Commonly Encountered Probability Distributions

Physics 129L Fall 2021

Copyright © 2020-2021 Everett A. Lipman. All rights reserved.
The following uses are prohibited without prior written permission:

- Duplication in any form
- Creation of derivative works
- Electronic posting and distribution

Binomial Processes

If you carry out N independent trials with:

- probability of success: p
- probability of failure: $q=1-p$,

Binomial Processes

If you carry out N independent trials with:

- probability of success: p
- probability of failure: $q=1-p$,
then the probability distribution for k successes in N trials is given by the binomial distribution
$B(N, k)=\frac{N!}{k!(N-k)!} p^{k} q^{N-k}$.

Binomial Processes

If you carry out N independent trials with:

- probability of success: p
- probability of failure: $q=1-p$,
then the probability distribution for k successes in N trials is given by the binomial distribution
$B(N, k)=\frac{N!}{k!(N-k)!} p^{k} q^{N-k}$.
- The mean (average) outcome is $\mu=N p$ successes.
- The standard deviation $\sigma=\sqrt{N p q}$.

Binomial Processes

If you carry out N independent trials with:

- probability of success: p
- probability of failure: $q=1-p$,
then the probability distribution for k successes in N trials is given by the binomial distribution
$B(N, k)=\frac{N!}{k!(N-k)!} p^{k} q^{N-k}$.
- The mean (average) outcome is $\mu=N p$ successes. Important!
- The standard deviation $\sigma=\sqrt{N p q}$. Important!

Binomial Processes

Example: toss a coin 100 times, win if heads, lose if tails:

$$
\begin{aligned}
N & =100 \\
p & =0.5 \\
q & =1-p=0.5
\end{aligned}
$$

$$
\mu=N p=50 \text { heads }
$$

$$
\sigma=\sqrt{N p q}=\sqrt{25}=5
$$

Gaussian (Normal) Distribution

When μ is at least a few standard deviations from both 0 and N, the binomial distribution is symmetric, and the Gaussian distribution
$G(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
with mean μ and standard deviation σ is a good approximation to the binomial distribution. This formula is worth remembering. The Gaussian distribution is also called the Normal distribution.

Gaussian (Normal) Distribution

When μ is at least a few standard deviations from both 0 and N, the binomial distribution is symmetric, and the Gaussian distribution
$G(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}$
with mean μ and standard deviation σ is a good approximation to the binomial distribution. This formula is worth remembering. The Gaussian distribution is also called the Normal distribution.

A Gaussian distribution has about 68% of its probability within 1σ of μ, about 95% within 2σ, and 99.7% (all but one part in 370) within 3σ.

Gaussian (Normal) Distribution

Beware! The Gaussian approximation to the binomial distribution cannot be trusted in the tails.

To get accurate estimates far from μ, you must add the discrete binomial probabilities rather than integrating a Gaussian.

Binomial Processes

Example: a dice game - win $\$ 5$ if you throw a 6 , lose $\$ 1$ otherwise

$$
\begin{aligned}
N & =300 \\
p & =1 / 6 \\
q & =1-p=5 / 6
\end{aligned}
$$

$\mu=N p=50$ sixes
$\sigma=\sqrt{N p q}=6.45$
Expected wins: $w=50 \pm 6.5$

Binomial Processes

Example: loaded die? You play the dice game with your cousin:

$$
\begin{aligned}
N & =100 \\
w & =31
\end{aligned}
$$

Was the game fair?

$$
\begin{aligned}
p & =0.1667 \\
\mu & =N p=16.67 \\
\sigma & =\sqrt{N p q}=3.73
\end{aligned}
$$

$$
w-\mu=14.33=3.8 \sigma!\quad p(w \geq 31)=1 / 3381
$$

Binomial Processes

Example: loaded die? You play the dice game with your cousin:

$$
\begin{aligned}
N & =100 \\
w & =31
\end{aligned}
$$

Was the game fair?

$$
\begin{aligned}
p & =0.1667 \\
\mu & =N p=16.67 \\
\sigma & =\sqrt{N p q}=3.73
\end{aligned}
$$

$$
w-\mu=14.33=3.8 \sigma!\quad p(w \geq 31)=1 / 3381 \text { (Gaussian: } 1 / 16658-\text { wrong })
$$

Binomial Processes

Best estimate for cousin's die:

$$
\begin{aligned}
N & =100 \\
w & =31
\end{aligned}
$$

$$
p_{a}=31 / 100=0.31 \text { (approximate) }
$$

$$
\sigma_{a}=\sqrt{N p_{a} q_{a}}=4.6
$$

$$
p_{a}=0.31 \pm 0.046 .
$$

Binomial Processes

Election polling: call 100 random voters, candidate has 60% support. What is the margin of error?

