
Correlation Length
• In the paramagnet, there is a finite length beyond 

which spins are uncorrelated 

• The correlation length must go from finite to infinite 
to enter the FM: defines critical temperature Tc

• Either it jumps to infinity: “first order transition”

• Or it diverges continuously: “second order” or 
“continuous” transition

• In the latter case, there can be non-analytic 
features on approaching Tc (why??)
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Mean field theory

• The simplest approximation to describe a 
phase transition is MFT

• There are many types of MFT, and if one 
wants to be more precise, this is “Curie-
Weiss MFT”

• Idea: replace interaction between spins by 
an effective “exchange field”

• Then solve the stat. mech. of this spin, and 
make the field self-consistent



MFT

• Decoupling

• Exchange field

• Self-consistency (for a classical Ising spin)
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MFT: solution

• For Ising Ferromagnet, on lattice with z 
nearest neighbors

• For kBT > zJ, only solution is m=0 (PM)

• For kBT < zJ, get spontaneous m≠0 (FM)

• non-analytic behavior characteristic of 
continuous transition

m = tanh z�Jm

m ⇠ (Tc � T )1/2⇥(Tc � T ) |T � Tc|/Tc ⌧ 1



Other MFT predictions

• Susceptibility

• Specific heat

• These kinds of predictions often work 
qualitatively and sometimes semi-quantitatively

• We expect MFT works best when z is large
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Ising Chain

• Coldea:

• Zero transverse field: effectively classical

• What is the transition like?

• exactly solvable by “transfer matrix”

H =
X

i

⇥
�JSz

i

Sz

i+1 � h?S
x

i

⇤

Si = �i/2 Pauli matrices

H = �Je↵
X

i

�z
i �

z
i+1



Transfer matrix

• Partition function

• Transfer matrix
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Transfer Matrix (2)

• Solution

• Large system

• This is a smooth function with no singularity at 
finite, non-zero K = J/kBT: no phase transition!
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Why no transition?

• This is because of domain walls

• Correlation length = distance between 
domain walls: finite for any T>0

• Can verify this from transfer matrix

ΔE=2J
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Fluctuations
• So thermal fluctuations have a drastic effect in 1d - 

destroy the phase transition entirely

• In fact this is a general phenomena: d=1 is the “lower 
critical dimension” for discrete symmetry breaking at 
T>0

• more on this theme later

• What about quantum fluctuation effects at T=0, or 
thermal fluctuations for d>1?

• Even when they do not destroy the ordered phase, 
they alter critical properties and lead to other effects


