
SPATIAL FILTERING

In this experiment you have the opportunity to examine the fundamentals of

spatial filtering.  Spatial filtering beautifully demonstrates the technique of Fourier
transform optical processing, which has many current applications, including the
enhancement of photographic images and television pictures.  Future applications include

the optical data processor or optical computer.  The basis of spatial filtering is Fraunhofer
diffraction from the object whose image is to be spatially filtered.

BACKGROUND:
PRINCIPLE OF OPERATION AND THEORY

In this section we aim to gain sufficient understanding of theory behind the
Fourier transform and the Fraunhofer diffraction in order to make meaningful

observations in our experiment.

FOURIER TRANSFORM

It is well known that a periodic waveform can be decomposed into a series of
harmonic waves.  The Dirichlet theorem states that if a function f(t) is a bounded function
of period T with at most a finite number of extrema or discontinuities in a period, then the

Fourier series
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where the coefficients am and bm are defined as
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converges to f(t) at all points where f(t) is continuous and to the average of the right and

left limits at each point where f(t) is discontinuous.

There is a different representation of the Fourier series.  Using Euler’s equation,

e±i = cos ± isin , Eq. (1) can be put in a form
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Now, consider a nonperiodic function.  Mathematically we may regard such a

function as a periodic function with T → +∞ .  In view of this Eq. (2) becomes

f t( ) = g( )e−i td−∞
+∞∫ ( 3 )

where the coefficient is given by
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This is the oft-quoted result of the one-dimensional Fourier transform, where f(t)
and g( ) are referred to as a Fourier-transform pair .  Thus given a function f(t) we can

obtain a frequency spectrum g( ) which constitutes the original function f(t).

To illustrate how we interpret the result of the Fourier transform, consider a periodic
function sketched in Figure Error! Reference source not found..



Figure 1

The first few terms of the Fourier series representation of this function are
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Notice that even a very simple square wave consists of an infinite series of harmonic
functions of different frequencies and amplitudes.

We shall see how the terms in Eq. (5) add up to form f(t).  The plots in Figure 1

show how the series converges to f(t) as more and more higher frequency terms are
added.  (Note that T = 1 in these plots)

Figure 1

Notice that the term with the fundamental frequency (i.e., m = 1) very roughly

defines the outline of the original function.  The finer features of the function f(t), such as
its corners of squares, can only be accomplished by adding or subtracting harmonic



functions of higher frequencies (m > 1) than the fundamental frequency.  Hence

removing higher frequency components effectively eliminates such details from the
original function.

Exercise 1: What happens to the function f(t) if you remove the m = 1 term
while retaining all the other terms?  Sketch the resulting function.

FRAUNHOFER DIFFRACTION AND FOURIER TRANSFORM

According to the Huygens principle, every point of a given wavefront of light can
be considered a source of secondary spherical wavelets.  Therefore the diffraction pattern
at some point on a final screen consists of the superposition of the fields of all the

secondary waves generated from such sources.  The amplitude E(r) at the distance r from
the source of a monochromatic spherical wave takes the form
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where E0 is the amplitude at r = 1 (called the unit amplitude), and k, _, and t are

the propagation constant, angular frequency, and time, respectively.

The Fraunhofer diffraction is also referred to as far-field diffraction.  It is a
classification of diffraction effects that arises from the type of mathematical

approximations possible in order to compute the resultant diffraction patterns.  In
particular, we consider a diffraction caused by a coherent light producing a final pattern
on a screen placed effectively far enough that the incoming wavefront of light is plane.

In Figure 2, the diffraction pattern of the image at the aperture plane is observed
in the XY-plane at a distance Z along the Z-axis.



Figure 2

At P, the light amplitude dEp of the monochromatic spherical wave originating from an
elemental area da at the point O at the aperture is given by

dEP =
Esda

| r |

 

 
  

 

 
  e

i t−k | r |( ) ( 7 )

where r is the distance from the point O to P.  The quantity Es represents the amplitude
per unit area of the aperture around the point O, and is called the aperture function.
Simple geometry leads to the relations

r2 = X − x( )2 + Y − y( )2 + Z2

and

r0
2 = X 2 + Y2 + Z2.

