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A suspended sheet of pure graphene – a plane layer of C atoms bonded together in a hon-

eycomb lattice – is the “most two-dimensional” system imaginable. Such sheets have long

been known to exist in disguised forms – in graphite (many graphene sheets stacked on top

of one another), C nanotubes (a graphene sheet rolled into a cylinder) and fullerenes (buck-

yballs), which are small areas of a graphene sheet sewn together to form an approximately

spherical surface. Moreover, it was appreciated that every time one writes on a sheet of

paper with a “lead” (i.e. graphite) pencil one probably produces the odd flake of graphene,

along with a whole lot of other by-products; however, until 2004, it was generally believed

(a) that an extended graphene sheet would not be stable against the effects of thermal and

other fluctuations, and (b) that even if they were stable, it would be impossible to isolate

them so that their properties could be systematically studied. In that year, André Geim

and his colleagues at the University of Manchester in the UK demonstrated that both these

beliefs were false: they created single graphene sheets1 by peeling them off a graphite sub-

strate using scotch tape, and characterized them as indeed single-sheet by simple optical

microscopy on top of a SiO2 substrate. (This procedure, which turns out to be exquisitely

sensitive to the details of the substrate, was an essential ingredient in the success of the

whole operation. A more recent and faster selection technique is Raman spectroscopy).

Subsequently it was found that small graphene sheets do not need to rest on substrates but

can be freely suspended from a scaffolding; furthermore, bilayer and multilayer sheets can

be prepared and characterized. As a result of these developments, the number of papers on

graphene published in the last few years exceeds 3000.

It was realized more than 60 years ago that the electronic band structure of graphene,

should it ever be possible to produce it, would be likely to be particularly interesting. Let

us start by considering a perfectly flat and pure free-standing graphene sheet, with the

standard periodic boundary conditions; subsequently we shall come back and consider how

the corrections to this zeroth-order model which certainly occur in real life may affect the
1And also single-atom-thick sheets of a number of other materials such as BSCCO.
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Figure 1:

results. We start by setting up an appropriate notation. The electronic structure of an

isolated C atom is (1s)2(2s)2(2p)4; in a solid-state environment the 1s electrons remain

more or less inert, but the 2s and 2p electrons hybridize. One possible result is four sp3

orbitals, which naturally tend to establish a tetrahedral bonding pattern that soaks up all

the valence electrons: this is precisely what happens in the best known solid form of C,

namely diamond, which is a very good insulator (band gap ∼ 5 eV). However, an alternative

possibility is to form three sp2 orbitals, leaving over a more or less pure p-orbital. In that

case the natural tendency is for the sp2 orbitals to arrange themselves in a plane at 120◦

angles, and the lattice thus formed is the honeycomb lattice.

We note that there are two inequivalent sublattices, here labeled A and B, with the envi-

ronments of the corresponding atoms being mirror images of one another. It is convenient

to choose our Bravais lattice to have primitive lattice vectors a1, a2 given as shown by
(
the

notation is (x, y)
)

a1 =
a

2

(
3,
√

3
)
, a2 =

a

2

(
3,−
√

3
)

(1)

where a is the nearest-neighbor C-C spacing (≈ 1.42 Å). The reciprocal lattice vectors b1, b2

defined by the condition ai · bj = 2πδij are then

b1 =
2π
3a

(
1,
√

3
)
, b2 =

2π
3a

(
1,−
√

3
)

(2)

We define the first Brillouin zone of the reciprocal lattice in the standard way, as bounded
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by the planes bisecting the vectors to the nearest reciprocal lattice points. This gives a

FBZ of the same form as the original hexagons of the honeycomb lattice, but rotated with

respect to them by π/2.

FBZ

It is clear that the six points at the corners of the FBZ fall into two

groups of three which are equivalent, so we need consider only two

equivalent corners that we label K and K ′ as in the figure. Explicitly,

their positions in momentum space are given by

K =
2π
3a

(
1,

1√
3

)
, K ′ =

2π
3a

(
1,− 1√

3

)
. (3)

However, it is equally legitimate (and sometimes more useful) to choose K′ to be the open

circle in the figure. If we do so, it is important to stress that K and K′ are not connected

by a reciprocal lattice vector, they are truly independent values of k.

