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Figure 1: Lattice and conventions useful for problem 1.

1. Consider the tight-binding model for graphene discussed in class, with hopping γ between
nearest-neighbor sites on the honeycomb lattice. Now let us modify this to model a material
like boron nitride, BN, which has one type of atom on the A sublattice and another on
the B sublattice. In this case, the on-site energy will be different for the two types of sites.
Take the energy for the A site to be ∆, and the energy for the B site to be −∆.

(a) Find the energies of the two bands.

We just need to follow the reasoning we used in class to derive the dispersion, but
modifying the on-site energies. We have, for an A sublattice site

ĤψR = εAψR − γ
∑
i

ψR+ei = εψR, (1)

with the on-site energy εA = ∆. Similarly, when R is a B site,

ĤψR = εBψR − γ
∑
i

ψR−ei = εψR, (2)

with εB = −∆. Now we can plug in the Bloch form ψi = ψA/Be
ik·R, which then gives

us (
∆ f(k)

f∗(k) −∆

)(
ψA

ψB

)
= ε

(
ψA

ψB

)
. (3)
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Here, as in class, we have

f(k) = −γ
e∑

i=1

eik·ei = −γe i
2
kya0

[
e−

3
2
ikya0 + 2 cos

(√
3kxa0

2

)]
. (4)

Finding the eigenvalues of this matrix, we see that the energy bands are given by

ε±(k) = ±
√
|f(k)|2 + ∆2. (5)

(b) What is the band gap, i.e. the energy difference between the minimum of the con-
duction band and the maximum of the valence band, at the K point?

At the K point, f(K) = 0, so the energy states are just ε±(K) = ±|∆|. Hence the gap
is 2|∆|.

2. Please derive (i.e. show how you get it) the density of states for graphene, in terms of
energy ε measured relative to the Dirac point, and velocity v.

The density of states is most easily obtained by the formula g(ε) = |dN(ε)/dε|, where N(ε)
is the cumulative density of states, the total number of states, per unit volume, with energy
between 0 and ε. For each spin, and in the vicinity of one Dirac point, these states form a
circle in momentum space of radius k(ε) = ε/(h̄v). The number of states inside this sphere is
its volume, π[k(ε)]2, times the density of states in momentum space, which is 1/(2π)2. Hence

D(ε) = 4× π[k(ε)]2 × 1

(2π)2
=

[k(ε)]2

π
=

ε2

πh̄2v2
. (6)

Taking the derivative, then

g(ε) = |D′(ε)| = 2|ε|
πh̄2v2

. (7)

3. What are three experiments that demonstrate the existence of massless Dirac electrons in
graphene?

Some acceptable answers are: ARPES measures the dispersion, tunneling measures the linear
DOS of the Dirac points, the unconventional IQHE series (±2,±6, ·), Klein tunneling.

4. What is the difference between the states at the edge of a Hall bar in the IQHE when
σxy = 3e2/h versus when σxy = e2/h?

Each edge has 3 chiral edge states when σxy = 3e2/h and only one edge state when σxy = e2/h

5. Explain why ρxx has a peak between Hall plateaus in the IQHE.

Between Hall plateaus, there are “percolating” states in the bulk, which correspond to semi-
classical trajectories of the center of mass of the cyclotron orbits drifting along equipotentials
that move around the “middle” of the random potential. Equivalently, one can say that one
edge state “peels off” the boundary and annihilates with itself to pass from the nth IQHE state
to the (n− 1)th IQHE state.

6. What is the spectrum of Landau levels (i.e. their energies) for the Dirac model of graphene?

The energies are ±h̄ωc
√
n, where n are integers, and (you do not need to get part right in

detail) the cyclotron frequency is ωc =
√

2v/`, and ` =
√
h̄/eB is the magnetic length.
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7. Explain the observed IQHE values of σxy in graphene using the edge state picture.

First we need to recall that each edge state contributes ±e2/h to the Hall conductance, with a
sign dependent upon the chirality (direction of the velocity) of that edge state. Then we need
to understand the edge states for graphene. These are shown in the Figure, showing valley
degeneracy (which is broken by the edge) but spin degeneracy is implicit. The positive energy
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Spin Filtered Edge States and Quantum Hall Effect in Graphene

Dmitry A. Abanin, Patrick A. Lee, Leonid S. Levitov
Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139

Electron edge states in graphene in the Quantum Hall effect regime can carry both charge and
spin. We show that spin splitting of the zeroth Landau level gives rise to counterpropagating modes
with opposite spin polarization. These chiral spin modes lead to a rich variety of spin current states,
depending on the spin flip rate. A method to control the latter locally is proposed. We estimate
Zeeman spin splitting enhanced by exchange, and obtain a spin gap of a few hundred Kelvin.