For the Fraunhofer diffraction, both x and y are negligible compared to r0.  Hence we can
ignore the second order terms in x and y, and obtain
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where the approximation through the binomial expansion is used.  Noting that r ≈ Z  is a

reasonable approximation for the Fraunhofer diffraction, we reach an alternative
expression of Eq. (7),
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so that the integration over the area of the aperture (i.e., taking account the contributions

from all the light sources on the aperture plane) leads to the integral

EP ∝ Es x , y( )eik xX + yY( ) r0 dxdy∫∫ ( 10 )

We can further simplify this integral by introducing the quantities called the angular
spatial frequencies
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Using these Eq. (10) may be rewritten as

EP kX ,kY( ) = Es x , y( )ei xkX + ykY( )dxdy∫∫ ( 12 )

From this result, we immediately notice that Ep and Es form a two-dimensional Fourier
transform pair.  Therefore it is also true that

Es x , y( ) =
1

2( )2 EP kX, kY( )e−i xkX + ykY( )dkXdkY∫∫ ( 13 )

What we demonstrated here is a proof that the Fraunhofer diffraction pattern described by
Ep is the Fourier transform of the source pattern at the aperture plane, expressed by an
aperture function Es.  (Of course, what you see projected on the screen is the intensity of

light striking it, I, which is _(E x H*), proportional to |E|2.  1 p.25)



SPATIAL FREQUENCY AND DIFFRACTION PATTERN

We defined angular spatial frequencies in Eq. (11).  The terminology as well as

the physical meaning is similar to the temporal analogs.  The spatial frequency is the
number of cycles per unit length (as opposed to time), or equivalently, how often the
signal is repeated over a unit length.  This definition suggests a unit of cm-1 (or m-1, mm-1,

etc.) for spatial frequency.  Also, the angular spatial frequency k and the spatial frequency
ν are related by

k = 2
as expected.

Exercise 2: Let us consider an example of spatial frequency.  Figure 3 depicts
two gratings consisting of repeating bars.

Figure 3

Measure the spatial frequencies of the gratings as accurately as possible.  Which
grating has a higher spatial frequency?  How do you minimize the error in your
measurements?  If the black lines represent the open slits, how should the aperture

function look like?  Sketch the function.

We shall now go back to Eq. (11).  Recall that k = 2  where _ is the

wavelength of incident light.  The spatial frequencies are then given by
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Since vX is proportional to X and vY to Y, the high (low) spatial frequencies appear at large

(short) distance from the Z-axis, or the optical axis.  It is quite general that the more
localized a signal, the more spread out will be its transform.  For our purposes, we can
extend this to mean that the higher spatial frequencies (more localized signals) will lie at

the periphery of the diffraction pattern and the lower spatial frequencies will be more
centrally located.  For example, if a diffraction peak appears at X on the one-dimensional
spectrum plane, it corresponds to the term representing the frequency X = X r0 in the

Fourier series.

Exercise 3: Consider a vertical grating with a spacing of d cm between lines
placed at the aperture plane.  What is the condition for the
diffraction maxima to appear?  (Derive an equation relating d, v
{refer to Figure 2}, and the wavelength _ of the incident light.)



INSTRUCTIONS:
EXPERIMENTAL PROTOCOL AND DESIGN

EQUIPMENT SETUP

Our goal is to set up the apparatus depicted in Figure 4.



Figure 4

Remove all the components from the optical bench, except the laser and the
viewing screen.  Light from the focused laser beam is spread out by a collimator, and
then later by a diverging lens.  The collimator is a small pinhole and when the laser

passes through it, the light diffracts outwards.

Remove the collimator.  Place a lens-holder on the optical bench, remove the lens,
and replace it with an opaque object.  By projecting the beam onto this object, (making

marks on it) and moving the object back and forth along the optical bench, align, level,
and center the laser beam with the center of the lens holder.  You may have to translate it
sideways, in addition to adjusting its direction

Exercise 4: Attach the collimator again and align the collimator with the laser
beam using with the two knobs.  When properly aligned, the light
emerging from the collimator consists of concentric circles.   By
measuring the radius of the central spot estimate the diameter of
the pin-hole (“D”) used in the collimator.  (Recall the relationship

sin = 1.22( / D ) for a circular aperture, 1 p.119)

Place the diverging lens directly in front of the collimator.  Translate it vertically
and horizontally in order to center the diverging cone of light, as much as possible in the

original direction of the beam.  (Use one of the lens holders with an extra knob which
allows you to adjust its horizontal position.)