It is convenient to note at this point that for an A-sublattice atom the three nearest-neighbor

vectors in real space are given by

δ1 =
a

2

(
1,
√

3
)
, δ2 =

a

2

(
1,−
√

3
)
, δ3 = −a(1, 0) (4)

while those for the B-sublattice are the negatives of these.

For a first approach to the electronic band structure, let’s start by modeling it by a tight-

binding model with nearest-neighbor hopping only: The relevant atomic orbital is the single

(pσ) (or more correctly π) C orbital which is left unfilled by the bonding electrons, and which

is oriented normal to the plane of the lattice: as usual, this orbital can accommodate two

electrons with spin projection ±1. If we denote the orbital on atom i with spin σ by (i, σ),

and the corresponding creation operator by a†iσ(b†iσ) for an atom on the A(B) sublattice,

then the nearest-neighbor tight-binding Hamiltonian has the simple form

ĤTB,n.n. = −t
∑
ij=n.n.
σ

(a†iσbjσ + H.c.) (5)

The numerical value of the nearest-neighbor hopping matrix element t, which sets the

overall scale of the π-derived energy band, is believed to be about 2.8 eV; the exact value

is unimportant for subsequent results. We shall first explore the band structure, and the

nature of the electronic states, generated by the simple Hamiltonian (5), and later examine

how these are affected by corrections to it.

It is convenient to write the TB eigenfunctions in the form of a spinor, whose components

correspond to the amplitudes on the A and B atoms respectively within the unit cell labeled
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by a reference point R0
i . It is a matter of convention how we choose the pair A and B and

the point R0
i , but for definiteness, let us choose B to be separated from A by δ1 and R0

i

at the position of A as shown. Then the TB eigenfunctions have the form (apart from the

spin index)

B

A

(
αk

βk

)
=
∑
i

exp ik ·R0
i

(
a†i e
−ik·δ1/2

b†i e
ik·δ1/2

)
(6)

where b†i creates an electron on the B atom in cell i. The factor

e±ik·δ/2 in the spinor components is inserted in order to simplify

subsequent expressions. The resulting Hamiltonian in the k-representation is purely off-

diagonal in this representation:

Ĥk =

(
0 ∆k

∆∗k 0,

)
∆k ≡ −t

3∑
l=1

exp ik · δl (7)

From the explicit expressions (4) for the nearest neighbor vectors δl we obtain

∆k = −t exp−ikxa

(
1 + 2 exp

(
i · 3kxa

2

)
cos
√

3
2

kya

)
(8)

Evidently the eigenvalues of H, εk are given by

εk = ±|∆k| = ±t

(
1 + 4 cos

3kxa
2

cos
√

3
kya

2
+ 4 cos2

√
3

2
kya

)1/2

(9)

(
which some elementary algebra shows is identical to CN’s eqn. (6)

)
. It is interesting to

enquire whether there are any values of k for which ∆k (hence εk) is zero? Any such value

must satisfy the conditions

3kxa
2

= 2nπ, cos
√

3
2
kya = −1/2 (n integral) (10)

or
3kxa

2
= (2n+ 1)π, cos

√
3

2
kya = +1/2

The first choice takes ky outside the FBZ, but the second (with n = 0) is satisfied exactly

at the “corner” points K and K ′ which we previously identified; for a reason that will soon

be clear, these points are called the “Dirac points”.

