Main Concepts (Midterm #1)

- FUNDAMENTAL OBSERVATIONS
 - Cosmological Principle (*Olber’s Paradox, mean free path*)
 - CMB (*blackbody radiation*)
 - Hubble Expansion
 - Abundance of Light Elements
- THEORETICAL TOOLS (*General Relativity, Robertson-Walker Metric*)
 - Cosmic Time
 - Comoving Distance
 - Proper Distance
 - Cosmological Redshift
- SOLUTIONS TO THE FRIEDMANN EQN. (*Fluid Eqn., Eqn. of State*)
 - Evolution of the energy density (*e.os., critical density, density parameter*)
 - Dominant energy density (*Critical density, Density parameter, Evolution of the energy density*)
 - Redshift-time relation (*Lookback time*)
 - Redshift-distance relation (*Horizon distance*)
 - Acceleration Equation (*Dark Energy*)
 - Measuring the curvature of space
Main Concepts Continued (Midterm #1)

- **MEASUREMENTS OF COSMOLOGICAL PARAMETERS**
 - Measuring kinematics of the universe determines cosmological parameters.
 - Proper distance depends on redshift via the Hubble constant, to first order.
 - Higher order terms are needed to obtain other cosmological parameters.
 - Proper distance is not appropriate. We need stuff we can measure.
 - Luminosity Distance
 - Angular-Diameter Distance
 - Standard Candles and Rulers
 - Fitting H_0 and q_0
 - Surface-Brightness Dimming & Tests of the Expansion

- **ASTROPHYSICS TO KEEP IN MIND**
 - Measuring the Hubble constant using nearby galaxies requires corrections for peculiar motions (i.e. attraction between galaxies).
 - Distances to nearby galaxies are determined by bootstrapping empirical distance indicators to direct distance measurements. This is known as the distance ladder.

- **IMPLICATIONS**
 - Type Ia Supernovae can be seen at large distances (i.e. $z \sim 1$). Measurements of the brightness and redshift indicate a negative deceleration parameter.
 - We live in an accelerating universe! And Einstein’s cosmological constant is back in fashion.
 - SNe and CMB give marginally inconsistent H_0. Stay tuned for multi-messenger astronomy.
Summary of Distances

1. Co-moving Distance
2. Proper Distance
3. Luminosity Distance
4. Angular-Diameter Distance

- As $z \rightarrow 0$, we have
 \[d_A \sim d_L \sim d_p(t_0) \sim c H_0^{-1} z\]
- As $z \rightarrow \infty$, we have
 \[d_p(t_0) \text{ goes to } d_{\text{hor}}(t_0)\]
 \[d_L \text{ goes to } z d_{\text{hor}}(t_0)\]
 \[d_A \text{ goes to } d_{\text{hor}}(t_0) / z\]
- Benchmark model has maximum $d_A = 1800$ Mpc at $z=1.6$; and object subtends the smallest angle
Measuring Cosmological Parameters

- Measuring the Hubble constant using nearby galaxies requires corrections for peculiar motions (i.e. attraction between galaxies)
- Distances to nearby galaxies are determined by bootstrapping empirical distance indicators to direct distance measurements. This is known as the distance ladder.
- Type Ia Supernovae are the best standard candle that can be seen at large distances (i.e. $z \sim 1$). Measurements of the brightness and redshift indicate a negative deceleration parameter.
- We live in an accelerating universe! And Einstein’s cosmological constant is back in fashion.