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Phys 150 HW 4 solutions

Nelson, Problem 4.2, pg 153 (10 pts)
a) From the introductory paragraph to the problem, we understand ”the number of distinct one-base mutations”

to mean the number of 104-letter long sequences with one (and only one) of the letters being different from what it
was in the original. Since there are exactly 3 ways any given letter can be different from than the original, the number
of distinct one-base mutations is 3× 104 = 30, 000.

Similarly, to determine ”the number of distinct two-base mutations”, we need to multiply the number of ways any
given set of two letters can be different from the original, that is 32 = 9, by the number of distinct pairs of sequence
locations those two letters might come from, which is

(
104

2

)
≈ 5 · 107. (If you don’t understand this last computation,

re-read the first three pages (p.110-113) of Section 4.1.2.) The answer is, therefore, 4.5 · 107.

b) We’re told the probability that any given base is copied incorrectly, p = 1/(3 · 104). We’re also told that
probability of exactly two errors, P2, is the probability of two bases being copied incorrectly, p2, times the probability
that the remaining 9998 bases being copied correctly, (1− p)9998, times the number of distinct ways to specify which
two bases (i.e., positions in the sequence) get copied incorrectly. We’re asked to solve for P2:

P2 = p2(1− p)9998
(

104

2

)
=

(
3.3 · 10−5

)2
(0.999967)9998

(
10, 000 · 9, 999

2

)
= 0.4 (1)

c) Following the argument given in the second paragraph of the problem statement, the number of newly infected
white blood cells receiving a copy of the viral genome with exactly two mutations in one day is the number of new
virus particles formed in one day × the fraction of those that manage to infect a new white blood cell × the probability
that a new copy of the viral genome will have exactly two mutations. (Note: the last term was calcuated in part b).)
That is, 1010 × 0.01× P2 = 4 · 107.

This is similar to the number of distinct two-base mutations we calculated in part a), which means that, if a viral
genome needs two (and only two) specific mutations in order to avoid the action of an anti-viral drug and remain
virulent, that specific genome will be created and successfully infect a cell in the body of an asymptomatic HIV
patient, in about one day.

d) The number of distinct three-base mutations is

33 ×
(

104

3

)
= 27× 10, 000 · 9, 999 · 9, 998

3 · 2
= 4.5 · 1013 (2)

The probability of exactly three errors occurring in the production of a new viral genome is

P3 = p3(1− p)9997
(

104

3

)
=

(
3.3 · 10−5

)3
(0.999967)9997

(
10, 000 · 9, 999 · 9, 998

3 · 2

)
= 0.04 (3)

The expected number of three-letter mutant viruses infecting new white blood cells per day is 1010×0.01×P3 = 4·106,
much less than the total number of possible three-base mutations.

e) The total number of possible one-base mutations is small compared to the expected number of mutant viruses
infecting new white blood cells in one day. If the virus can evolve to avoid any one antiviral drug by making a single
base mutation, then a therapy based on a single antiviral drug will not be effective because the particular one-base
mutation that allows the virus to remain virulent in is sure to arise many times in just one day. Using three anti-viral
drugs at the same time, on the other hand, means that, to remain virulent, the viral genome would have to acquire
three specific single-base mutations at once. But the number of those arising in a day is 7 orders of magnitude smaller
than the number of distinct possibilities, so the chance of the right one arising in one day, ≈ 1/107, or even in one
thousand days (i.e., three years), ≈ 1/104, is very small.

# of distinct expected rate of
mutation possibilities infection (/day)
one-base 3 · 104 3 · 107

two-base 4.5 · 107 4 · 107

three-base 4.5 · 1013 4 · 106
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Phys 150 HW 4 solutions

Nelson, Problem 4.7, pg 156 (5 pts)
a) Starting with the definition of permeability, P, we can follow the same derivation as outlined in the Example on

page 136.

js = −Ps∆c (1)
1
A

dN

dt
= −Ps∆c (2)

V

A

d(N/V )
dt

= −Ps∆c (3)

V

A

d(∆c)
dt

= −Ps∆c (4)

d(∆c)
dt

= −APs
V

∆c (5)