The first significant feature of this result is that, since the energy band is exactly symmetric

about the point εk = 0, and this condition is met only at the two Dirac points (not, as in a

4



typical textbook metal, over a complete surface (in 2D line) of k-values), it follows that for

exactly half filling of the band the DOS at the Fermi level is exactly zero. But in the absence

of doping graphene has exactly one electron per “spin” per atom (2 per unit cell), so taking

spin into account the band is indeed exactly half filled. Thus, undoped graphene is a perfect

semimetal! 2 It is helpful to visualize what is going on at the Dirac points in terms of the

amplitudes for the electron to be on the A or the B sublattice. Since the two sublattices

are physically equivalent, it is clear that when the state is an energy eigenfunction then,

apart possibly from trivial phase factors involved in the precise definition of the ai and bi,

the behavior must be either symmetric or antisymmetric with respect to the exchange of

A and B. For example, for k = 0 there are two possibilities: either ai = bi, giving energy

−3t, or ai = −bi, giving energy +3t. For k 6= 0 the effective “lumped” matrix element for

tunneling between the two sublattices is given precisely by ∆k:

∆k ≡ −t
3∑
l=1

eik·δl (11)

so the two energies are ±|∆k| as we have seen. However, at a Dirac point ∆k tends to zero,

so the relative signs (phases) on the two sublattices are completely arbitrary; in particular

we can, if we wish, choose the energy eigenstate to be localized completely on sublattice A

or sublattice B, with the other sublattice totally unoccupied. Note also that at the Dirac

points, the phase shift on going from one unit cell to the next is ±π/3.

We now discuss the nature of the energy spectrum and eigenfunctions for k close to a Dirac

point (let us say for definiteness the point K). It is convenient to define the (2D) vector

k−K as q. Then, expanding the expression for ∆k around q = 0, we find

∆(q)− ' 2te−iKxaq ·∇k

(
e3ikxa/2 cos

√
3

2
kya

)
k=K

= −3ta
2

(exp−iKxa)(iqx − qy). (12)

It is convenient to extract an overall constant factor −i exp−iKxa (which clearly does not

affect any physical results) and thus write

∆(q) = ~vF(qx + iqy)
(
1 +O(q/K)2

)
, vF ≡ 3ta/2~ ∼= 106 m/sec. (13)

Note that if we had expanded around K ′ (for which K ′x ≡ Kx,K
′
y ≡ −Ky) we would have

obtained

∆K′(q) = ~vF(qx − iqy) = ∆∗(K)(q) (14)

i.e. with the same convention for q, the “helicity” is reversed.
2A semimetal is defined as having zero DOS for ε = 0 (where ε is the energy measured with respect to

the Fermi energy) but a nonzero DOS for ε > 0.
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It is very suggestive to write the Hamiltonian in the form

Ĥ ≡ ~vF

(
0 qx + iqy

qx − iqy 0

)
≡ ~vF σ̂ · q, ε(q) = ±vF|q| (15)

where the components of the operator σ̂ are the usual3 Pauli matrices. It is clear that the

eigenvalues are a function only of the magnitude of q, not its direction in the 2D space:

ε(q) = ±~vF|q|. (16)

The Hamiltonian (15) is, from a formal point of view, exactly that of an ultra-relativistic (or

massless) particle of spin 1/2 (such as the neutrino), with the velocity of light c replaced by

the Fermi velocity vF, which is a factor ∼ 300 smaller. Moreover, the “left-handed neutrino”

given by (13) is not equivalent to the “right-handed antineutrino” that lives near K ′ rather

than K. Thus there arises the prospect, which excites a lot of people, of finding analogs to

many phenomena predicted to occur (but often not yet seen experimentally) in a solid-state

context. However, it should be remembered that the Dirac excitations near K are not the

antiparticles of those near K ′; rather it is the two possible combinations of the excitations

near one Dirac point on the A and B sublattices, with energies ±~vF|q| respectively, which

are one another’s “antiparticles.” The eigenfunctions are, for the vicinity of the point K.

ψ±(K)(q) =
1√
2

(
exp iθq/2

± exp−iθq/2

)
, θq ≡ tan−1(qx/qy) (17)

Note that when q rotates once around the Dirac point, the phase of ψ(±)
K (q) changes by π,

not by 2π, as is characteristic for “spin-1/2” particles.