A new electron system with low carrier density and
high mobility was recently realized in two-dimensional
graphene [1]. By varying the carrier density with a gate
one can explore a range of interesting states, in particu-
lar the anomalous quantum Hall effect [2, 3] (QHE). In
contrast to the well-known integer QHE in silicon MOS-
FETs [4] the QHE in graphene occurs at half-integer mul-
tiples of 4, the degeneracy due to spin and orbit. This
has been called the half-integer QHE. The unusually large
Landau level spacing makes QHE in graphene observable
at temperatures of 100 K and higher.

Here we explore the spin effects in graphene QHE. In
the presence of Zeeman splitting transport in graphene is
described by an unusual set of edge states which we shall
call chiral spin edge states. These states are reminiscent
of the ordinary QHE edge states [5], but can propagate in
opposite directions for opposite spin polarizations. (As
shown in [6], similar states can arise due to spin-orbit
coupling in the absence of magnetic field. However, the
weakness of spin-orbital effects makes the corresponding
spin gap quite small.) The chiral spin edge modes can
be used to realize an interesting spin transport regime,
in which spin and charge currents can be controlled inde-
pendently. Observation of these phenomena is facilitated
by fairly large magnitude of the spin gap. The gap is en-
hanced due to electron correlation and exchange, and can
reach a few hundred Kelvin for realistic magnetic field.

The half-integer QHE in graphene was interpreted
in terms of a quantum anomaly of the zeroth Landau
level [7]. Alternatively, these properties are easily un-
derstood from the edge states viewpoint, similar to the
usual QHE. This was done is Ref. [8] using numerical
treatment of the zigzag edge. Here we present a contin-
uum description of the edge states, using the massless
Dirac model [9] which provides a good approximation for
Carbon π-electron band near its center. We reduce the
problem to a one-dimensional Schrödinger equation with
a potential which depends on the boundary type. By
comparing the behavior for armchair and zigzag bound-
ary, we show that the energy spectrum properties near
the edge are universal and imply the half-integer QHE.

To interpret the half-integer QHE, let us inspect the
energies of the first few Landau levels (LL) obtained for
an armchair boundary (Fig. 1(a)). First we ignore elec-
tron spin. In the bulk the LL’s are doubly degenerate,
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FIG. 1: (a) Graphene energy spectrum near the armchair
boundary obtained from Dirac model, Eq.(1). The boundary
condition, Eq.(5), lifts the K, K′ degeneracy. The odd integer
numbers of edge modes lead to the half-integer QHE. (b) Spin-
split graphene edge states: the blue (red) curves represent
the spin up (spin down) states. These states propagate in
opposite directions at zero energy.

due to two species of Dirac particles located near K and
K ′, the inequivalent corners of the first Brillouin zone.
We note that the zeroth LL splits into two levels with
positive and negative energies. In contrast, the behavior
of the edge states associated with higher LL’s is more con-
ventional [5]: the energies of positive (negative) LL’s in-
crease (decrease) as one approaches the boundary. Hence
in the spinless case the number of edge states can take
only odd integer values and the Hall conductivity is odd
integer in units of e2/h. For example, when the chemi-
cal potential is between the n = −1 and n = −2 LL’s,
there are three branches of active edge states: two of
them derived from the LL with n = −1 and one from
the LL with n = 0. As a result, although each Landau
level filling factor is an integer, the conductance at QHE
plateaus is half-integer in units of 4e2/h which accounts
for both the K, K ′ and spin degeneracy.

This behavior is modified in an interesting way by the
spin splitting of LL’s (Fig. 1(b)). When the chemical
potential µ lies in the interval − 1

2∆s < µ < 1
2∆s, the

zeroth LL is spin polarized, with only spin down states
being filled. However, there exists a branch of up-spin
edge states going to negative energies. The states of this
branch with ε < µ will be filled and will contribute to
transport on equal footing with the down-spin states.
Notably, the up-spin and down-spin states have oppo-
site chiralities, i.e. they propagate in opposite directions.
These states carry opposite charge currents but equal
spin currents. As a result, the edge transport in the spin

EF1

EF2
EF3

Landau levels bend up, the negative ones bend down, and the zero energy Landau level splits
and half bend up and half bend down. We can see that when the Fermi level is between bulk
Landau levels with, say positive energy, as shown, it intersects one spin degenerate edge level
from the zeroth Landau level, and two spin degenerate levels for each additional Landau level
filled in the bulk. This means that if the Fermi level is EF1 the Hall conductivity is 2e2/h,
while if it is EF2 it increases by 4e2/h to 6e2/h, and then to 10e2/h at EF3 etc. The negative
energy edge states disperse in the opposite direction, which implies the opposite sign of Hall
conductivity but the same sequence if negative Fermi energies are considered.
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