The solution to this differential equation is ∆c(t) = e−t/τ , where τ = V
APs

= (πr2L)/(2πrLP) = r/2P.

b) The constraint that blood not flow faster than it takes for all the oxygen to diffuse through the capillary
wall means that v ≤ L/τ = L/(r/2P) = 2PL/r. Using the numbers given in the problem, v ≤ (2 · 3µm s−1 ·
103µm)/(4µm) = 1700µm s−1. The actual speed of ≈ 400µm s−1 does indeed satisfy this constraint.
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Phys 150 HW 4 solutions

Nelson, Your Turn 4G, pg 143 (6 pts)
a) To establish that the proposed gaussian solution, c(x, t) = Be−x

2/(2At), when integrated over all space, is not
constant in time, remember the normalization condition for a Gaussian distribution (cf. Nelson, page 73.)∫ ∞

−∞
e−x

2/(2σ2)dx = σ
√

2π. (1)

Substituting σ =
√
At and multiplying by B makes it clear that∫ ∞

−∞
c(x, t)dx =

∫ ∞
−∞

Be−x
2/(2At)dx = B

√
2πAt 6= constant. (2)

Of course, if we introduce a factor of 1/
√
t into c(x, t) (and replace A with 2D), then∫ ∞

−∞
c(x, t)dx =

∫ ∞
−∞

const√
t
e−x

2/(4Dt)dx =
const√

t

√
4πDt = const

√
4πD (3)

which is constant. Setting this equal to the total number of particles, N , yields const = N/
√

4πD.

b) Substituting into the diffusion equation

d

dt
c(x, t) = D

d2

dx2
c(x, t) (4)

d

dt

N√
4πDt

e−x
2/(4Dt) = D

d2

dx2

N√
4πDt

e−x
2/(4Dt) (5)

N√
4πD

(
e−x

2/(4Dt) d

dt

1√
t

+
1√
t

d

dt
e−x

2/(4Dt)

)
=

ND√
4πDt

d

dx

−2xe−x
2/(4Dt)

4Dt
(6)

N√
4πD

(
−1

2
t−3/2e−x

2/(4Dt) +
1√
t
e−x

2/(4Dt) d

dt

−x2

4Dt

)
=

ND√
4πDt

(
e−x

2/(4Dt) d

dx

−2x
4Dt

+
−2x
4Dt

d

dx
e−x

2/(4Dt)

)
(7)

−1
2
t−3/2e−x

2/(4Dt) +
1√
t
e−x

2/(4Dt) x2

4Dt2
=

D√
t

(
e−x

2/(4Dt) −2
4Dt

+
−2x
4Dt

−2x
4Dt

e−x
2/(4Dt)

)
(8)

−1
2
t−3/2 +

1√
t

x2

4Dt2
=

D√
t

(
−2
4Dt

+
−2x
4Dt

−2x
4Dt

)
(9)

− 1
2t

+
x2

4Dt2
= D

(
−2
4Dt

+
−2x
4Dt

−2x
4Dt

)
(10)

− 1
2t

+
x2

4Dt2
=
−1
2t

+
x2

4Dt2
(11)

we get a true statement, indicating that c(x, t) = N√
4πDt

e−x
2/(4Dt) is a solution.

c) Find 〈x2〉 from the definition

〈x2〉 =
∫ ∞
−∞

x2P (x)dx =
∫ ∞
−∞

x2 N√
4πDt

e−x
2/(4Dt)dx (12)

using the same trick as used on pages 74-75 of Nelson. Recognizing the profile as a normalized Gaussian with 〈x〉 = 0
and σ =

√
2Dt, the variance(x) = 〈x2〉 − 〈x〉2 = 〈x2〉 is equal to σ2 = 2Dt. (Note that the time-dependence of the

normalization factor doesn’t matter here because the integral is only over the spatial co-ordinate.)
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Phys 150 HW 4 solutions