It is now straightforward to obtain quantities such as the DOS and cyclotron mass. It is

clear that for nonzero ε the DOS will be proportional to the number of states that have

|q| = |ε|/~vF; specifically, since the number of states per unit area with q-values less than

q close to a specific Dirac point is q2/2π, the DOS associated with this point is

dnK(ε)
dε

=
1

~vF

dnK

dq
=

1
π(~vF)2

ε (18)

Since there are two Dirac points, the total DOS is twice this.

These results have an interesting consequence for the effect of doping. At zero doping, as

we have seen, the lower half of the band is filled exactly up to the Dirac points. If by

applying a suitable “gate” voltage to the graphene relative to the substrate (or suspension)

we induce a nonzero charge, this is equivalent to injecting (depending on the sign of the
3But strictly speaking, to make it equivalent for the Dirac point at K we would need to adopt an

unconventional definition of “handedness.”
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voltage) a number of electrons in the upper half of the Dirac cones or holes in the lower half;

for definiteness let’s consider the former. If the temperature is low enough, the electrons

will form a degenerate Fermi sea and we can define a “Fermi surface” (in 2D a line) and the

corresponding Fermi wave vector qF. Taking into account the spin and “valley” degeneracies,

we find (cf. above)

qF = (πns)1/2 ns ≡ no. of (extra) electrons/unit area (19)

We can define an “effective mass” m∗ in the usual way by m∗ ≡ ~qF/vF, and then find that

m∗ =
π1/2~
vF

n1/2
s (20)

In a textbook 3D solid, the most direct way of measuring the effective massm∗ is through the

specific heat. In a 2D system such as graphene such a measurement is not usually practical,

but one can alternatively use the fact that for an isotropic system the mass measured in

a cyclotron resonance experiment (“cyclotron mass”) is identical to the m∗ defined above.

(This is because the cyclotron mass m∗c is quite generally given, in the semiclassical limit,

by the expression m∗c = (1/2π)(∂A/∂ε), where A is the k-space area enclosed by an orbit

of energy ε; for our case this expression is just ~
vF
qF. i.e.equal to m∗). Cyclotron resonance

experiments on graphene verify that m∗ is indeed proportional to n1/2
s as predicted (see CN

fig. 4).

We now turn to the question of corrections to the simple results

derived above. The most obvious correction comes from second-

nearest-neighbor hopping, with some matrix element t′ (clearly,

in the honeycomb lattice all second-nearest neighbors are on the

same sublattice as the original atom and are equivalent). This

gives rise to a term4

Hn.n.n. = − t
′

2

∑
i,j=n.n.n.,σ

(a†iσajσ + b†iσbjσ + H.c.) (21)

The most salient feature of this term is that it is exactly symmetric between the A and B

sublattices; hence, it gives a contribution −t′f(k), which is proportional, in the “spinor”

representation, to the unit matrix. Such a term destroys the perfect symmetry of the band

around ε = 0 (since the term −t′f(k) is added to both the upper and the lower branches);

however, it cannot spoil the degeneracy of the two solutions at the Dirac points K and
4The factor 1/2 is to avoid overcounting. If the prefactor is t′ then the sum should be only over “positive”

next nearest neighbors.

7



K ′ (which, however, no longer in general correspond to ε = 0 but to some shifted value

ε0 = −t′f(K); we may as well shift the zero of energy to this point).

It might, however, be wondered whether by affecting the absolute energies of the states

close to the Dirac point the term (21) spoils the simple results we have obtained e.g. for

the cyclotron resonance frequency. Fortunately this is not the case: the Dirac points are

actually extremes of the quantity f(k)! To see this, note that the explicit expression for

this quantity is

f(k) =
∑

ij=n.n.n.

(exp ik ·Kij + H.c.) ≡
∑

ij=n.n.n.

cos k ·Rij (22)

Now the next-nearest-neighbor values of Rij are the primitive lattice vectors ai,aj ,ai−aj
and their negatives, so we have

f(k) =

{
2 cos

(√
3 kya

)
+ 4 cos

(√
3

2
kya

)
cos
(

3
2
kxa

)}
(23)

It may be verified that the value of f(k) at the Dirac points is +3t′ and its gradients

there are zero. Thus, even in the presence of next-nearest-neighbor hopping the form of

the Hamiltonian near a Dirac point is given, up to the uninteresting constant 3t′, by eqn.

