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Plan 
• General subject: statistical methods and phenomena 

in many-body systems

• Phases and phase transitions

• Critical phenomena - classical and quantum

• Elementary excitations and topological defects

• Models

• Statistical field theory

• Monte Carlo methods



Plan

• Cover subjects through illustrative topical 
examples from recent research such as

• Quantum criticality in an Ising chain

• Spin ice

• Order by disorder



Ising Chain
• Very beautiful paper from R. Coldea (Oxford), 

experimentally studying the quantum transverse field 
Ising chain, a canonical model of statistical mechanics

• We can learn about:

• Ising models

• Ordered and paramagnetic phases

• Quantum and classical phase transitions

• Elementary excitations and domain walls

eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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Fig. 3. Zero-field spin excitations in CoNb2O6. (A) In the 1D phase above TN1, a broad continuum occurs near
the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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Ising model

• Classical model of “spins” σi = ±1 which 
interact

• Usually put them on a regular lattice and 
make them couple locally, e.g. by nearest-
neighbors

H = �1

2

X

ij

Jij�i�j

H = �J
X

hiji

�i�j

=+1

=-1

-J +J

-J
J>0: “ferromagnetic”

J<0: “antiferromagnetic”



Thermal fluctuations
• Boltzmann

• High temperature

• Spins are basically random and equally likely to 
take any value: paramagnetic phase

• Low temperature

•  Spins are highly correlated and neighbors are 
almost always parallel: ?? ordered, ferromagnetic 
phase??

p[�1,�2, · · · ,�N ] =
1

Z
e��H � = 1/kBT

�J ⌧ 1

�J � 1



Phases
• A phase is a set of states of a system whose properties 

vary smoothly when varying control parameters 
continuously

• Usually we say that the free energy is analytic within 
a phase

• Two systems are in the same phase if all their 
properties are qualitatively the same

• Distinct phases exist only in systems with (1) an infinite 
number of degrees of freedom and/or (2) at zero 
temperature

• Why??? fluctuations etc.



Symmetry Breaking
• The difference between the paramagnetic and 

ferromagnetic phases is broken Ising symmetry

• High T: paramagnetic

• What does this mean (guaranteed by symmetry?)

• Consider infinitesimal applied field

• Low T: ferromagnetic

• Infinitesimal field

• Long range order

h�ii = 0

h�ii 6= 0



Susceptibility and LRO
• Susceptibility

• Linear response

• diverges when spins become long-range 
correlated

� =
@h�ii
@h

����
h=0

m = h�ii

h

PMFM

@h�ii
@h

= �
X

j

(h�i�ji � h�iih�ji)



Define magnetization

• Infinitesimal field

• Long-range order

m = lim
h!0+

h�iih

m2 = lim
|i�j|!1

h�i�jih=0