Add a converging lens as depicted in figure 5, and place it so that the parallel

beams of light leave it pointing along the direction of the optical bench.

Stop! It is very important that the beam be collimated when it strikes the object.
Test this by checking the beam diameter between the collimator and the
transform lens with a piece of white paper.  The diameter should be
constant in this region.  Why is it important to collimate the beam before
hitting the subject?  What happens if the expanded beam illuminates the
subject without being collimated?

Suggestion: There are lenses with various focal lengths in the lab.  We want a



strong even beam.  Try different lenses.  Choose one so it can be
placed where that a large amount of light is projected uniformly
across its surface.

Think! What is the role of the Fourier transform lens?  Where does the Fraunhofer
diffraction pattern form without the transform lens?

DIFFRACTION PATTERN

Place various subject transparencies on the subject plane and observe the
diffraction patterns in the focal plane.

CCD CAMERA AND COMPUTER

 The diffraction patterns often appear too small direct observations by projecting

them onto a screen.  A computer equipped with a CCD camera may also be used to
capture the pattern.  For this, you will need to remove the camera’s focusing lens and
image the diffraction pattern directly onto the CCD array itself.  Appendix A explains this

procedure.

Use simple subjecs such as the transparency consisting of alternating opaque and
transparent bars, the fine wire mesh, a newspaper photograph, and so on.  Try three (or

more) different transparencies.

Stop! Remember to take notes of the features of your subjects, such as their
spatial frequencies.  (The starburst image, for example has a characteristic
angular frequency w associated with the number of radial lines leaving the
center.  Write down whatever is relevant for your sample.)  Either sketch
or include a computer printout of both the subject images and their
observed diffraction patterns in your lab book.  Can you make any general
conclusions about the correspondence between the subject images and
their diffraction patterns?

Exercise 5: Assuming your diffraction pattern has well defined peaks, measure
the physical distance between the peaks for the subject



transparencies that you used previously.  If you used the CCD
camera to enlarge the diffraction pattern, please include a print out
of this pattern in your lab book.  (The procedure for calibrating the
length/pixels scale for the CCD is explained in Appendix A.)  It is
interesting to note that it is possible to obtain the Fourier transform
(or inverse Fourier transform) of the any of the images you capture
with the digital camera, using the FFT feature of the image
analysis software.
(See appendix B.)

There’s no reason we have to place the screen at the focal point of the lens.  Now
try moving the screen back a bit so that the right hand side of the apparatus in figure 5 (ie.
from the subject-image on) resembles figure 6 below.

Figure 6

This is the traditional setup from geometric optics.  The ray diagram looks

different because, at this distance from the lens, all the rays of light that strike a particular
point on the screen come from the same point on the subject image.  What we were
calling the “subject image” or “aperture” before is referred to as the “object” in this new

context.  In order to get a focused image, the distance from the object to the lens, “o”, and
the distance from the lens to the image “i” must satisfy:
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where “f” is the focal length of the “Fourier transform” lens.  The magnification

(the ratio of the size of the final image to the original) will be i/o, and you will get an
image of equal size to the original when o=I=2f.  Of course, you will need to have the
distance between the aperture and the “Fourier transform” lens (o) be at least as far apart

as the focal length (f) in order to satisfy (15), for any i.  You may want play around with
different o’s and i’s to produce an images of a desired size.  (To make it easier to
photograph using the computer’s digital camera, for example.)

This is the setup we want for special filtering.  For the effects we want to see, all
the different beams of light striking a particular point on the screen should all be coming
from the same spot on the subject image.  It is important to place the screen in the right

place so that this will happen.  Oddly enough, in this lab, you can get a very focused-
looking image even when equation (15) is violated.  The ray-tracing arguments used to
justify equation (15) ignore the wave nature of light and assume the light is scattering

outwards evenly in all directions from the object.  But in our setup, the angular spread of
the beam tends to be very narrow after it scatters off of the object (or “aperture”).  This is
because the object is struck with coherent light {plane waves} whose wavelength is

typically much smaller than the size of the holes and spaces within the object.  Recall that
diffraction from a single slit of width “a” has an angular spread of approximately _/a.  (_
being the wavelength.  If there are multiple slits, this just makes the diffraction even

sharper.)  Hence light propagating along directions other than the original direction of the
beam tends to be very weak due to interference.  The highly directional light leaving the
aperture behaves similar to the light from a movie projector and, despite the lens, we will

be able to get focused-looking images projected on the screen at just about any distance.