Nelson, Problem 4.14, pg 580 (8 pts)
a) The problem is framed in terms of a one-dimensional random walk, but this is just an example of a series of

events, each of which can have one of two possible outcomes (a step to the left or a step to the right). The question
is ‘What is the probability, Pm, that the first outcome (in the series) happens a total of m times, if the total number
of events is N?’ given that the probability for the first outcome is p (and, therefore, the probability for the opposite
outcome is (1− p). To show that

Pm = pm(1− p)N−m

(
N

m

)
(1)

realize first that there are N ! ways you can arrange N outcomes in a series. This is because, in choosing the first of
those outcomes you have N choices, but for the second you have only N − 1 choices, and so on. Now, if m of those
outcomes in your series are identical, then it doesn’t matter which one of those m outcomes appears at any one of
the positions in the series that had that type of outcome. So the number N ! is over-counting by a factor of m!. In
this random walk example, the other N −m outcomes are also identical. So the number N !/m! is still over-counting
by a factor of (N −m)!. The total number of possible series of N outcomes that have m outcomes of one type and
N −m outcomes of the opposite type, is therefore

N !
m!(N −m)!

≡
(
N

m

)
=
(

N

N −m

)
(2)

Now we want to take this total number of series (characterized by having m outcomes of one type) and multiply
it by the probability of m, and only m outcomes, of that type occur. That would be the probability of having m
outcomes of one type, and N −m outcomes of the other type. Since each event is independent of every other event,
the probabilities for the individual events just multiply. Therefore, the probability of having m outcomes of one type
(e.g. the type that was the first to occur in the series, for our example), and N −m outcomes of the other type is

pm(1− p)N−m (3)

Accordingly, multiplying equations (2) and (3) together, yields equation (1).

b) Using equation (1), and setting N = cV∗ and p = V/V∗ gives

Pm =
(
V

V∗

)m(
1− V

V∗

)CV∗−m(
CV∗
m

)
. (4)

In the limit that V∗ →∞, we can neglect the m in the middle term’s exponent and approximate the rightmost term
as (

CV∗
m

)
≡ (CV∗)!
m!(CV∗ −m)!

=
(CV∗)(CV∗ − 1)(CV∗ − 2) · · ·

m!(CV∗ −m)(CV∗ −m− 1)(CV∗ −m− 2) · · ·
≈ (CV∗)m

m!
. (5)

Equation (4) can therefore be rewritten with the leftmost and rightmost terms combined

Pm =
(
V

V∗

)m(
1− V

V∗

)CV∗ (CV∗)m

m!
(6)

=
(

1− V

V∗

)CV∗ (CV )m

m!
. (7)

Again, in the limit that V∗ →∞, the middle term can be expanded in a Taylor series:

Pm =

(
1− CV∗

(
V

V∗

)
+

(CV∗)(CV∗ − 1)
2!

(
V

V∗

)2

− (CV∗)(CV∗ − 1)(CV∗ − 2)
3!

(
V

V∗

)3

+ · · ·

)
(CV )m

m!
. (8)

and the small numbers being subtracted from the large numbers can be ignored

Pm =

(
1− CV∗

(
V

V∗

)
+

(CV∗)(CV∗)
2!

(
V

V∗

)2

− (CV∗)(CV∗)(CV∗)
3!

(
V

V∗

)3

+ · · ·

)
(CV )m

m!
. (9)
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The series expansion then simplifies to

Pm =
(

1− CV +
(CV )2

2!
− (CV )3

3!
+ · · ·

)
(CV )m

m!
. (10)

which you should be able to recognize as the Taylor expansion of ex =
∞∑

n=0

(xn)/n!, where x = −CV . Thus the

probability of finding exactly m fluorescent molecules in a small volume V , when the comparatively infinite bath the
volume is in contact with has a concentration C of those molecules is

Pm = e−CV (CV )m

m!
. (11)

This distribution function, known as the Poisson distribution, is well worth memorizing since it applies to all sorts
of situations.

c) To find the mean, value of m, we take the sum of m× Pm for all m.