(15). When one goes up to terms of order q2, one finds that while the t′ term is isotropic

around K (as one might perhaps anticipate from its sixfold symmetry) the original t term

introduces a “trigonal” dependence (∼ sin 3θq, where θq ≡ tan−1 q/qx). However, the order

of magnitude of this term is ∼ q/K relative to the “Dirac” one, and it is usually neglected

in analysis of experiments.

While the simple Dirac-like form of the Hamiltonian (15) is very pleasing, one might ask how

generic it is? So far we have considered only nearest- and next-nearest neighbor hopping;

would (for example) further-neighbor hopping spoil the results? And on exactly which

properties of the honeycomb lattice do they depend? Here are some (fairly undigested)

thoughts.5

First, it seems virtually certain that provided it does not become ferromagnetic (something

for which there is no experimental evidence nor, as far as I am aware, theoretical support),

undoped graphene must be either a semimetal or a semiconductor. This follows simply from

the fact that there are two atoms per unit cell, and thus for each k within the FBZ there

must be two energy eigenstates, which in general are nondegenerate. Whether they repel to

give a standard band gap as in a textbook semiconductor, or touch as in the simple model
5I may try to amplify these remarks in the lecture.
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explored above, there is room in the lower band (including spin) for exactly the 2 valence

electrons per unit cell that are available in graphene.6 The only escape from this conclusion

would appear to be if the energy of the “upper” band for some k were set to be lower than

that of the “lower” band for a different k; this is forbidden in 1D, but as far as I know

there is no general principle that forbids it in 2 (or 3) D. However, there seems no reason,

theoretical or experimental, to believe that this situation occurs in real-life graphene. Note

that the conclusion does not depend on symmetry between the A and B sublattices.

Secondly, I strongly suspect that given the symmetry of the Hamiltonian under A → B,

the existence of a couple of “Dirac points,” that in points where the energy bands touch, is

generic. This will be the case if we can always find two points within (or on the edge of)

the FBZ such that for this k the total coupling between the A and B sublattices vanishes,

since then we have two completely equivalent excitations localized on one sublattice or the

other.

It should be noted that the introduction of any kind of asymmetry in the Hamiltonian

between the A and B sublattices, such as might occur for example on certain corrugated

substrates, is liable to lift the degeneracy at the Dirac points, since the Hamiltonian can

then be written in the form, up to a constant

Ĥ =

(
∆ε/2 ~vF(qx + iqy)

~vF(qx − iqy) −∆ε/2

)
(24)

with eigenvalues

E+,− =
(
(∆ε)2 + ~2vF

2|q|2
)1/2 (25)

introducing an energy gap ∆ε at the Dirac point q = 0.

Thirdly, provided the residual terms in the Hamiltonian may be treated as perturbations

on the ones we have explicitly considered, one feature of the spectrum near the Dirac point

should be very stable, namely the topological property that contours in q-space surrounding

it have a winding number of 1; that is, the phase of the off diagonal term in the Hamiltonian

changes by 2π (not 0 or 4π) when we consider the Dirac point in q-space. This property of

the spectrum is crucial to the explanation of the anomalous QHE seen in graphene.

We now turn to bilayer graphene. This system has been stabilized experimentally, and

has some very interesting properties, so it is worthwhile to study its energy spectrum.
6This argument is of course just a special case of the familiar textbook argument that crystalline systems

with an even number of electrons per unit cell must be insulators (or semiconductors).
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(tilde - top layer, 
no tilde- bottom layer)

Figure 2:

Unfortunately the problem is complicated by the fact that the stacking is not of the simple

form where each A(B) atom in the top layer lies directly above one A(B) atom in the bottom

layer; rather, it is of the “Bernal” type, in which one A atom in the top layer (denoted Ã)

lies above a B atom (denoted B) in the bottom layer, so that B̃ cannot lie directly above

A. In fact the positioning is as drawn in Fig. 2.

We would expect a substantial hopping between Ã and B atoms (recall that the C valence

electrons are in π orbitals that “stick out” of the plane) and a weaker possible hopping

between A and B̃ atoms (also A � Ã, B � B̃). For simplicity let us keep only Ã � B

hopping and denote the relevant matrix element by γ. In the simplest model of the in-plane

hopping the Hamiltonian is then

Hbil = −t
∑

ij=n.n.