Suggestion: (Optional) We need to figure out where to put the screen.  We
could just calculate where using equation (15).  Because of
uncertainty about where the center of the lens actually is, this
would only be accurate to about one or two centimeters.  It would
be nice to have some additional way to verify that the screen is in
the right place.  If we replace the laser light with an incoherent,
omni-directional light source the aperture (say directly from a light
bulb located near the aperture), geometric optics takes over, and
we will only get a sharp image on the screen when it’s in the
location predicted by equation (15).  (Because the light no longer
interferes with itself destructively at large angles.)  You can
simulate the effect of an incoherent light source by running the



collimated beam through a  piece of bumpy, frosted or cloudy
colored glass or plastic.  Due to the varying thickness of this
material, the beams of passing through different spots on the
plastic material will be bent in different directions, and they will
no longer be in phase with each other.  (The plastic windows used
in credit-card holders in wallets work well for this purpose.  You
get a brighter picture if you hold up the bumpy plastic close to the
subject image.)  Now move the screen back and forth until the
image looks as sharp as possible.

 In summary, with the screen placed at a distance “i” from the lens, you will see a
copy of the original image (upside down).  If the screen is placed at the focal plane, and
you are using a coherent light source, you will see the Fourier transform of the image.1

SPATIAL FILTERS

Spatial filters are used to block components of a diffraction pattern at the

transform plane.  To pass only the central peak of the diffraction pattern, we would need
a hole filter, such as a metal sheet drilled with small holes.  On the other hand, a
transparency consisting of small dots can be used as a dot filter, which blocks the central
peak.  In this way, using spatial filters, it is possible to intentionally block or pass through

the components of the Fourier series (i.e., the frequency spectrum of the subject pattern),
if we know the shape of a diffraction pattern.

Stop! Place various spatial filters on the transform plane and observe the
resulting images on the viewing screen.  Compare them to the unfiltered
images.  Can you make any general conclusions about the effect of a dot
filter?  About a hole filter?  Your measurements of diffraction pattern in

                                                
1 Comment: If you move the screen back and fourth between these two positions, you will see

some intermediate stage between the two.  This defines a continuous transformation between a function and
its Fourier transform.  Optional: Try this using the newsprint photo of the silly looking fellow’s head.
Starting at the focal plane, describe what you see when the screen is moved away from the focal plane
towards the image plane.   You may be able to see the effect best by shining  the light directly into the open

CCD (with the lens removed), instead of trying to stare at the tiny  pattern projected on a screen.  It’s nifty.



the previous section should help you choose a filter of the right size.

Suggestion: The task of placing tiny obstructions in front of
selected portions of the diffraction pattern will be easier with

a larger diffraction pattern.  The size of the diffraction
pattern is proportional to the distance from the lens to the
Fourier Transform plane.  Hence try using a lens with a large

focal length.  In this light, consider what kinds of images
lend themselves well

- a fine mesh, or an image with fine structural detail, or

- a blocky, widely spaced mesh or pattern to spatial filtering:

EXPERIMENT AND ANALYSIS

You will primarily use three kinds of subjects:  a wire mesh, a starburst
image, and a newspaper photograph.

1. Verify the relations described by Eq. (14) using the wire mesh and the starburst

patterns.  Note that r0 = f  where f is the focal length of the transform lens (why

should this be true?).

Think! You would expect discrete diffraction peaks to appear for the wire mesh.
Can you expect such a well-defined diffraction pattern for the starburst
image?  How do you go about verifying Eq. (14) if you cannot make direct
measurements of diffraction pattern?  Try hole filters with different hole
sizes and observe how the final image changes.