Binomial Processes

Election polling: call 100 random voters, candidate has 60% support. What is the margin of error?
$\sigma_{a}=\sqrt{N p_{a} q_{a}}=\sqrt{100 \times 0.6 \times 0.4}=4.9$
Margin of error from sampling is about 4.9\%.

Binomial Processes

How many fish in the lake?

Binomial Processes

How many fish in the lake?
Catch and tag 100 fish, then throw them back in and wait.

Binomial Processes

How many fish in the lake?
Catch and tag 100 fish, then throw them back in and wait.
Catch more, and observe what fraction $f=N_{\mathrm{ct}} / N_{\mathrm{c}}$ are tagged.

Binomial Processes

How many fish in the lake?
Catch and tag 100 fish, then throw them back in and wait.
Catch more, and observe what fraction $f=N_{\mathrm{ct}} / N_{\mathrm{c}}$ are tagged.
$N_{a}=100 / f$,
$\sigma_{\mathrm{ct}} \approx \sqrt{N_{c} f(1-f)}$.

Binomial Processes

What's wrong with this picture?
y vs. x

Poisson Distribution

$$
\begin{aligned}
& \text { If } p \ll 1 \text { (rare events), } \\
& q=1-p \approx 1 .
\end{aligned}
$$

Poisson Distribution

If $p \ll 1$ (rare events),
$q=1-p \approx 1$.
Then $\sigma_{P}=\sqrt{N p q} \approx \sqrt{N p}=\sqrt{\mu}$.

Poisson Distribution

If $p \ll 1$ (rare events),
$q=1-p \approx 1$.
Then $\sigma_{P}=\sqrt{N p q} \approx \sqrt{N p}=\sqrt{\mu}$.
In this case, the binomial distribution approaches the Poisson distribution
$P(\mu, k)=\frac{\mu^{k}}{k!} e^{-\mu}$.

Poisson Distribution

If $p \ll 1$ (rare events),
$q=1-p \approx 1$.
Then $\sigma_{P}=\sqrt{N p q} \approx \sqrt{N p}=\sqrt{\mu}$.
In this case, the binomial distribution approaches the Poisson distribution
$P(\mu, k)=\frac{\mu^{k}}{k!} e^{-\mu}$.
$\sigma_{P}=\sqrt{\mu}$ differs from the binomial σ by a factor of \sqrt{q}.

Poisson Distribution

Examples:

- Nuclear decay counting:

If you count 100 decays in 1 minute,

Poisson Distribution

Examples:

- Nuclear decay counting:

If you count 100 decays in 1 minute, $\mu=100, \sigma_{P}=\sqrt{\mu}=10$.

Poisson Distribution

Examples:

- Nuclear decay counting:

If you count 100 decays in 1 minute,
$\mu=100, \sigma_{P}=\sqrt{\mu}=10$.
Your rate is 100 ± 10 counts per minute.

Poisson Distribution

Examples:

- Nuclear decay counting:

If you count 100 decays in 1 minute,
$\mu=100, \sigma_{P}=\sqrt{\mu}=10$.
Your rate is 100 ± 10 counts per minute.

- Photon counting

Poisson Distribution

Examples:

- Nuclear decay counting:

If you count 100 decays in 1 minute,
$\mu=100, \sigma_{P}=\sqrt{\mu}=10$.
Your rate is 100 ± 10 counts per minute.

- Photon counting
- Attendance checkpoints

Poisson Distribution

Examples:

- Nuclear decay counting:

If you count 100 decays in 1 minute,
$\mu=100, \sigma_{P}=\sqrt{\mu}=10$.
Your rate is 100 ± 10 counts per minute.

- Photon counting
- Attendance checkpoints:

For $\mu=1, P(1,0)=e^{-1}=0.368$.

Poisson Distribution

Examples:

- Nuclear decay counting:

If you count 100 decays in 1 minute,
$\mu=100, \sigma_{P}=\sqrt{\mu}=10$.
Your rate is 100 ± 10 counts per minute.

- Photon counting
- Attendance checkpoints:

For $\mu=1, P(1,0)=e^{-1}=0.368$.
For $\mu=1, P(1,1)=e^{-1}=0.368$.
For $\mu=1, P(1,2)=\frac{1}{2!} e^{-1}=0.184$.

Poisson Distribution

Examples:

- Nuclear decay counting:

If you count 100 decays in 1 minute,
$\mu=100, \sigma_{P}=\sqrt{\mu}=10$.
Your rate is 100 ± 10 counts per minute.

- Photon counting
- Attendance checkpoints
- Bin fluctuations