{
(a†ibj + H.c.) + (ã†i b̃j + H.c.)

}
− γ1

∑
i

(ã†ibi + H.c.) (26)

where ã†i (a
†
i ) creates an electron on site Ã(A), etc., When we now define a Fourier transforms

in the standard way, the last term in (26) picks up no k-dependence, as ãi and b†i operate

at the same point in the xy-plane. Thus if we define a 4-dimensional spinor, in an obvious

notation

ψ ≡


ψA

ψB

ψÃ
ψB̃

 (k) (27)
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the corresponding Hamiltonian Ĥk has the form

Ĥk =


0 ~vF(qx + iqy) 0 0

~vF(qx − iqy) 0 γ1 0

0 γ1 0 ~vF(qx + iqy)

0 0 ~vF(qx − iqy) 0

 (28)

The crucial point, now, is that for |q| → 0, i.e. as we approach the Dirac point, we

automatically have γ1 � ~vF|q|, and thus the primary concern is to properly “dimerize”

the Ã − B band. Let’s examine what happens exactly at the Dirac point. There is one

symmetric combination (ψÃ = +ψB, ψA = ψB̃ = 0) with low energy −γ1, one high-energy

combination (ψÃ = −ψB, ψA = ψB̃ = 0) and two zero-energy states, which we may for

example take as localized on the A and B̃ sublattices respectively. More generally, for

arbitrary values of k in the FBZ we expect a low-energy (symmetric Ã − B) band, which

will certainly be filled, a high-energy (antisymmetric Ã−B) band, which will certainly be

unfilled, and two states which, at least for ~vF q . γ1, are mainly linear combinations of

the A and B̃ sites. The interesting point is that for undoped bilayer graphene, by simple

counting of the states, exactly one of the two “A − B̃” bands will be filled. So it becomes

essential to work out the effective Hamiltonian within this 2D space.

The most intuitive way to do this is the following: Consider a process in which an electron

hops from A on to the “B part of” this (unoccupied) antisymmetric Ã−B band, then from

Ã on to B̃ (all the time keeping its k-vector close to (say) the Dirac point K). The effective

matrix element for this 2-step process is, since the sign of the probability amplitude in the

unoccupied (antisymmetric) Ã−B state is opposite on Ã and B,

Veff(A→ B̃) = −
VA→(Ã−B)V(Ã−B)→B̃

E(Ã−B)

(29)

Since the matrix element to hop from A to B is the same as that for Ã → B̃, (not its

complex conjugate!), and the energy denominator is just γ1, this gives

Veff(A→B̃) =
(~vF (qx + iqy))

2

γ1
(30)

i.e. the effective Hamiltonian in the A− B̃ subspace is

ĤA−B̃ = (~2v2
F /γ1)

(
0 (qx + iqy)2

(qx − iqy)2 0

)
(31)

so that (in the absence of an interlayer bias) the spectrum is parabolic around the Dirac

point, and moreover the winding number is 2 rather than 1. This is of importance for the

analysis of the behavior of the system in a magnetic field, in particular of the QHE.
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However, it should be noted that in contrast to the single-layer case, where it is rather

difficult to bias one sublattice relative to another, in the bilayer case described by (28) the

two “basis” states A and B̃ lie in different layers, so it is relatively easy to bias them relative

to one another. In that case it is easy to see that a band gap is introduced at the Dirac

point, in fact mainly

E(q) = (E2
0 + ~4vF

4q4/γ2
1)1/2. (32)

In real life the situation is rather more complicated because, inter alia, of the effects of the

A� B̃ hopping: see CN.
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