2. Use the wire mesh as the subject.  Eliminate vertical lines from the final image by

using a suitable filter.  (If end up using a spatial filter of considerable thickness, it’s
important to make sure the edge of this surface(s) needs to belocated right at the



Fourier-transform plane where the diffraction pattern is most focused.2  Optional:

Once you have done this using the mesh, it’s easy to swap the mesh with the
starburst.  If the spacing between the lines is similar to that of the mesh, you should
see a similar effect.)

3. Now add some lower frequencies to the source image.  One way is by affixing a few
small objects to the wire mesh.  Pieces of black tape cut and rolled up so as to be a
few mm across work well.  Another way is to generate a “wire mesh” using software

on the computer in lab.  (This is explained in Appendix C.)  Using the computer,
create a grid, superimpose it with dark spots and print it out on a transparency.3  You
may also want to try cutting holes in the grid pattern.  (By superimposing white spots

on top of the grid pattern.  This is a bit easier than taking scissors to wire mesh.
Think of both the holes and the blobs as large-wavelength fluctuations in the regular
grid pattern.)  Filter out the high frequencies so as to leave only these irregular objects

visible.Now try filtering the low frequencies.4

4. As a source image, I recommend using the computer to generate a fine-grained mesh
pattern with the average distance between lines in the mesh somewhere between 0.5

to 1 mm.  It turns out to be easier to see the effect of filtering out the low frequencies
if you cut holes in the mesh pattern rather than superimpose dark blobs on top of the

                                                

2 The following trick may be helpful: When you first place the spatial filter in the path of
the beam, this will probably create a shadow on the image where the image is dimmer.

As you move the spatial filter back and forth along the axis of the beam, as you approach
the Fourier transform plane, this shadow will appear to get infinitely large. To center  the
spatial filter on the center of the diffraction pattern, it sometimes helps to move the

spatial filter away from the Fourier-transform plane so that you can see the shadow in the
image on the screen.  Slide the spatial filter perpendicular to the optic axis until the
shadow appears centered on the image.  Once you have done this move the filter back to

the Fourier-transform plane.
3 Laser transparencies tend to be smoother and work better than inkjet ones.
4 Warning: If you can’t get this part of the experiment to work, you are in the majority.

Students (and TAs) have found this is far more difficult than filtering out the high
frequencies. Possibly this is because filtering out high frequencies has the effect of
blurring the image, and just about anything else you inadvertently do to the beam causes

this to happen.



mesh.  (But you can experiment with both.)  The holes should be approximately 2-

10mm in size.  (Note: You can also use the computer to generate a photo-negative of
your source image.  In Adobe Illustrator, create a large black square and click on the
MAKE_MASK menu item.)

Think! What is the shape of the spatial filter you should use?

Suggestion: You will get better results if you use a spatial filter that is,

very opaque, and very symmetrically shaped.  Spatial filters
printed on the computer, or made by hand with blobs of ink
or whiteout don't seem to work very well.  (The ink

seemingly blocks out only about 90% of the beam.)  Also,
it’s easier to see results with larger spatial filters (6mm
diameter) so perhaps you should start with them first.  You

should be able to get the best results using a filter as small as
the hole you used to filter out the high frequencies in part 4.

There is a spatial filter made by one of the former 128a

students made by depositing a thin layer of metal on a glass
slide using the vacuum lab equipment.  You may want to try
out making your own slides as well.

5. Leaving the equipment the way it was in part 4, try the following:

(If you were unable to get part 4 to work read the comment below)

As you did when positioning the screen, place a rough bumpy translucent surface

between the subject image and the “converging lens”.  Place it up next to the subject
image.  As mentioned earlier this will destroy the coherence of the incoming beam.5

Think! What do you think will happen to the picture on the screen?  Would a
light-bulb make a good light source for spatial filtering?

                                                

5 Note: This is not required for lab, but you can use this method to test the quality of the
inkjet transparency film we use in the lab.  This can be done in a qualitative way by
measuring how many layers of transparency film it takes to get the same effect as using

the bumpy plastic from the credit card holder.



Note: You should get a focused image of some kind.  If your image is too dim to

see, then your spatial filter blocks out too much of the light.