〈m〉 =
∞∑

m=0

mPm (12)

= 0 +
∞∑

m=1

mPm (13)

=
∞∑

m=1

e−CV m
(CV )m

m!
=
∞∑

m=1

e−CV (CV )m

m− 1!
(14)

=
∞∑

m=1

e−CV CV
(CV )m−1

m− 1!
= e−CV CV

∞∑
m=1

(CV )m−1

m− 1!
(15)

= e−CV CV

∞∑
n=0

(CV )n

n!
(16)

= e−CV CV eCV = CV (17)

To find the variance of m, σ2
m = 〈m2〉 − 〈m〉2, we first calculate 〈m2〉, which is the sum of m2 × Pm for all m.

〈m2〉 =
∞∑

m=0

m2Pm (18)

=
∞∑

m=0

(m2 −m+m)Pm (19)

= 0 + P1 +
∞∑

m=2

(m2 −m+m)Pm (20)

=
∞∑

m=2

(m2 −m)Pm +
∞∑

m=2

mPm + P1 (21)

=
∞∑

m=2

(m2 −m)Pm +
∞∑

m=0

mPm (22)

=
∞∑

m=2

(m)(m− 1)Pm + CV (23)

= CV +
∞∑

m=2

(m)(m− 1)e−CV (CV )m

m!
= CV +

∞∑
m=2

e−CV (CV )m

(m− 2)!
(24)

= CV + e−CV (CV )2
∞∑

m=2

(CV )m−2

(m− 2)!
= CV + e−CV (CV )2

∞∑
n=0

(CV )n

n!
(25)

= CV + e−CV (CV )2eCV = CV + (CV )2 (26)

Then, we calculate σ2
m = 〈m2〉−〈m〉2 = CV +(CV )2−(CV )2 = CV . So, for the Poisson distribution, 〈m〉 = σ2

m = CV .
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Phys 150 HW 4 solutions

Nelson, Problem 4.17, pg 582 (4 pts)
a) We’re given the fluorescence intensity immediately after bleaching, ψ(x, t = 0), and asked to calculate its mean,

〈ψ(x, t = 0)〉. To find the mean, we compute the total intensity by integrating ψ(x, t = 0) over the entire volume, and
then divide by the total volume, V = XY Z.

〈ψ(x, t = 0)〉 =

∫
ψ(x, t = 0)dV∫

dV

=
1

XY Z

∫
dz

∫
dy

∫
(C0 + C1 sin(2πx/L)) dx (1)

=
1
X

(
C0

∫
dx+ C1

∫
sin(2πx/L)dx

)
(2)

=
1
X

(
C0X −

C1L

2π
cos(2πx/L)

)
(3)

= C0 −
C1L

2πX
cos(2πx/L) (4)

Since cos(2πx/L) ≤ 1, as long as X � L, the rightmost term is small and 〈ψ(x, t = 0)〉 = C0

b) To find the fluorescence intensity at later times, we use the diffusion equation (Eq. 4.20 on page 131)

dc

dt
= D

d2c

dx2
(5)

because it relates how concentration changes over time to how it is distributed in space, and fluorescence intensity is
directly proportional to the concentration of fluorophore. First we solve for the time-derivative, by plugging in:

dψ(x, t)
dt

= D
d2ψ(x, t)
dx2

(6)

d

dt
(C0 + ∆(t) sin(2πx/L)) = D

d

dx

d

dx
(C0 + ∆(t) sin(2πx/L)) (7)

d∆(t)
dt

sin(2πx/L) = D
d

dx
∆(t)

2π
L

cos(2πx/L) (8)

d∆(t)
dt

sin(2πx/L) = −D∆(t)
4π2

L2
sin(2πx/L) (9)

d∆(t)
dt

= −4π2D

L2
∆(t) (10)

The solution to this first-order differential equation is an exponential, ∆(t) = e−t/τ , where τ = L2/(4π2D). So, the
fluorescence intensity as a function of position and time becomes

ψ(x, t) = C0 + e−4π2Dt/L2
sin(2πx/L). (11)

Now, in the limit that our region of interest is small compared to the whole cell, we are effectively sampling only the
shortest times, so ∆(t) ≈ 1 − 4π2Dt/L2. In other words, the amplitude of the sinusoidal distribution will decrease
linearly in time, at first, at a rate 4π2D/L2.






