A new electron system with low carrier density and
high mobility was recently realized in two-dimensional
graphene [1]. By varying the carrier density with a gate
one can explore a range of interesting states, in particu-
lar the anomalous quantum Hall effect [2, 3] (QHE). In
contrast to the well-known integer QHE in silicon MOS-
FETs [4] the QHE in graphene occurs at half-integer mul-
tiples of 4, the degeneracy due to spin and orbit. This
has been called the half-integer QHE. The unusually large
Landau level spacing makes QHE in graphene observable
at temperatures of 100 K and higher.

Here we explore the spin effects in graphene QHE. In
the presence of Zeeman splitting transport in graphene is
described by an unusual set of edge states which we shall
call chiral spin edge states. These states are reminiscent
of the ordinary QHE edge states [5], but can propagate in
opposite directions for opposite spin polarizations. (As
shown in [6], similar states can arise due to spin-orbit
coupling in the absence of magnetic field. However, the
weakness of spin-orbital effects makes the corresponding
spin gap quite small.) The chiral spin edge modes can
be used to realize an interesting spin transport regime,
in which spin and charge currents can be controlled inde-
pendently. Observation of these phenomena is facilitated
by fairly large magnitude of the spin gap. The gap is en-
hanced due to electron correlation and exchange, and can
reach a few hundred Kelvin for realistic magnetic field.

The half-integer QHE in graphene was interpreted
in terms of a quantum anomaly of the zeroth Landau
level [7]. Alternatively, these properties are easily un-
derstood from the edge states viewpoint, similar to the
usual QHE. This was done is Ref. [8] using numerical
treatment of the zigzag edge. Here we present a contin-
uum description of the edge states, using the massless
Dirac model [9] which provides a good approximation for
Carbon π-electron band near its center. We reduce the
problem to a one-dimensional Schrödinger equation with
a potential which depends on the boundary type. By
comparing the behavior for armchair and zigzag bound-
ary, we show that the energy spectrum properties near
the edge are universal and imply the half-integer QHE.

To interpret the half-integer QHE, let us inspect the
energies of the first few Landau levels (LL) obtained for
an armchair boundary (Fig. 1(a)). First we ignore elec-
tron spin. In the bulk the LL’s are doubly degenerate,
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FIG. 1: (a) Graphene energy spectrum near the armchair
boundary obtained from Dirac model, Eq.(1). The boundary
condition, Eq.(5), lifts the K, K′ degeneracy. The odd integer
numbers of edge modes lead to the half-integer QHE. (b) Spin-
split graphene edge states: the blue (red) curves represent
the spin up (spin down) states. These states propagate in
opposite directions at zero energy.

due to two species of Dirac particles located near K and
K ′, the inequivalent corners of the first Brillouin zone.
We note that the zeroth LL splits into two levels with
positive and negative energies. In contrast, the behavior
of the edge states associated with higher LL’s is more con-
ventional [5]: the energies of positive (negative) LL’s in-
crease (decrease) as one approaches the boundary. Hence
in the spinless case the number of edge states can take
only odd integer values and the Hall conductivity is odd
integer in units of e2/h. For example, when the chemi-
cal potential is between the n = −1 and n = −2 LL’s,
there are three branches of active edge states: two of
them derived from the LL with n = −1 and one from
the LL with n = 0. As a result, although each Landau
level filling factor is an integer, the conductance at QHE
plateaus is half-integer in units of 4e2/h which accounts
for both the K, K ′ and spin degeneracy.

This behavior is modified in an interesting way by the
spin splitting of LL’s (Fig. 1(b)). When the chemical
potential µ lies in the interval − 1

2
∆s < µ < 1

2
∆s, the

zeroth LL is spin polarized, with only spin down states
being filled. However, there exists a branch of up-spin
edge states going to negative energies. The states of this
branch with ε < µ will be filled and will contribute to
transport on equal footing with the down-spin states.
Notably, the up-spin and down-spin states have oppo-
site chiralities, i.e. they propagate in opposite directions.
These states carry opposite charge currents but equal
spin currents. As a result, the edge transport in the spin

We will not work this out 
here, but one can show 
that levels at the edge 
bend as shown here

The downward bending 
of half the levels naturally 

explains the observed 
quantization, and why the 
filled valence states do 
not contribute to σxy 

the splitting of n != 0 levels shown is due 
to lifting of the spin/valley degeneracy, 
which we have not talked about.

This leads to additional integer states at 
higher fields.



Topological Insulators

• So the IQHE states are examples of what we 
now call “Topological Insulators”: states which 
are distinguished by “protected” edge states

• Until very recently, it was thought that this 
physics was restricted to high magnetic fields 
and 2 dimensions

• But it turns out there are other TIs...even in 
zero field and in both 2d and 3d!



Topological insulators

• General understanding: insulators can have gaps that are 
“non-trivial”: electron wavefunctions of filled bands are 
“wound differently” than those of ordinary insulators

“unwinding” of 
wavefunctions requires 

gapless edge states



Topological insulators

• 2005: Kane+Mele “Quantum spin Hall effect”: 2d 
materials with SOC can show protected edge states in 
zero magnetic field

• 2007: QSHE - now called 2d “Z2” topological insulator 
- found experimentally in HgTe/CdTe quantum wells

• 2007: Z2 topological insulators predicted in 3d 
materials

• 2008: First experiments on Bi1-xSbx start wave of 3d 
TIs

Since then there has been explosive growth



QSHE
• Edge states!

R⇑
L,⇓

like IQHE but with counter-propagating edge states for 
opposite spin

To preserve time-
reversal symmetry, there 
*must* be counter-
propagating edge states, 
and no net spin 
(magnetization)

“topological invariant” of 
QSHE is Z2, unlike for IQHE 
where the invariant is the 
Hall conductance (in units 
of e2/h), which is an 
integer.

2d topology is “all or 
nothing”

You can see this by looking 
at the edge states