{Note: if you were unable to get part 4 of the experiment to work, you can still try
this exercise.  In that case try using the starburst your picture, and use a flat

vertical toothpick 6 (or something with an equivalent shape) as your spatial filter.
Unfortunately, this will not have a simple effect on the image, however it should
preferentially filter out more of the frequencies along the vertical direction,

leaving the horizontal lines more blurry.  At least you should be able to make out
a fuzzy hourglass shape at the center. This is pretty easy to see.  Now try placing
the rough translucent surface behind the starburst aperture and observe what

happens to the pattern.}

6. Use a newspaper photograph as the subject.  Do some image processing based on
your experience gained so far.

Report your findings in a short write-up.  Make sure to discuss the reasoning of
your conclusions based on the physics involved.  Can you think of any improvements to

the experiment?

                                                

6 Again, to get this exercise to work, you need to have a spatial filter that blocks only a
relatively small fraction of the light hitting the Fourier-transform plane.  Hence, the
toothpick.



Appendix A:
Acquiring images from the digital camera

Launch “ViCAM TV”  from the apple menu.

This will bring up a window named “Monitor” which should display the current
view from the digital camera.  If this does not happen, or you are asking “what camera”,

then find one of the TAs.  (If the contents of the window are all white or all dark, select
the MONITORàVIDEO_SETTINGS menu option and adjust the “shutter speed”.)
Otherwise, if the camera seems to be working, click on the MONITORàFULL_SIZE

menu option.  This will enlarge the image.

There are two ways of obtaining images with the camera.

1) If you want to take pictures the diffraction pattern, you will probably want to
unscrew the lens in the camera and shine the light directly into the camera’s tiny CCD
array.  This is difficult because the CCD array is several centimeters behind the front of

the camera.  However, the diffraction pattern is typically too small to image any other
way.  If the diffraction pattern is too large to fit on the tiny green CCD square, using a
Fourier-transform lens with a smaller focal length will shrink the image.  The video

image will be sharpest when the CCD array is positioned at the focal plane of the lens.



Figure 7. Diffraction pattern due to the subject image shown in Figure 8a) taken
directly with the CCD

Calibration:

1. By placing the camera (with it’s CCD exposed) in the path of the columnated
beam located between the converging lens and the subject image in Figure 5, you
can block the beam and cast a shadow onto the CCD.  By shining the light

through a window of a known onto the CCD array, you can obtain the ratio of
physical length/pixels on the CCD array.  (Please include these calibration
observations in your lab book.) The “barn door” aperture in lab is useful for

creating a window of known size.

2. There is a 3x8” hunk of translucent glass in lab that makes a good projector
screen.  By positioning the camera behind this translucent glass, you can take

pictures of images projected on this glass.

You will probably need to adjust the distance from the camera to the screen
and/or the focus.  The focus on the camera is adjusted by rotating the lens in front of the

CCD.  (Unfortunately the focus controls are crude and very sensitive.  You may want to
temporarily reduce the size of the monitor window as you course-adjust the focus.  This
enables the video to refresh more quickly.)  If the picture remains blurry or hazy, the lens

may need to be cleaned.1

Calibrate the computer monitor by putting a ruler on the viewing screen (i.e.,
obtain the length-to-pixel ratio).  Note that the calibration needs to be done whenever you
change the distance between the CCD camera and the viewing screen.



Figure 8a. Image of a mesh with a hole cut
in the middle.  This image was
first projected from a screen
and focused on the CCD using
a lens.

 Figure 8b. Image of a the same mesh after
an attempt to remove low
frequencies.

You may need to play with the camera’s gain, shutter-speed, or gamma, in order to get a
reasonable image. To do this, select the MONITORàVIDEO_SETTINGS menu option.
You may want to play around with these settings.1

Once you have an image that you are happy with, select the EDITàCOPY menu option.

You can edit the image in another program, like NIH-image.



Appendix B:
Using NIH-image

1. Select the FILEàNEW menu option.  When the dialog box comes up asking you the
size, enter 640 pixels by 480 pixels.

2. Assuming you have acquired an image using the directions above, select the

EDITàPASTE menu option.  This fills the window with the image you just acquired.

3a. If the image is too dark, or the contrast is too poor, you can play with the
brightness “map” tool.  This tool resemble a square with a diagonal line running

through it and two sliders below which you can manipulate.  Once you are happy
with the image, you can select the PROCESSàAPPLY_LUT menu option to
make the changes permanent.  (When comparing too different images, you will

want to make sure they have a similar distribution of bright and dark pixels.  You
can obtain a histogram of brightness levels for your picture by selecting the
ANALYZEàSHOW_HISTOGRAM menu option.)

3b. Alternately, you can have the brightness map adjusted for you automatically by
selecting the PROCESSàENHANCE_CONTRAST menu option.

4a. At several instances in the lab manual, you are asked to obtain the Fourier-
Transform of an image using the computer.

4b. To obtain the Fourier-transform, you need to select a region from the image upon

which to perform the Fourier-transform.  This region must be a square and the
length of each side must be a power of two.  As you are dragging the mouse
across your image, look to “Info Box” in the lower-left corner of the screen.  This

will tell you the current size (in pixels) of the box you have selected.  (Holding
the shift-key down as you make your selection, ensures that your selection is
square, and not rectangular.)

4c. Select the PROCESSàFFT menu command.  This will generate a new window
containing the 2-D Fourier transform of your image (Note: phase information may



have been lost from the Fourier Transform.)  The location of pixel in this new

window is expressed in the “info box” in units of (1/pixels) using polar
coordinates.  Clicking on a pixel tells the spatial frequency it corresponds to.  You
can save this image to a file, and adjust it’s threshold and brightness settings as

well.

4d. If you wish to compare the Fourier transforms of two different images (one with
spatial filtering, one without), you may want to select a square at the exact same

position within both images.  To do this, display both images in NIH-image at the
same time. Make the square selection from the first image, click on the window
for the second and select the ANALYZEàRESTORE_SELECTION menu

command.  The two images in figures 8a. and 8b. were selected from larger
images in this way.  The Fourier transforms of those two images are below.

Figure 9a.    FFT of image in figure 8a. Figure 9b.   FFT of image in figure 8b.

(Admittedly these spectra are so similar, they don’t present a persuasive argument
that spatial filtering actually worked.  10% Extra credit if you can generate an example of
low frequency spatial filtering with better FFT images!)



Appendix C: Using Adobe Illustrator

Adobe illustrator is a drawing program.  You may use it to make source image
transparencies; guinea pigs for the spatial filtering experiment.  For the purpose of this
lab, you are probably interested in using Adobe Illustrator to make grid shaped objects.

That’s what these instructions cover.

A) Making grid objects:

1. First, create a tall, very thin filled black rectangle with the rectangle tool in the

toolbox.  (To give your rectangle these properties, you will need to select the
hollow Border-Color square at the bottom and click on the button containing the
red slash.  Then you must select the Fill-Color square next to it, and click on the

solid black square next to the red slash button.  If it this square is not black, you
may have to double click on it to change the color.)

2. Using the arrow (selection) tool from the toolbox, select the thin vertical rectangle

you just created and select the EDITàCOPY menu option.

3. Paste many copies of this thin line on the using the EDITàPASTE menu option
or pressing CTRL-V.  Don’t yet worry about moving each line to the right place.

Illustrator does this for you.

4. Select one of the tall thin lines and pull it over to the left or to the right of the
other lines.  This region between the lines you have copied defines the width of

the grid you are about to make.

5. Select all of the tall thin lines, go to the Align Palette and click on Vertical Align
Center.  Then click on Horizontal Distribute Center.  This will make the lines

evenly spaced

6. Copy the entire group of lines and paste them.  Rotate the second set by clicking
on the TRANSFORMàROTATE menu option.  Then superimpose the set of

horizontal on top of the vertical lines.



You can then paste “blobs” onto your mesh or cut “holes” in your mesh pattern by

superimposing filled black and white circles and squares on top of your mesh.

B) Creating a “photo-negative”:

(Assuming you have an image created already.)

1. Draw a filled black rectangle big enough to cover your image using the rectangle
tool.  Select it and click on the EDITàCUT menu option.

2. Now select all the objects that make up your image and click on the

FILTERàCOLORSàINVERT_COLORS menu option.

3. Click on the EDITàPASTE_IN_BACK menu option and superimpose the black
rectangle on your original image.
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